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ABSTRACT 

Raghuram, Sandeep Mudabail. M.S., Purdue University, August, 2010.  Bridging 
Text Mining and Bayesian Networks.  Major Professor:  Yuni Xia. 
 
 
 
After the initial network is constructed using expert’s knowledge of the domain, 

Bayesian networks need to be updated as and when new data is observed. 

Literature mining is a very important source of this new data. In this work, we 

explore what kind of data needs to be extracted with the view to update Bayesian 

Networks, existing technologies which can be useful in achieving some of the 

goals and what research is required to accomplish the remaining requirements. 

This thesis specifically deals with utilizing causal associations and experimental 

results which can be obtained from literature mining. However, these 

associations and numerical results cannot be directly integrated with the 

Bayesian network. The source of the literature and the perceived quality of 

research needs to be factored into the process of integration, just like a human, 

reading the literature, would. This thesis presents a general methodology for 

updating a Bayesian Network with the mined data. This methodology consists of 

solutions to some of the issues surrounding the task of integrating the causal 
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associations with the Bayesian Network and demonstrates the idea with a semi-

automated software system. 
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CHAPTER 1. INTRODUCTION 

1.1. 

The overall aim of this research was to find a methodology to update Bayesian 

networks as and when new data is observed. Literature mining is a very 

important source of this new data after the initial network is constructed using the 

expert’s knowledge. But the task of reading through hundreds of journal articles 

and publications to support existing associations and probabilities can become 

very tedious. Automated systems are not yet available because the state of the 

art is not developed enough to deduce associations and probabilities from a 

discourse level analysis of the literature article. 

Objectives 

However, existing research demonstrates ways to extract intra-sentential causal 

associations. This research has explored ways to use these causal associations 

and the issues related to integrating it with existing Bayesian Network. This 

research also tries to define what kind of data in the literature can be interesting 

from the perspective of updating a Bayesian Network.  

A human reading a literature piece, would usually associate some kind of trust or 

confidence in the article. This confidence could stem from the reputation of the 

publication house, the author of the article etc. This degree of confidence plays 

an important role in the reader’s acceptance of the data and ultimately the data 

represented in the Bayesian Network. For example, if articles from two different 

authors and publications propose the same causal association but with different 

probabilities, the reader needs to make a decision as to which article to ‘trust’ 
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and what probability to use in the Bayesian Network. In this research, we make 

an attempt to address this issue.  

The specific objectives were to: 

1. Identify the type of information in text which can be potentially useful for 

constructing or updating a Bayesian network. 

2. Develop a methodology to utilize the mined information. 

3. Create a semi-automated tool to demonstrate the methodology and 

provide the user with useful information to update Bayesian networks. 

1.2. 

This thesis has 8 chapters and is organized as follows: Chapter 2 provides 

information about the background of this research and related work done in this 

field. Chapter 3 presents the outline of the methodology proposed. Chapter 4, 5 

and 6 discuss each phase of the proposed in detail. Chapter 7 presents the 

experimental system developed and the results. Chapter 8 concludes the work. 

The appendix provides information about the software system developed to 

demonstrate the ideas proposed. 

Organization 
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CHAPTER 2. PRELIMINARIES 

2.1. 

2.1.1. Bayesian Network 

Background 

A Bayesian network (BN) is a directed acyclic graph whose arcs denote a direct 

causal influence between parent nodes (causes) and children nodes (effects) 

[11]. A BN is often used in conjunction with statistical techniques as a powerful 

data analysis tool. While it can handle incomplete data and uncertainty in a 

domain, it can also combine prior knowledge with new data (evidence) [4]. A BN 

makes predictions using the conditional probability distribution tables (CPT). 

Each node in a BN has a CPT which describes the conditional probability of that 

node, given the values of its parents [13]. Using the CPT for each node, the joint 

probability distribution of the entire network can be derived by multiplying the 

conditional probability of each node. Probabilistic inference in a Bayesian 

network is achieved through evidence propagation. Evidence propagation is the 

process of efficiently computing the marginal probabilities of variables of interest, 

conditional on arbitrary configurations of other variables, which constitute the 

observed evidence [14]. 

2.1.2. Constructing a Bayesian Network 

Causality denotes a necessary relationship between one event (“cause”) and 

another event (“effect”) which is the direct consequence of the first [7]. It implies 

a dependency between a cause and an effect where the probability of the “effect” 

occurring becomes very high, if the “cause” occurs first in a chronological order 
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[1].  A causal model is an abstract model that uses cause and effect logic to 

describe the behavior of a system [8]. This model can then be used to build a 

BN. This approach of building a BN from causal modeling is essential in 

understanding the problem domain and predicting the consequences of an 

intervention [4]. 

There are two approaches to construct a BN: knowledge-driven and data-driven. 

The knowledge-driven approach involves using an expert’s domain knowledge to 

derive the causal associations. The data driven approach uses the causal 

modeling technique described before, to derive the mappings from data which 

can then be validated by the expert [9]. 

2.2. 

This thesis studies the problem of updating a Bayesian Network. As discussed 

earlier, a BN is built initially by an expert drawing upon his/her domain 

knowledge. Some of this knowledge can be axiomatic, i.e accepted facts of the 

domain that are not expected to change over time, while the rest is mostly the 

belief at that point in time. This belief needs to be reinforced over time or 

subjected to modifications. The modifications could result in re-configuration of 

the causal mappings, like addition/deletion, or it could be a change in the 

probability. A popular implementation of BN, Netica, provides a function to ‘fade’ 

the probability associated with causal mappings in the network. This results in a 

reduction in the belief associated with the mapping, if it is not reinforced from 

time to time citing new evidences. 

Analysis of the Problem 

Case files can be a very good source of evidence. The case files might contain 

interventions suggested by the Bayesian Network and could provide vital 

information about the success or failure of those interventions. Literature is 

another important source of new evidences. It could be new research publication, 
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survey of articles in the domain or an analysis of cases and interventions for the 

domain. However, procuring these new evidences from literature is a tedious 

task. In many cases, it involves manual readings of articles and journals and 

manual update tasks to keep the model updated. Automated techniques exist to 

mine information from literature. But they are limited in scope due to the fact that 

text mining technology has not progressed enough to ‘deduce’ the meaning 

implied over multiple sentences, paragraphs or across the entire article. Intra-

sentential mining is, however, a developed technology, with substantial 

theoretical framework to implement a system.  

Building on this, what is required is an approach to associate a degree of 

confidence in the mined information. This can be viewed as an emulation of 

human behavior when faced with a new piece of information. An expert, 

reviewing literature in the domain, would implicitly associate some sort of 

confidence in the information, based on prior experience with the source of the 

article or the nature of work, as can be perceived from it. 

Finally, the task of integrating the new information with the Bayesian Network 

needs to be addressed. Research in this area has identified several modeling 

issues [15].  

2.3. 

Mining causal associations from text using lexico-syntactic analysis has been 

studied in previous work [2, 3]. In [2], a method was developed for automatic 

detection of causation patterns and semi-automatic validation of ambiguous 

lexico-syntactic patterns that refer to causal relationships. This procedure 

requires a set each of causation-verbs and nouns frequently used in a given 

domain. Using these sets, all patterns of type <NP1 cause_verb NP2>, where 

NP1, NP2 are noun phrases, can be extracted. The authors of the above said 

work have used the causal verbs that they found to be the most frequent and 

Related Work 
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less ambiguous such as lead (to), derive (from), result (from), etc. Some of the 

causal patterns identified by their system are: “Anemia are caused by excessive 

hemolysis”, “Hemolysis is a result of intrinsic red cell defects”, and “Splenic 

sequestration produces anemia”. In [24], a system was also developed for 

acquiring causal knowledge from text. 

This thesis builds on the previous work and designs a general framework for 

building a Bayesian network based on text mining. It tries to bring together 

numerous existing ideas and some new ideas in an attempt at bridging the two 

technologies. This complicated process is broken down into several stages and 

the major issues that need to be solved at each stage are discussed with 

possible solutions. 
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CHAPTER 3. ANALYSIS OF THE PROBLEM 

3.1. 

Existing text mining techniques can deliver causal associations from within a 

sentence or from sentences in close proximity of each other. As discussed in the 

previous chapter, these causal associations can be used to model the system 

and can be easily transformed into a Bayesian Network. Thereby, phrases 

containing causal associations form the most interesting data in the literature 

from the perspective of this work. Building on from here, techniques are required 

to estimate the probabilities for these associations. Further on, formal techniques 

are required to define and quantify the degree of confidence of the mined data. 

Once all of this data is available, integration issues need to be dealt with before 

the data can find its way into the Bayesian Network. For example: A causal map 

depicts causality between variables, i.e.it implies dependence between those 

variables. Hence it is a D-map. BNs, on the other hand, are I-maps: given a 

sequence of variables, an absence of arrow from a variable to its successors in 

the sequence implies conditional independence between the variables. Other 

modeling issues include:  

Outline of the Approach 

• Eliminating circular relations  

• Reasoning underlying the link between concepts 

• Distinction between direct and indirect relations 

This thesis, proposes a general methodology to bridge text mining and Bayesian 

network. 
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3.2. 

The problem of mining and integrating data into Bayesian Network can be solved 

in a systematic way as follows: 

The Proposed Methodology 

1. The causal associations need to be identified and extracted out of 

literature. 

2. Any numerical data supporting these mappings needs to be extracted: 

The numerical data, usually percentages, decimals and numbers 

representing quantity, could indicate the probability of occurrence of the 

causal events, conditional or prior probabilities. 

3. The source of the article, such as the journal, publication house, website 

etc, is identified and the degree of its influence in the domain under 

consideration is identified. 

4. The perceived quality of the research is then quantified by categorizing the 

nature of the work and the quality of the experiments conducted to justify 

the claims made. 

5. The confidence of the mined data is then quantified based on the 

measurements from steps 3 and 4. 

6. Using the data from steps 2 and 5, the derived probability for the causal 

association from step 1 is computed. 

7. The destination of the causal associations needs to be identified. 

8. The causal associations need to be checked for consistency and validity 

with the existing network. This is a semi-automated technique and 

provides useful information to the human expert to perform the key 

decisions in the final leg of integrating the mined data.  

Each of these steps is discussed in detail in the coming chapters. 
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CHAPTER 4. MINING CAUSAL ASSOCIATIONS 

4.1. 

Since the relation between parent and child nodes in a Bayesian Network is a 

cause-effect relationship, the most relevant pattern that needs to be mined is 

cause-effect pattern or causal patterns. Causal patterns can occur in the 

following ways: 

Extracting Causal Associations 

• Cues such as connectives: “the manager fired John because he was lazy” 

• Verbs: “smoking causes cancer”; or 

• NPs: “Viruses are the cause of neurological diseases“. 

As discussed in [24], the first step in mining these patterns is identifying section 

of the text containing them. The next step is to analyze them by considering the 

presence of various connectives like conjunction, disjunction and negation. 

Conjunctions are better viewed as unit causes/effects, whereas disjunctions and 

conjunctions should be decomposed [24]. Going by this logic, a conjunction like 

“Corruption and insecurity” should be treated as a single event, whereas 

“Bacteria, germs or virus” should be decomposed into three separate atomic 

causal patterns, each of which contributes to the estimation of a separate 

conditional probability in the specification of the Bayesian network. 

4.2. 

Once the associations are extracted, the expert is subjected to a structured 

interview to resolve the biases in the causal maps or given an adjacency matrix 

representation of the associations to specify the relations. Three direct response-

Extracting Probability 
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encoding methods to derive probabilities for the causal associations are 

described in [16]. In these methods, a subject responds to a set of questions 

either directly by providing numbers or indirectly by choosing between simple 

alternatives or bets. These are manual encoding techniques which require the 

knowledge and judgment of a human subject to elicit probabilities.  

It might, however, be possible to develop an automated technique to augment 

these manual encoding procedures. The aim of this technique is to search for 

and utilize numerical data accompanying the sentences containing the causal 

associations and present it to the expert. 

Percentages are a common way of summarizing a statistical result. Sentences 

containing a causal association might also contain percentages from surveys and 

experiments to emphasize the relation. Hence, it is useful to examine sentences 

marked as containing causal associations for numerical details, which can yield 

statistical data for the BN. It can be observed that a percentage usually occur in 

close proximity of the noun phrases, which are part of a causal relationship. 

Simple sentential structures include: 

 

<numerical_string_pre NP1 causal_verb NP2> 

<NP1 causal_verb NP2 numerical_string_post> 

Where: 

numerical_string_pre, numerical_string_post can be “xx%”,”xx% of”,”xx% of the 

times” etc 

 

For example: “20% falls lead to death”, “5% of people who fall require 

hospitalization”, “25% of the time fall can result in fracture”, “Falls can result in 

fracture 25% of the times” etc. This percentage value can then be directly 

converted to the probability value for that assertion.  
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The strength of a causal association in text can also be estimated by looking for 

superlatives and other phrases which qualify the verb. For example: “There is a 

strong possibility that falls result in fracture”. A list of such phrases can be 

mapped to pre-defined probability values. 

While these patterns yield the probabilities or causal strength of the relations, 

other intra-sentential patterns might yield prior-probabilities for nodes in a BN. 

For example: “In the age 65-and-over population as a whole, approximately 35% 

to 40% of community-dwelling, generally healthy older persons fall annually.” In 

the domain of Geriatry, the population of interest are always persons 65 years of 

age or older. Under that assumption, the above sentence would yield the prior 

probability for a node ‘fall’ in a BN for ‘fall risk’, a prior probability of 0.375 

(average). Now if the literature contained another sentence like “55% of the 

people above the age of 80 were at the risk of falling”, then the two sentences 

put together would yield conditional probabilities for continuous valued nodes 

named ‘age’ for the ranges 65<= age < 80 and 80 <= age. This would require the 

knowledge of population distribution for the two age groups which would then be 

considered their prior probability. 

However, this topic can be a subject for future research and is not addressed in 

this work. 
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CHAPTER 5. DEFINING THE CONFIDENCE MEASURE 

5.1. 

One of the main focus areas of this research has been a method to determine 

how much confidence can be associated with the causal associations mined from 

text. The confidence measure is a score we associate with every causal mapping 

in the BN based on the confidence we have in asserting that relationship. It is an 

attempt at quantifying the confidence placed in the causal relationship uncovered 

by automated methods. This confidence stems from two sources: 

Parameters Considered 

• The literature source 

• The nature and perceived quality of the work which puts forth the causal 

relation (or evidence from the perspective of the Bayesian Network) 

We attempt to quantify these two sources in order to derive a formal ‘confidence’ 

measure. Hence, the two sources will be referred to as the journal’s influence 

measure and the evidence level of the evidence.  

5.1.1. Quantifying the Influence Measure 

Various measures have been suggested for measuring a journal’s influence. The 

most commonly used ones are Institute for Scientific Information (ISI) Impact 

Factor [18] and Eigenfactor.  

The impact factor, often abbreviated IF, is a measure of the citations to science 

and social science journals. It is frequently used as a proxy for the importance of 

a journal to its field [12]. The impact factor of a journal is calculated based on a 
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two-year period. It can be viewed as the average number of citations in a year 

given to those papers in a journal that were published during the two preceding 

years.  

For example, the 2003 impact factor of a journal would be calculated as follows: 

BA /   IF=  Eq. 5.1 

 

Where, 

A = the number of times articles published in 2001-2 were cited in indexed 

journals during 2003 

B = the number of "citable items" published in 2001-2 

 PageRank is a link analysis algorithm used by the Google Internet search 

engine that assigns a numerical weighting to each element of a hyperlinked set 

of documents [19]. The algorithm may be applied to any collection of entities with 

reciprocal quotations and references, such as articles published by a journal. A 

version of PageRank has been proposed as a replacement for the ISI impact 

factor, called Eigenfactor [17].  In this measure, journals are rated according to 

the number of incoming citations, with citations from highly-ranked journals 

weighted to make a larger contribution to the Eigenfactor than those from poorly-

ranked journals [20]. 

A third way would be for a domain expert to manually assign influence measure 

for the journals in the domain. But such a process is not only time consuming, but 

could also be tedious for domains which have a large number of publishing 

journals. Moreover, the task of keeping this measure updated also becomes very 

tedious. 

The final choice of the influence measure depends on the expert. 
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5.1.2. Quantifying the Evidence Level 

Evidence level refers to a categorization or ranking of the evidence. This is a 

domain specific qualification of the evidence. Medicine is one domain where 

professionals and experts actively review literature to stay updated with current 

trends in treatment and best practices. Also, it is a domain where vast amounts 

of research and scholarly articles are published regularly in journals and 

websites. As a result, significant research has also been done into how to assess 

these large quantities of information forth coming every day. Evidence Based 

Medicine or EBM as it is called, is a result of this effort at categorizing evidences 

into qualitative levels. Evidence-based medicine categorizes different types of 

clinical evidence and ranks them according to the strength of their freedom from 

the various biases that beset medical research [10]. It also lists some commonly 

used evidence categories. 

In general, a scheme for categorizing evidences needs to be developed for the 

domain under consideration. This categorization technique can then be applied in 

conjunction with text mining to quantify the strength of the evidence discovered. 

5.1.3. Estimating the Evidence Level 

Estimating the evidence level requires keyword search and/or semantic analysis 

of the document title, abstract, conclusion and the segment of the text containing 

the sentence with the causal associations. For example, in Geriatric evidence 

based practice, [23] lists the levels of quantitative evidence from 1 to 6, in 

descending order of importance. Documents containing a level-2 evidence 

usually have the string “Randomized Control Trial” mentioned either in their title, 

abstract or keywords section. However, a more detailed discussion of this topic is 

necessary and will not be addressed as part of this thesis. 
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The evidence level is then mapped to a value between [0, 1], which can be used 

in a formula to compute the confidence measure. In Geriatrics, level 1 

corresponds to the most trusted and will hence get the highest value assigned, in 

this case a value of 1.  

5.2. 

Based on the theory presented till here, the format for representing data mined 

from literature is shown in 

Format for Extracting Data 

Table 5.1. We assume that by using the existing 

techniques, causal associations are extracted and available in the format. 

Table 5.1 Format of Extracted Data 

Noun 
Phrase 1 

Causal verb Noun 
Phrase 2 

Probability Evidence 
Level 

 

Noun phrase1, causal verb, Noun phrase2 represent the triplet mined from text 

using techniques mentioned above. Causal verb is not a mandatory field but may 

be useful in identifying the directionality of the relationship i.e. it may help in 

identifying if Noun Phrase 1 is the cause or the effect. It is useful to differentiate 

triplets like: “Slippery road is caused by snow.”, “Slippery roads cause accidents.” 

In the absence of this field, it is assumed that NP1 is the cause and NP2 is the 

effect. 

Probability is the prior probability for the causal mapping, which can be extracted 

from text using additional semantic analysis or assigned a default value. 

 

Consider the following sentence:  

“For persons age 65 and older, 25% of falls result in fracture” 
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It can be decomposed as shown in Table 5.2. 

Table 5.2 Example of Extracted Data 

falls result in fracture 0.25 Level 2 

5.3. 

The chosen influence measure for the domain is normalized to a value [0, 1] for 

every journal. The confidence measure is then computed as a weighted average 

of these two parameters: 

Derive the Confidence Measure 

( ) ( )( )
( )wewi

evelevidence_l*wemeasureinfluence_ *wi  _measureconfidence
+
+

=  
Eq. 5.2 

 

Here W_i and W_e are the weights assigned to influence measure and evidence 

level respectively. Their values will be determined at the expert’s discretion and 

could vary from domain to domain. 



17 

 

 

 

Figure 5.1 Partial Flow Chart for Importing New Evidence and Computing the 
Confidence Level 
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CHAPTER 6. INTEGRATING THE DATA WITH THE BAYEISAN NETWORK 

6.1. 

As mentioned earlier, certain modeling issues need to be resolved while 

converting causal maps into BNs. As discussed in [4], two most widely used 

methods are structured interviews and adjacency matrices. In structured 

interviews, the experts are provided a list of paired concepts as well as different 

alternative specifications of the relation between the concepts in the original map 

and asked to choose an alternative to specify the direct relation between the pair 

of concepts. Using adjacency matrices, the experts are asked to specify for each 

cell, whether it is a positive, negative or null relation. Though the role of the 

expert in this process may not be completely eliminated, we can attempt to 

provide more details to help make the task easier. These details are essentially 

suggestions for node mapping, loop handling, choosing between direct and 

indirect relations and values for probabilities in the light of new data. 

Integration Issues 

6.2. 

Mapping the mined noun phrases to a node in the existing BN is a semantic 

classification problem and can be solved using one of the existing information 

retrieval and/or classification techniques.  

Mapping Noun Phrases to Nodes in a Bayesian Network 

6.2.1. k-nearest Neighbor 

Using k-nearest neighbor (k-nn) technique, the new noun phrase can be 

searched in a space containing all the node names. The Microsoft Full-Text 
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engine is one such application which can query a search string and return the 

search result sorted by relevance ranking [21].  

6.2.2. Vector Mapping 

Another method involves use of vector representation of the names of the nodes 

in the BN. The new noun phrases are also converted into a vector and compared 

to all the existing vectors to find a match. These techniques however fail to map 

semantically equivalent noun phrases.  

6.2.3. Machine Learning 

For a domain which has a large training data, machine learning techniques such 

as Weight-normalized Complement Naïve Bayes (WCNB) [22] can be used. The 

training data consists of a large corpus of semantically mapped noun phrases. 

This is used by the WCNB algorithm to calculate the prior probability maximum 

likelihood estimate for every combination of noun in the domain and noun phrase 

representing a node. This prior probability is then stored in a mapping table 

which contains a unique row for every combination of noun phrase and node in 

the domain, as shown in Table 6.1. The noun phrases can be stored in a 

stemmed format for use by the algorithm. Stemming is the process for reducing 

inflected (or sometimes derived) words to their stem, base or root form – 

generally a written word form [27]. Once the training is complete, mapping a 

noun phrase from text mining to a node in the BN is a simple table lookup to 

compute the probability of a match. If the probability is above a pre-defined 

threshold, then a match is deemed to be found. 
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Table 6.1 Stem Code to Node Mapping Table 

Node Noun Match Probability 
Visual Impairment vision 0.9124 
Visual Impairment visual 0.9487 
Visual Impairment eyesight 0.8461 
Visual Impairment surrounding 0.0042 
Visual Impairment environment 0.0627 

Environmental Hazard vision 0.0828 
Environmental Hazard visual 0.0285 
Environmental Hazard eyesight 0.0076 
Environmental Hazard surrounding 0.7857 
Environmental Hazard environment 0.8875 

 

6.2.4. New Association 

If a match is not found for one or both of the noun phrases with any of the 

existing nodes, then it means that the association uncovered is not seen before. 

In this case, the node(s) along with an associating link will have to be created 

and the mined probability and confidence will be directly assigned to the new 

association.  

6.3. 

The causal association mined could introduce loops in the BN. This needs to be 

detected and resolved. As discussed in [4], causal loops can exist for two 

reasons. First, they may be coding mistakes that need to be corrected. Second, 

they may represent dynamic relations between variables across multiple time 

frames. While an expert is required to resolve these loops, an automated system 

can attempt to look at the chronological order of the nodes in the BN. Since the 

BNs are built from causal maps, they have an implicit chronological order: the 

cause has to occur before the effect. Any new association, which draws a 

relation from a node later on in the existing chronological order to a node earlier, 

can be flagged as either representing a dynamic relationship or a possible error. 

Handling Cycles 
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As shown in Figure 6.1, the discovery of evidence supporting a causal relation 

from x3 to x1 will induce a loop in the network and needs to be resolved by a 

human reviewer. If the new evidence has a significantly lower confidence 

measure, than the existing links, then it can be discarded as an error. Else, it is 

possible that the two nodes are interacting across different state levels and might 

require replicating the network to represent different state of the nodes at 

different time instances. Then, a link can be created across the nodes in two 

different networks to represent the state transition. 

 

Figure 6.1 Preventing Cycles in the Bayesian Network 

6.4. 

When faced with multiple paths between nodes, as shown in 

Direct and Indirect Relations 

Figure 6.2, the 

confidence measure can be used as a parameter to decide which path to retain. 

For each of the path, the average confidence measure over all the edges in the 
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path can be computed. The path which has the higher confidence measure can 

be suggested for retaining. 

 

Figure 6.2 Direct and Indirect Relations 

6.5. 

By this stage, the target cause-effect nodes and their corresponding link have 

either been identified or created new. The next step is to derive the probability for 

the association and update the conditional probability table for the effect node in 

the network. There are two cases possible here:  

Deriving the Probability 

• The association under consideration is accompanied by a probability 

value. 

• No probability value was available for the association. 

The following sections discuss these two cases. 
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6.5.1. Truth Maintenance 

For causal relations mined without a probability value, the number of data 

evidences discovered to support a particular relation can be stored and the 

probability updated via truth maintenance [25]. In a nutshell, truth maintenance 

works like this: 

To begin with, the belief in a node is equal among all its possible states. If a node 

is dual stated, like Yes-No, then the belief in each of the two states is 0.5. 

As new evidence becomes available, this belief is updated. If an evidence is 

provided for the state of the node to be “Yes”, then the probability of “Yes” 

changes to 2/3 and that of “No” changes to 1/3.  

Similarly, if more evidences are provided for the state of the node to be “Yes”, 

then its probability continually changes to ¾, 4/5, 5/6, etc until it becomes a near 

certainty. 

A truth maintenance system (TMS) maintains consistency between old believed 

knowledge and current believed knowledge in the knowledge base (KB) through 

revision [28]. It maintains a record of the current belief set which include 

supporting evidences and contradictions. It provides the entire belief set to the 

Inference Engine to make the decisions. 

6.5.2. Averaging 

For relations mined with a probability value, the prior probability should include 

the new evidence and also all of the evidences discovered until then. A simple 

way would be to take an average of all the probabilities. However, the evidences 

accumulated so far could be from various different sources and could be a result 

of a wide range of surveys, experiments or pure hypothesis. As discussed 

before, the confidence measure associated with each of these evidences, 

attempts to quantify the source of this information. This confidence can now be 
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used as a weight in calculating the final probability that can be associated with 

the relation.  

Another way to arrive at the new prior probability is to compute a weighted 

average of the probabilities from all evidences till date, including the newly found 

evidence, where the weights are the confidence measures, as shown in Eq. 6.1: 

( )
( )∑

∑

=

== n

1i
i

n

1  i
ii

confidence

yprobabilit *confidence
 ility new_probab  Eq. 6.1 

n

confidence
  encenew_confid

n

1  i
i∑

==  Eq. 6.2 

The confidence associated with this association will be an average of the 

confidence of all the evidences, as shown in Eq. 6.2. This new confidence can 

now be presented to the expert reviewing the results, to help resolve key issues 

in updating the Bayesian Network. The new probability and confidence measures 

replace the existing ones for the association in the network. 

There are cases when it is desirable to ‘fade’ the prominence associated with 

evidence over time. In other words, as evidence gets older, the confidence 

associated with it reduces. For such cases, the above equations can be modified 

to factor in the age of the evidence, by introducing a new parameter which is a 

function of time as shown in the equations below. 

( )
( )∑

∑

=

== n

1i
i

n

1  i
ii

idencetotal_conf

yprobabilit *idencetotal_conf
 ility new_probab  Eq. 6.3 
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n

idencetotal_conf
  encenew_confid

n

1  i
i∑

==  Eq. 6.4 

( )age_factori *confidenceiidencetotal_conf i where =  Eq. 6.5 

6.6. 

The next step in the process is to identify the state space for the nodes. This is 

an expert driven activity and is not addressed in the thesis. This work assumes a 

default ‘Yes’ and ‘No’ state for every node related by the causal association and 

the automated updating of CPT in the system developed, occurs only if the 

nodes are dual stated. However, the methods described in here can be 

enhanced to mine adjectives which qualify the nouns in question. These 

adjectives can then be part of the suggestion along with the probability and 

confidence. 

Identifying the States of the Nodes 

6.7. 

The last step of the process is resolving Noisy-OR and Noisy-AND conditions in 

the network. This process is not a candidate for automation and requires an 

expert’s knowledge for resolution.  

Resolving Noisy-OR and Noisy-AND 
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CHAPTER 7. EVALUATION 

7.1. 

The system supporting the ideas presented in this thesis was developed as a 

part of the SCANS system developed by My Health Care Manager. The system, 

developed as a prototype, demonstrates the processing of information mined 

from Geriatric health literature. It was built using the .Net framework. The user 

interface was built using C# and the backend was Microsoft SQL Server 2009 

Express edition. The Netica APIs were used to implement Bayesian Network. 

Netica is a commercial system developed by Norsys Inc.  

The Setup 

The core logic is implemented as a library used by the user interface. A part of 

the logic is also implemented as SQL stored procedures which are executed by 

the user interface. The backend comprises of a relational database and the 

stored procedures. Detailed information about the structure of the software and 

the database is provided in the appendix. 

7.2. 

The system uses the Influence measures for publications in Geriatric care 

literature and research articles from these publications for the triplets and 

probabilities representing the mined information. The Influence measures are 

available at the ISI Web of Knowledge website 

The Data 

[29].  
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7.3. 

The primary goal of the system is to process mined data and integrate it with 

existing Bayesian Networks. Certain information can be integrated automatically 

while the rest are processed in a semi-automated manner. Therefore, an 

important feature is to provide information to the user for cases when the 

integration cannot be done in a fully automated way. This system does not 

contain a text mining utility as yet and the data required from this operation is 

manually filled into a relational database. As a result, certain additional 

functionalities are implemented to make the prototype usable. The operations 

implemented in this software system are: 

Software Features 

7.3.1. Normalizing Influence Measure 

The influence measures supported by the system are:  

• Impact Factor 

• Eigen Factor 

• Article Influence Score 

These scores, in their original form, don’t have any specific upper or lower 

bounds. However, the absolute values of these measures don’t have much 

meaning with respect to our system, unless they are placed in perspective by 

bounds. The highest and lowest values among these measures can serve as 

bounds. If desired, the user can specify these bounds as the ‘min’ and ‘max’ 

values. These bounds are then used for normalizing these influence measures. 

7.3.2. Importing New Evidence 

This operation interfaces text mining with the system. It works on the raw data 

provided by a text mining utility and prepares it for use by the rest of the system. 

The steps carried out in this process are as follows: 
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• Get the weights for Influence measure and Evidence Level assigned by 

the user. These are the two parameters used for computing the 

confidence level of the evidence and the default weights assigned by the 

system are 50% each. 

• Get the Influence measure chosen by the user. 

• For every evidence: 

 Get the weight associated with its evidence level and the value of the 

Influence measure associated with the publication.  

 Using these, compute the confidence level for the evidence. 

 Check if the noun phrases have an entry in the database. If it’s a 

phrase not seen before, create a new entry. This step is essential in 

mapping the nouns to nodes in the Bayesian network. 

 Check if the nouns have been related by a causal association. If not, 

create a new relation in the database to represent this new causal 

association. 

 Finalize the import by adding the evidence into a table along with its 

probability and confidence measure. 

Figure 7.1 shows the process described above. The outputs of this process, 

along with those from Figure 5.1, form the new evidence. 
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Figure 7.1 Partial Flow Chart for Importing New Evidence from Text Mining into 
the System 

7.3.3. Mapping Nodes to Keywords 

This system provides a very rudimentary utility to manually map keywords to 

nodes. A complete machine learning system which can automatically map 
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keywords to nodes is complex to implement and logistically not possible within 

the timeframe of this research work. 

The utility displays a column with the available keywords in the system and 

another column with unmapped keywords as shown in. The user can select the 

keyword and the matching node to create a mapping. This also helps in resolving 

synonyms because all different representations of the noun phrase get mapped 

to the same node. Since the system being developed is still at a prototyping 

stage, this method of manually mapping is sufficient. But a full scale 

implementation will have to address this task which can potentially be a major 

bottleneck in the operation. 

7.3.4. Generating Suggestions 

This step consolidates all the evidences and writes out the result into a database 

table. This step identifies all the unique triplets based on the nodes mapped to 

them and computes the probability and confidence based on the equations Eq. 1 

and Eq. 2 discussed earlier. The nodes representing cause-effect relation are 

also written out with the result. If the evidence is new and has no associated 

representation in the Bayesian Networks, then the triplet along with its probability 

and confidence is written out as it is but the fields representing the cause-effect 

nodes are left ‘null’ to indicate that it’s a new causal association. The generated 

suggestions are then displayed on the screen for review by the user. 

For causal associations already existing in the BN, the previous probability and 

confidence is displayed to facilitate comparison with the newer values. 

For causal associations which induce loops in the BN, a message is displayed 

indicating the same. 
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7.3.5. Reviewing Suggestions 

Once the suggestions are generated and displayed on the screen, the user can 

review them by selecting the interesting suggestion and clicking ‘review’ button. 

The system then attempts to display this suggestion as part of the appropriate 

Bayesian Network: 

Case1: Both the nodes and the link between them exists. In this case, only the 

conditional probability table needs to be updated. The system has been designed 

to handle Boolean states of the nodes, i.e. the two possible states of the nodes 

are ‘Yes’ and ‘No’. This means that for a causal relation like “Falls lead to death 

20% of the time” the corresponding CPT representation would be modified as 

shown in Table 7.1. A similar example from the system is shown in Figure 7.2 

and Figure 7.3 below. 

Table 7.1 Modified CPT Representation at Node ‘Death’ 

Parent1 Fall No Yes 
No No … … 
No Yes 0.8 0.2 
Yes No … … 
Yes Yes … … 
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Figure 7.2 Case 1: Evidence to be Reviewed 
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Figure 7.3 Case 1: Updating the CPT 

Case 2: Both nodes exist in the network but are not linked causally. Create the 

link if it does not induce any loops in the network. As shown below, the new 

evidence linking the client’s gender and arthritis is applied to the BN. Figure 7.4 

shows the original BN and Figure 7.5 shows the BN after applying the new 

evidence. 
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Figure 7.4 Case 2: BN Before Updating with New Evidence 

 

 

 

Figure 7.5 Case 2: BN After Adding the New Link 
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Case 3: Special case of case 2. Both nodes exist but the directionality of the new 

causal association is reverse of what currently exists. Loop detection utility 

checks for this condition and recommends the link with higher confidence. This 

might lead to the existing link being replaced by the newer link. 

Case 4: One of the noun phrases in the causal relation has a corresponding 

node while the other doesn’t exist. The second node needs to be created along 

with the link between the nodes. If a ‘cause’ node was created, then the CPT at 

the ‘effect’ node needs to be updated. This usually results in an exponential 

increase in the number of rows in the CPT to accommodate all the combinations 

arising out of the states in the new node. Figure 7.6 shows the original BN before 

adding the new evidence. Figure 7.7 shows the evidence to be reviewed. Figure 

7.8 shows the BN with the new evidence incorporated in the form of a new cause 

node and the Figure 7.9 shows the CPT updated the effect node. 

If the new node is an ‘effect’ node, then it probably is an intermediate node. If it 

turns out to be a leaf node of an existing BN, it could probably suggest a new 

intervention. If it not a leaf node, then it would result in a dangling intermediate 

node which has no impact on reasoning and needs to be re-wired into the 

existing network by an expert. 
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Figure 7.6 Case 4: Original BN 
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Figure 7.7 Case 4: Evidence to be Reviewed 
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Figure 7.8 Case 4: BN After Adding the New Evidence 
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Figure 7.9 Case 4: CPT Updated at Node ‘EnvFallRisk’ After Adding New Cause 
Node ‘obstacles’ 

 

Case 5: The causal relation has never been seen before and both the nodes and 

the link need to be created. This case most likely leads to the beginning of a new 

Bayesian network. 
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CHAPTER 8. CONCLUSION 

8.1. 

This thesis studies the problem of updating a Bayesian Network from literature. It 

breaks down the problem and proposes a step by step approach to solving it. 

The thesis studies existing techniques which can be used in solving some of the 

steps and proposes some new techniques for the rest. It builds on the technique 

of mining causal associations from text and using the resulting causal 

associations to update the Bayesian Network. It proposes the use of an influence 

measure for the source journal and an evidence level for the causal evidence 

mined. It proposes to use confidence measure as an instrument in evaluating 

new evidence mined from text and presents techniques to derive a confidence 

measure for causal associations mined. It further presents ways to partially 

automate resolution of the modeling issues by providing the expert with 

meaningful alternatives computed using the confidence measure of the edges in 

the BN. The thesis also identifies gaps in research and techniques that need to 

be developed to facilitate a more complete system to mine data from literature 

which is relevant to updating a Bayesian Network. 

So Far 

8.2. 

Future work will focus on medical domain since higher occurrence of causal 

patterns was found in it, given that diseases can be diagnosed or cured by 

recognizing their causes as well as the effects of prescriptions. Moreover, future 

work will include improved evaluation methods and term extraction methods. 

Along with more focused evaluations, effort needs to be put into measure how 

well the network works when performing tasks such as obtaining accurate 

Future Work 
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inferences, answering questions about the content of the text or supporting 

decision-making. For term identification, ontologies formed by modifiers and 

nouns can be considered, the recognition of specialized terms of the topic when 

generalization takes place as well as the integration of anaphora resolution.  

Other specific areas of research identified by this work are: 

 Identifying the degree of causality encoded in the text through the usage 

of auxiliaries (as may, could and must) as well as adverbs (such as 

strongly, slightly) so that more precise probabilities can be derived. 

 Use of ontologies can be researched with respect to a BN. One definite 

advantage know at this point is the mapping of completely new information 

to an existing BN. The current system does not have the capability to map 

a causal association to a BN if both the nodes are new. By maintaining a 

mapping of BN and its nodes with an ontology, new causal associations 

can be automatically mapped to an existing BN, by semantically 

classifying the source of the evidence to a known term in the ontology. 

 Identifying state of the nodes of the BN by using adjectives associated 

with the nodes in the causal association. 

 Using inhibitors to derive interventions for the BN. For example: 

“Vaccination prevents flu”. ‘Vaccination’ can be used as an intervention for 

‘Flu’. 



BIBLIOGRAPHY 
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APPENDIX 

This section describes the software system built to demonstrate the ideas 

presented in this thesis. The ER diagram for the backend relational database is 

shown in Figure A.1. 

 

Figure A.1 ER Diagram for the Relational Database Schema 
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Table A.1 Raw_Evidence 

Triplet_ID Source_ID NP1 NP2 Verb Probability Evidence_Level_ID 
2 15 steps fall 23 0.70000 2 

 

The database schema is briefly described in this section. The table 

Raw_Evidence contains the output of text mining. It contains the causal 

association in the triplet form, along with the probability, source of the evidence 

and the evidence level. 

Table A.2 Publication 

Name Raw 
Impact 
Factor 

Impact 
Factor 

Raw 
Eigenfactor 

Score 

Eigenfactor Raw Article 
Influence 

Score 

Article 
Influence 

AGE 2.9250 0.43551 0.00256 0.05320 0.0000 0.00000 
 

The table Publication contains the list of publications which are the primary 

source of literature. This table contains the various influence measures used by 

the system for every publication. The ‘Raw’ fields are publically available data 

while the others are normalized values based on user defined minimum and 

maximum. This table does not change very frequently. For example, it needs to 

be updated only when the influence measures shown above are updated 

annually or when a new publication is used. 

Table A.3 Evidence_Level 

Evidence_Level_ID Level_weightage description 
1 1.0000 Level1: Systematic Reviews 
2 0.9500 Level2: Single Experimental Studies 
3 0.9000 Level3: Quasi Experimental Studies 
4 0.8500 Level4: Non-Experimental 
5 0.8000 Level5: Case Report, Program 

Evaluation 
6 0.7500 Level6: Opinion of Respected 

Authorities 
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Table Evidence_Level is a static table containing the definition for every level of 

evidence used in the system. The primary field here is the weight associated with 

the level.  

Table A.4 Source 

Source 
ID 

Publication 
ID 

Date Title Author 

1 18 2001 Guideline for the Prevention 
of Falls in Older Persons 

AGS Board of 
Directors 

 

The table Source contains details of individual articles, papers etc. It is bound to 

the publication where it appeared. 

Table A.5 Keywords 

Keyword_ID Keyword Node_ID 
54 steps 9 
55 fall 1 

 

The table Keyword contains all the noun phrases known to the system and a 

mapping to the node they correspond to in the BN. This table also serves to map 

synonyms to a single node. 

Table A.6 Relation 

Relation_ID Cause Effect 
43 54 55 

 

The table Relation represents the causal association between noun phrases. It 

can potentially contain a combination for every synonym of every known 

association. If a ‘cause’ has two synonyms and an ‘effect’ has two synonyms, 

then the table can potentially have four different tuples representing all the 

combinations. 
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Table A.7 Evidence 

Evidence_ID Relation_id confidence probability 
2 43 0.7431 0.7000 

 

The table Evidence represents processed data where the causal association 

from text mining has been codified and the confidence level has been derived. 

This table store the result of the ‘Import’ functionality provided by the system and 

is used to generate suggestions to the user. 

Table A.8 Decision_Model 

Decision 
Model_ID 

Name Description Filename Evaluation 
Order 

3 DM_Environ
mental 

Test Model DM_Environ
mental 

3 

 

The table Decision_Model contains details of the Bayesian networks in the 

system and their physical representation in the machine. 

Table A.9 Node 

Node_ID Decision 
Model_ID 

Description Node_Name Node_Title 

1 3 Aggregation 
of all 

Environmant
al hazards 
which can 
cause fall 

EnvFallRisk Environment
al Fall Risk 

 

The Node table contains details of the nodes in the Bayesian network and is 

mapped to the BN it belongs to. 
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Table A.10 Association 

Association_
ID 

Source 
Node 

Target Node Probability Confidence 

1 2 1 NULL NULL 
2 3 1 NULL NULL 

 

The table Association is an equivalent of the table Relation except that it 

represents the real causal links which exist in the BNs in the system. For every 

node to node causal link, there is a corresponding entry in this table. 

Table A.11 Suggested_Association 

Suggestion 
ID 

Evidence 
ID 

Source 
Node 

Target 
Node 

Probability Confidence 

201 10 9 1 0.74824 0.71790 
 

The table Suggested_Association stores the suggestions generated by the 

system using the evidence provided to it. It contains the final output of the 

system. The suggestions are stored in this table for review and can be loaded in 

the display. Before beginning a session with new set of evidences, the user must 

clear this table. 

 

The following SQL stored procedures have also been in addition to the C# 

software: 

•  [Publication_Normalize_Influence_Score]: Used to normalize the 

influence measures of the publications. 

• [Evidence_Compute_Confidence]: Used to compute confidence level for 

each evidence in the evidence table. 

• [Association_Compute_Probability]: Used to aggregate the evidences and 

populate them into the Suggested_Association table. 

 

The opening screen of the software utility is shown in Figure A.2. It consists of a 

left panel with the operations supported and a right panel which displays the data 
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and results of the operation. The right panel contains tabs with grids, one each 

for Normalize/Import, Map keywords and Suggestions. 

 

Figure A.2 The Software Utility for Processing Information from Text Mining 

The controls for the Normalize Influence measure operation is shown in Figure 

A.3. The new minimum and maximum values need to be specified by the user 

and the influence measures will be normalized to that range on clicking the 

button provided. The values are written out to the corresponding columns in table 

Publication. 
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Figure A.3 Normalizing the Influence Measures for the Publications 

The controls for Import New Evidence operation are shown in Figure A.4. The 

influence measure to be used for computing the confidence level of the evidence 

can be specified in the list provided. The default is Impact Factor. The weights to 

be used with the influence measure and evidence level can be specified in the 

numeric up-down control. The default weights are 0.50. The Importing operation 

is triggered on clicking the button provided and table Evidence is populated. In 

case the table contains data from previous sessions, a warning message is 

displayed before beginning the operation. If the user decides to go ahead, then 

the table is cleared out before beginning the new import. 
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Figure A.4 Importing New Evidences into the System for Processing 

The controls for mapping keywords to nodes are shown in Figure A.5. The 

operation can be initiated by clicking the button in the left panel upon which two 

lists are displayed on the panel in the right. These lists contain the list of 

unmapped keywords and the list of available nodes in the system. The user 

needs to choose a keyword by clicking on it and choosing a mapping node by 

clicking on it. The ‘submit’ buttons provided below the lists, commits the changes 

to the database. 

 

 

 

 

 



53 

 

 

Figure A.5 Mapping Keywords to Nodes in the Bayesian Network 

Figure A.6 shows the clearing of table Suggested_Association before generating 

new suggestions. 
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Figure A.6 Clear Suggestions Before Generating New Ones 

The last set of controls provided help the user to generate and review 

suggestions. The Load suggestions button shown in Figure A.7 reads the table 

Suggested_Association and loads it into a grid display. By checking the Generate 

new suggestions checkbox, the user can generate fresh suggestions based on 

the current data in the Evidence table. The grid displaying the suggestions 

contains a checkbox for selecting evidences of interest. The user can check the 

evidences and click Review button. The system then attempts to generate a 

visual representation of the evidence by loading the corresponding BN in Netica. 

For certain cases, the system also shows some message in the comments 

column of the grid. This column provides information about the previous 

confidence level, loops being induced etc. 
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Figure A.7 The Software Utility for Processing Information from Text Mining 
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