2009 International Conference on Network-Based Information Systems

Parameter Tuning of JXTA-based P2P Platforms

Fatos Xhafa
Dept. of Languages and Informatics Systems
Technical University of Catalonia
Campus Nord, C/Jordi Girona 1-3
08034 Barcelona, Spain
EMail: fatos@!Isi.upc.edu

Jordi Missé Bertran
Dept. of Languages and Informatics Systems
Technical University of Catalonia
Campus Nord, C/Jordi Girona 1-3
08034 Barcelona, Spain
EMail: jmisse@Isi.upc.edu

Abstract

P2P technologies have appeared as disruptive tech-
nologies that have spawned large scale collaborative
applications involving thousands or even millions of
users world-wide. Undoubtedly, most successful ap-
plications of P2P paradigm are information sharing
between individuals and groups of users, which enable
sharing and searching for digital content information,
and exchanging via P2P communication such infor-
mation. However, P2P applications are still difficult
to program and to efficiently deploy in real network
infrastructures and usually have network efficiency
problems. A part from intrinsic difficulties of P2P
algorithmics, there are difficulties in efficiently tuning
P2P applications in real environments. Indeed, P2P
applications usually involve many parameters, whose
values cannot be arbitrarily fixed but require a careful
tuning to achieve expected performance. In this work,
we show by example of a P2P JXTA-based platform,
how to tune the parameters of the platform using exist-
ing software tools (JConsole and JHat) and enhance
its performance.

1. Introduction and motivation

P2P systems [9], [8], [5] appeared as the new
paradigm after client-server and web-based computing.

978-0-7695-3767-2/09 $25.00 © 2009 IEEE
DOI 10.1109/NBiS.2009.22

97

Zorion Arrizabalaga

Dept. of Languages and Informatics Systems

Technical University of Catalonia
Campus Nord, C/Jordi Girona 1-3
08034 Barcelona, Spain
EMail: zarrizabalaga@lsi.upc.edu

Leonard Barolli
Dept. of Information and Communication Eng.
Fukuoka Institute of Technology
3-30-1 Wajiro-higashi, Higashi-ku
Fukuoka 811-0295, Japan
EMail: barolli@fit.ac.jp

P2P systems are quite popular systems to share huge
amount of data such as Napster, Gnutella, FreeNet and
others. One of the main characteristics of such systems
is file sharing among peers. However, the improvement
of P2P protocols is enabling the development of P2P
applications others than the well-known file-sharing
applications. However, there is still few work to bring
P2P system to real word applications, mainly due to
the lack of robust P2P platforms that would allow
the deployment of large P2P systems. The JXTA plat-
form [4], [6], [7] is making possible the development
of P2P real-world applications.

P2P applications are still difficult to program and to
efficiently deploy in real network infrastructures and
usually have network efficiency problems [3]. A part
from intrinsic difficulties of P2P algorithmics, there
are difficulties in efficiently tuning P2P applications
in real environments. Indeed, P2P applications usually
involve many parameters, whose values cannot be
arbitrarily fixed but require a careful tuning to achieve
expected performance. This is precisely the motivation
of this work; we address the issue of how to tune the
parameters of P2P platforms using existing software
tools, such as JConsoloe and JHat t enhance their
performance. We exemplify the approach through a
P2P JXTA-based platform, namely, JXTA-Overly plat-
form [10], [11]. Although most current research effort
are devoted to tuning network applications, testbed and

IEEE
computer
psoue

ty

configuration issues of deployment of P2P systems are
attracting the interest of researchers [1], [2].

The rest of the paper is organized as follows. We
give an overview of the JXTA library in Section 2.
The design of the JXTA-Overlay is given in Section 3.
In Section 4 we give a description of most important
parameters of JXTA-Overlay P2P platform and their
tuning. Finally, we conclude in Section 5 with some
remarks and indicate directions for future work.

2. JXTA networks

JXTA library is a set of open protocols proposed
by Sun Microsystems that allow any connected device
on the network ranging from cell phones and wire-
less PDAs to PCs and servers to communicate and
collaborate in a P2P manner (see e.g. [4], [7]). JXTA
peers create a virtual network in which any peer can
interact with other peers and resources directly even
when some of the peers and resources are behind fire-
walls and NATs. We describe next the main entities of
JXTA networks.

Peer: Any interconnected node is called peer. Peers
work independently and asynchronously with other
peers. Peers publish one or more interfaces that are
used by other peers to establish peer-to-peer connec-
tions.

PeerGroup: A PeerGroup is a collection of peers
that are joined to provide a secure shared environment
for the participating peers. PeerGroups can decide their
own policy of peer membership. Note that peers can
simultaneously belong to more than one PeerGroup. As
in the case of peers, PeerGroups offer their services
such as discovery services, pipe services, peer join
services, monitoring services etc.

Pipes: A pipe is a virtual communication channel
established between two processes. A computer con-
nected to the network can open, at transport level,
as many pipes as its operating system permits. These
channels act as data links between the two communi-
cation points. Through pipes can be sent any types of
objects such as strings, binary code, java objects, etc.
JXTA offers both unidirectional, not secure pipes, and
bidirectional secure pipes.

Messages: Messages are objects used for communi-
cating and interchanging data. A message is essentially
an ordered sequence of tags/values, which could also
include binary code (appropriately encoded).

Advertisements: The JXTA resources/services are
represented using advertisements. An advertisement is
a meta-data structured information (XML document),
which are published with a certain lifetime that spec-
ifies its availability. JXTA offers the following types

98

of advertisements: Peer Advertisement, Peer Group
Advertisement, Pipe Advertisement, Module Class Ad-
vertisement, Module Spec Advertisement, Module Impl
Advertisement, Rendezvous Advertisement and Peer
Info Advertisement.

Further, peers can be classified in Limited Edge
peer (peers that can send and receive messages but
cannot send advertisements neither store advertise-
ments in its cache); Complete Edge peer (peers that
can send/receive messages, store advertisements but
cannot manage resource discovery advertisements);
Rendezvous peer (besides functionalities mentioned
above, Rendezvous peers can manage resource dis-
covery advertisements. Each group must have at least
a rendezvous; when a peer joins a group of peers,
it automatically looks for a rendezvous in the group.
Moreover, rendezvous keep a list of other rendezvous
and their respective peers); and, Relay peer (this type
of peer serves as an intermediate nodes. Relay peer
keep routing information to other peers and sends
messages to other peers that can’t access directly to
another peer.)

3. The JXTA-Overlay

The objective of the overlay is to provide a set
of basic primitives for file sharing, the discovery and
allocations of resources, instant messaging, etc. This
set of primitives is intended to be as complete as
possible regarding the functionalities needed in most
P2P applications. An important characteristics of the
primitives is their independence from the applications
that will be using them. Moreover, the primitives
allow to keep the intrinsic decentralized nature of P2P
systems.

3.1. The primitives

The set of primitives includes functionalities that
allow peer discovery, peer’s resources discovery, re-
source allocation, file/data sharing, discovery and
transmission, instant communication and peer group
functionalities, among others.

The primitives are organized in interfaces according
to an affinity criterion. In what follows we give the
main functionalities of these interfaces; here we use
indistinctly the terms peer and resource.

Authentication: This interface includes typical
methods for authentication of the final user/application
that will be using the resources managed by the
overlay. It should be noted that another authentica-
tion could be established at the application level,
which would be independent of the overlay. In

this interface we have, among others, the methods
connect (which verifies the authentication by calling
the verifyAuthentification method of JXTA,
connects to a broker, flushes the local cache and fires
an event); configure (which configures the local
cache; it is called just once at the beginning); login
and disconnect.

Resource discovery and information: This inter-
face includes functionalities related to the discovery
of peers managed by the overlay. The implementa-
tion of these functionalities is later done by using
JXTA discovery services. It should be noted that,
as part of resource discovery, the overlay includes
functionalities to discover a resource of certain de-
sired characteristics. Thus we have, among others, the
methods discoveryEvent, getPeerName and
getPeerID.

Management of executable tasks: An important
place in the primitives is given to functionalities related
to the management of executable tasks in distributed
applications. These functionalities are intended to give
service to users/applications on top of the overlay that
submit executable tasks and receive results in turn.
Thus we have, among others, the following methods:

e executableTaskRequestRandom: a new exe-
cutable task is requested to be executed in another peer
selected at random.

e executableTaskRequestSelectedPeer: a
new executable task is requested to be executed in a
(group of) selected peer(s).

e executableTaskRequestDataEvaluator:
evaluates the execution of a task according to task
data/characteristics.

e executableTaskRequestEconomicEvaluator:

evaluates the execution of a task according to a given
economic model based on task data/characteristics.

e« executableTaskDel: deletes a task from list of
pending tasks.

e« executableTaskAccepted: indicates acceptance
of a task execution in a specified resource.

« executableTaskDeny: indicates deny of a request
for a task execution

+« executableTaskFinished: advertises that the ex-
ecution of task has successfully been finished.

e executableTaskCanceledRequest:
cancellation of task execution.

« executableTaskCanceledByDestination:
indicates that the executable task has been cancelled
at destination resource.

« executableTaskCanceledBySender: indicates
that the executable task has been cancelled by task’s
sender.

o« addExecutableType: adds a new type of exe-
cutable tasks that a resource supports. Similarly there
is the delExecutableType method.

e addExecutableTypes: adds a list of executable
types that a specified group of resources can sup-
port. Similarly there is the delExecutableTypes

requests

99

method.

e getExecutableTaskLocalInfo: returns the lo-
cal information about an executable task.

¢ getExecutableTaskRemoteInfo: returns the in-
formation about an executable task at a remote peer
(including the prediction for the completion time of the
task).

e getTasks: returns all pending tasks of a specified
type (e.g. executable task, file transfer, etc.).

File sharing, discovery and transmission:
This includes sharing, discovery and transmission
of files, which are basic functionalities of the
overlay. The objective of these functionalities
goes beyond the sharing in P2P systems since

file transmission is necessary for submitting
tasks to resources. Thus we have, among
others, the following methods: addSharedFile,
addSharedDirectory, delSharedFile,
getSharedFiles, sendFilePeer,
sendFileAccepted, sendFileDeny,

sendFileGroup, findFile, fileRequestRandom,
fileRequestSelectedPeer,
fileRequestEconomicEvaluator,
cancelTransfer, localInfoTransfer.

Instant communication: This interface includes
methods for instant communication between peers and
include sendMsgPeer (for sending a message to a
specified peer) and sendMsgGroup (for sending a
message to a group of peers).

Peer’s statistics: Statistic information of resources
is relevant for applications that will be built on top of
the overlay. Thus we have, among others, the following
methods:

e getPeerStatistics: returns statistic information
on a specified resource.

e getGroupStatistics: returns statistic information
on a group of resources.

e getBrokerStatistics: returns statistic informa-
tion on a specified broker resource.

e getBrokerStatistics: returns statistic informa-
tion on the broker of a specified group of resources.

e getClientStatistics: returns statistic informa-
tion on a specified edge peer.

e getClientStatistics: returns statistic informa-
tion on a specified group of edge peers.

There are also some primitives related to the peer’s
local cache that we have omitted here.

3.2. Peers in JXTA-Overlay

The set of the primitives is implemented by taking
advantage that JXTA allows different types of peers.
In the overlay we have defined client peers and broker
peers. The former are complete edge peer while the
later act as rendezvous and relays. Any PeerGroup has
at least a broker to which client peers get connected

and send their requests (e.g. resource allocation peti-
tions).

Broker peers: The mission of a broker node is to
manage and control all requests received from client
peers. Also, broker manages the events produced by
such requests and propagates them to superior levels of
overlay. Among broker’s functionalities we distinguish:
event management, controlling the resources connected
to the broker, maintaining the organization of resources
in groups, finding the best resource for file sharing,
finding the best resource for executing submitted tasks,
maintaining updated statistic information, etc.

Client peers: Client peers can be of two types:
CMDClient, which is instantiated by peer that do not
interact with final user and GUIClient that offers a
graphical interface for the final user.

4. Parameter Tuning

In this section we first present the most relevant
parameters in JXTA-based P2P platforms and then
show how to use existing software, such as JConsole
and Jhat, for their tuning.

4.1. JXTA-Overlay parameters

The parameters in JXTA-Overlay can be divided into
two groups: parameters related to Broker peers and
parameters related to Client peers. The parameters are
given in Table 1.

As can be seen from Table 1, Broker peer parameters
include discovery time, publishing time (for resource
discovery and rooms), advertisement time for broker’s
statistics and expiration time for broker’s statistics. It
should be noted that high values of these parameters
could lead to an inconsistent state of the network;
for instance, a high value of advertisement time for
broker’s statistics related to peer statistics could yield
to obsolete information in case a peer is disconnected
from the network. On the other hand, small values of
the parameters could cause congestion of Broker peers
due to very frequent updates.

Similarly, in case of Client peer the parameters in-
clude time parameters related to peer’s advertisements,
publishing, statistics, expiration as well as parameters
related to pipes. Again, small values of these parame-
ters could cause saturation of Client peers due to very
frequent generation of advertisements and high traffic
in the network due to the publishing and propagation
of the peer’s information.

These time parameters could be actually called
polling-like parameters since they directly relate to the

100

time intervals for checking the state of the network,
performing actions or sending state information to the
network.

Therefore, finding parameter values adjusted to the
P2P networks is crucial to achieve expected perfor-
mance. In particular, the values of time parameters
should allow the P2P platform to successfully process
all events and threads (executors) generated in the
platform. Inappropriate values of the parameters could
cause the accumulation of many events and executors
that the platform might not be able to process and
hence causing collapse of the platform.

4.2. Tuning parameters of JXTA-Overlay

JConsole' and JHat (Java Heap Analysis Tool)? are
standard Java tools for analyzing performance of Java-
based applications. JConsole offers many functionali-
ties for detecting the lack of memory, deadlocks as well
as monitoring various threads of an application. JHat
can be used in conjunction with JConsole, through its
option to create a dump file (created using MBeans)
that JHat can analyze the performance of the applica-
tion’s heap.

The performance of the JXTA-Overlay is done by
analyzing Broker peers and Client peers performance
(in terms of their parameters). The experimental study
started with a default setting of parameters (see Ta-
bles 2 and 3) and was done in several iterating steps
with the aim of finding most appropriate values of
the parameters. In order to realistically measure the
performance of the platform, peers shared a consider-
able number of files, initiated several task executions,
some peers initiated file search etc. Thus, the analysis
is conducted under a realistic workload of the P2P
platform.

Broker peer’s performance analysis. We analyzed
Broker’s parameters when client peers were trying to
connect to the network. Using the default values of
Broker’s parameters, we observed that the CPU usage,
heap and number of threads reach levels that can not
be functional (see snapshot in Fig. 1).

The rather large number of executors could be
explained because executors are created faster than
Broker peer can process them (£lush_cache was
already applied to clear expired executors). Therefore
we conducted several iterations and changed the values
of parameters slowly. The final values of parameters
(see Tables 2 and 3) resulted in stable values in
number of threads as well in CPU and Heap usage
(see snapshot in Fig. 2).

1. http://java.sun.com/javase/6/docs/technotes/tools/share/jconsole.html

2. http://java.sun.com/javase/6/docs/technotes/tools/share/jhat.html

Table 1.

Broker and Client peer parameters.

Broker peer’s parameters

Client peer’s parameters

broker.discovery.time

client.ping.time

client.criteriums.adv.lifetime

discovery.room.publish.time

broker.discovery.publish.time

client.discovery.time

client.criteriums.adv.expiration.time

discovery.room.time

broker.stats.adv.time

client.discovery.publish.time

client.stats.adv.time

pipe.adv.room.time

broker.stats.adv.lifetime

client.info.adv.time

client.stats.adv.lifetime

pipe.adv.broker.time

broker.stats.adv.expiration.time

client.info.adv.lifetime

client.stats.adv.expiration.time

pipe.adv.client.time

client.info.adv.expiration.time
client.criteriums.adv.time

broker.discovery.room.publish.time

client.stats.update.time
client.stats.max.times

pipe.adv.lifetime
pipe.adv.expiration.time

Figure 1. CPU usage, Heap and number of
threads of Broker peer (initial configuration).

| m
I g
N '\ | MJ(l

Figure 2. CPU usage, Heap and number of
threads of Broker peer (final configuration).

Client peer’s performance analysis. We analyzed
in a similar way the performance of client peer perfor-

mance. Initially we used the default configuration for
client peers and monitored the CPU and Heap usage as
well as number of threads. As can be seen from Fig. 3,
the Heap usage and number of threads are high.

Java Monitoring & Management Console

: 2124 demoAplication. Client.Client -pc.

i) Hemory | Torads | Closses | 11 Sumnary | Heans |

Time Range: [l -

P q

< seasn R
60Mb
50Mb
150
H0Mb
30Mb
20Mb 100
10Mb
00mbL 60-.
1m0 12 17:2 17:23 w20 1721 R

Used: 66,6 Mb_ Committed: 66,7 M Max: 66,7 Mb Live: 193 Peak: 194 _Total: 217

70MbT- Used 200 Uve theads

< CPU Usage
4,000 0%

ded

Loa
< 388 0%
20%

10%

< Z%

3.000L 0%
w20 w2 12 73 17120 17:21 17:22 17:23

Loaded: 3582 Unloaded: 206 Total: 3888 CPU Usage: 23,44%

CPU s

Figure 3. CPU usage, Heap and number of
threads for Client peer (initial configuration).

Again, we conducted several iterations and changed
the values of parameters slowly. The final values of
parameters (see Table 2 and Table 3) resulted in stable
values in number of threads as well in Heap usage (see
snapshot in Fig. 4).

5. Conclusions

In this work we have addressed the issue of tuning
P2P applications in order to enhance their performance.
P2P networks involve a large number of parameters
and their performance largely depends on appropri-
ate values of the parameters. We have exemplified
the approach of parameter tuning of P2P platforms

101

B Java Monitoring & Management Console BEE
Conecton_Window._Help

B8 vic: 3664 demoAplication.Client.Client -pc: AEE
]| Moy | hveas | Clases | W summar | Moeans | *

Time Renge: [al =

4,0Mb. e bl
o ass0ss Live treads
@ <a
50
3,0Mb, '
£
2
2,0Mb; 10
16146 16146
Used: 3,9Mb _ Committed: 6,6 Mb_Max: 66,7 b Live: 61 Peak: 61 Total: 62
a =
4,000 20%
CPUUssge
Loaded 1% . Syuss
< 3
3,000 /—J 10%
EA
2,000 0%
16146 16146
Loaded: 3,300 Lloaded: 47 Total: 3,347 CPUUsage: 13,87%

Figure 4.

threads of Client peer (final configuration).

CPU usage, Heap and number of

Table 2. Parameter values for Broker peer:
default and new configuration.

New Broker configuration

Default Broker configuration

UNITS

UNITS

In minutes:

In minutes:

- client.ping.time

- client.ping.time

- client.stats.update.time

- client.stats.update.time

- client.stats.adv.lifetime

- client.stats.adv.lifetime

~ Client stats.adv.expiration. time

~ client stats. adv.expiration. time

small.time

- executable.small.time

EIESERENES

- broker.stats.adv.lifetime

ESESESENES

- broker.stats.adv.lifetime

- broker.stats.adv.expiration.time

- broker.stats.adv.expiration.time

In seconds: the rest

In seconds: the rest

broker.discovery.time=18

broker.discovery.time=3

broker.discovery.publish.time=10

broker.discovery.publish.time=5

broker.stats.adv.time=20

broker.stats.adv.time=30

broker.stats.adv.lifetime=5

broker.stats.adv.lifetime=5

broker.stats.adv.expiration.time=5

broker.stats.adv.expiration.time=5

discovery.room.publish.time=50

discovery.room.publish.time=5

discovery.room.time=50

discovery.room.time=5

pipe.adv.room.time=50

pipe.adv.room.time=5

pipe.adv.broker.time=10

pipe.adv.broker.time=5

pipe.advclient ime=10

pipe.adv.client ime=5

pipe.adv.lifetime=25

pipe.adv.lifetime=10

pipe.adv.expiration Gime=50

pipe.adv.expiration.time=50

through the tuning of parameters of JXTA-Overlay
using existing software tools such as JConsole and
Jhat. The proposed approach is useful for tuning also
other important parameters such as size of PeerGroup,
number of tasks and shared files in client peers in order

to evaluate the scalability of the P2P platform.

References

[1] D. Andersen, H. Balakrishnan, M.F. Kaashoek, and R.
Morris. Experience with an evolving overlay network
testbed. ACM SIGCOMM Computer Comm. Review,
33(3):13-19, 2003.

(2]

B. Butnaru, F. Dragan, G. Gardarin, I. Manolescu, B.
Nguyen, R. Pop, N. Preda and L. Yeh. P2PTester: a tool
for measuring P2P platform performance. Proc. of Int’l
Conf. on Data Engineering, 1501-1502, IEEE 2007.

102

Table 3. Parameter values for Client peer: default

(3]

(4]

(3]

(6]

(7]

(8]

(9]

[10]

[11]

and new configuration.

New Client peer configuration Default Client peer configuration

In minutes: # In minutes:

- client.ping.time # - client.ping.time

- client.stats.update.time # - client.stats.update.time

- client.stats.adv.lifetime # - client.stats.adv.lifetime

- client.stats.adv.expiration.time # - client.stats.adv.expiration.time
#- ble.small.time # - executable.small.tim

- broker.stats.adv.lifetime # - broker.stats.adv.lifetime

- broker.stats.adv.expiration.time # - broker.stats.adv.expiration.time

In seconds: the rest # In seconds: the rest

time=3 client.ping.time=3

overy.time=10 client.discovery.time=5

client.discovery.publish.time=15 client.discovery.publish.time=5

client.info.adv.time=7 client.info.adv.time=5

client.info.adv.lifetime=12 client.info.adv.lifetime=10

client.info.adv.expiration.time=60 client.info.adv.expiration.time=60

client.criteriums.adv.time=15 client.criteriums.adv.time=15

client.criteriums.adv.lifetime=15 client.criteriums.adv.lifetime=15

client.criteriums.adv.expiration.time=65 client.criteriums.adv.expiration.time=45

client.stats.adv.time=20 client.stats.adv.time=30

client.stats.adv.lifetime=5 client.stats.adv.lifetime=5

client.stats.adv.expiration.time=5 client.stats.adv.expiration.time=5

client.stats.update.time=5 client.stats.update.time=5

client.stats.max.times=24 client.stats.max.times=24

discovery.room.publish.time=50 discovery.room.publish.time=5

discovery.room.time=50 discovery.room.time=5

pipe.adv.room.time=50 pipe.adv.room.time=5

pipe.adv.brokerime=10 pipe.adv.broker fime=5

pipe.adv.client.time=10 pipe.adv.client.time=5

pipe.adv.iifelime=25 pipe.adv.lifetime=10

pipe.adv.expiration.time=50 pipe.adv.expiration.time=50

H. Bal, H. Casanova, J. Dongarra, and S. Matsuoka.
Application-Level Tools. In Foster and Kesselman, eds,
The Grid: Blueprint for a New Computing Infrastruc-
ture, chapter 24, 463—489. Morgan 2003.

D. Brookshier, D. Govoni, N. Krishnan, and J.C Soto.
JXTA: Java P2P Programming. Sams Publishing, 2002.

J. Crowcroft, T. Moreton, 1. Pratt, and A. Twigg. Peer-
to-Peer Technologies. In Foster and Kesselman, eds,
The Grid: Blueprint for a New Computing Infrastruc-
ture, chapter 29, 593-622. Morgan 2003.

S. Li. Early Adopter JXTA. Wrox Press Information
Inc., 2003.

S. Oaks, B. Traversat, and L. Gong. JXTA in a Nutshell.
O’Reilly, 2003.

A. Oram, ed. Peer-to-Peer: Harnessing the Power of
Disruptive Technologies. O’Reilly, 1st edition, 2001.

C. Shikey. What is P2P ... and what isn’t. O’Reilly
Network, November 2000.

F. Xhafa, L. Barolli, T. Daradoumis, R. Fernandez, S.
Caballé. Extension and evaluation of JXTA protocols
for supporting reliable P2P distributed computing. In-
ternational Journal of Web Information Systems, 4(1),
121-135, 2008, Emerald Pub.

F. Xhafa, L. Barolli, T. Daradoumis, R. Fernandez, S.
Caballé. Jxta-Overlay: An Interface for Efficient Peer
Selection in P2P JXTA-based Systems. International
Journal on Computer Standards & Interfaces, Elsevier,

2008. In Press

