
Lightweight security for JXME-proxied relay authentication

Abstract—Mobile devices have become ubiquitous, allowing
the integration of new information from a big range of objects.
But the development of new applications requires a powerful
framework which simplifies their construction. JXME is the
JXTA protocols implementation for mobile devices using J2ME,
its main value being its simplicity when creating peer-to-peer
(P2P) applications on limited devices. On that regard,an issue
that is becoming very important in the recent times is being
able to provide a security baseline to such applications. This pa-
per proposes a simple security mechanisms in order to protect
JXME applications against a broad range of vulnerabilities.
The protocol overhead has been experimentally tested in order
to assess its low impact on device performance, an important
requisite on limited devices.

Keywords-peer-to-peer; security; JXME; JXTA; distributed
systems; Java; J2ME.

I. INTRODUCTION

Peer-to-peer (P2P) applications have become highly pop-
ular in recent times due to its great potential to scale
and the lack of a central point of failure. Slowly, they
have evolved from simple file-sharing environments, such
as Gnutella [1], to more complex ones such as e-health
or e-learning [2]. However, currently, Internet is quickly
becoming witness to the transition from a desktop-centric
environment towards one based on the ubiquity of mobile
devices [3]. Therefore, it was natural that the next step in the
evolution of P2P applications would be following this trend
[4], since mobile environments are based on node autonomy
and decentralization, just like P2P.

There are different platforms that allow programmers to
develop mobile P2P applications [5], [6], among which
JXME [7] can be found. Its main advantage, in comparison
with other proposals, is being the mobile version of the well
known JXTA platform [8]. The JXTA specification defines a
set of generic protocols which allow peers to communicate
and publish, find or consume remote resources, indepen-
dently of the actual transport layer and the implementation
language. Such protocols are generic enough so they are not
bound to a narrow application scope, but adaptable to a large
set of application types. Nevertheless, JXTA was designed
with desktop devices in mind. Thus, JXME was developed
in order to allow mobile devices to create standalone mobile
JXTA networks or to participate in a standard JXTA network
using a mobile device.

The main characteristic of JXME is that it seriously
takes into account the fact that a transition from a desktop
environment to a mobile one requires facing challenges
such as maintaining the trade off between scalability and

efficiency, as well as the idiosyncrasies of mobile devices,
such as power and storage limitations. However, the maturity
of research in the field of P2P and mobile environments
has pushed through new problems often neglected in a
framework’s design: those related with security. Even under
the constraints of limited devices, a security baseline must
be kept in any P2P system in order to protect it against
common network vulnerabilities.

The purpose in this paper is proposing an improvement
to the security baseline in the simplest version of JXME,
named JXME-Proxied. The proposed security mechanism
guarantees lightweight authentication of peers towards their
relay peer, taking into account the limitations in terms of
resources in mobile devices running JXME. The protocol
has been executed under an experimental testbed in order to
evaluate its overhead, since this is a important constraint in
limited devices.

This paper is structured as follows. Section II provides
an overview of JXME and summarizes its current related
research. In Section III a simple security mechanism for
JXME-Proxied is proposed. Section IV shows the experi-
mental results obtained from evaluating the impact of the
previously presented security mechanism. Finally, Section
V summarizes the paper’s main contributions and outlines
further work.

II. JXME OVERVIEW

JXME is based on JXTA, sharing the same main speci-
fication. The basic organizational foundation in both JXTA
and JXME is the Peer Group, a set of peers with common
interests which agree on common services. By default all
peers belong to the NetPeerGroup, a boot Peer group which
has a well know identifier, since it is hardcoded in the JXME
source code.

The Membership Service, one of JXTA’s core services,
manages the group members’ identities within a Peer Group.
In addition, this service is defined as generic in the JXTA
specification, allowing developers to implement their own
version with the security schemes required by their applica-
tions. Before joining a Peer Group, identities are assigned
by successfully completing an authentication process.

Any resource may be shared between Peer Group mem-
bers by distributing its associated Advertisement, an XML
metadata document describing the resource properties and
how it may be accessed. The Discovery Service manages
Advertisement location and distribution. Every time an Ad-
vertisement is retrieved by a peer, it is stored in a local

Figure 1. JXME architecture

cache and assigned an expiration date. Advertisements will
be automatically flushed when its expiration date is reached.
After locating a resource, such as a service, messaging may
begin using JXTA pipes, abstract endpoints which provide
an asynchronous unidirectional communication channel.

As far as JXME is concerned, it is based on two frame-
work specifications for Java ME: Connected Device Config-
uration (CDC) and Connected Limited Device Configuration
(CLDC). The former uses the C-Virtual Machine (CVM), an
optimized version of the Java Virtual Machine (JVM), has
most of the standard Java classes and is addressed to pow-
erful devices. On the contrary, the latter uses the Kilobyte
Virtual Machine (KVM) [9], has few of the standard Java
packages and is addressed to devices with limited resources
in terms of processing and memory capacity. Moreover,
CLDC has two operation modes defined: Mobile Information
Device Profile (MIDP) and DOcomo JAva (DOJA). MIDP
is a specification for the usage of Java on embedded devices
and DOJA is a Java environment specification for DoCoMo’s
i-mode mobile phone.

JXME has two distinct versions suitable for different de-
vice types, according to their capability limitations. On one
hand, the JXME-Proxied version is a simple implementation
for very limited devices, which delegates all heavyweight
work to an external super-peer. On the other hand, the
JXME-Proxyless version is a more complex one, where peers
may directly interact with the JXTA network. Figure 1 shows
the JXME-Proxied and JXME-Proxyless main components
and how they interact with a JXTA network.

In this paper we will focus on a security mechanism for
the JXME-Proxied version since it is the most thoroughly
tested and used [10]. Furthermore, its basic architectural de-
sign departs from JXTA in some basic aspects, which make it
difficult to just adapt and deploy security mechanisms which
already exist in JXTA but have not been implemented. New
approaches must be considered.

A. JXME-Proxied

The JXME-Proxied version is the simplest and the oldest
one. This version is implemented in Java ME for both CDC
and CLDC framework specifications, as well as for the
MIDP and DOJA profiles. Devices which use JXME-Proxied
in a JXTA network are named Proxied Peers, and cannot di-
rectly interact with other peers within the JXTA network. All
communications from a Proxied Peer are actually destined
to a super-peer which will overcome the limited capabilities
of a Proxied Peer by translating or summarizing requests
and responding to queries in its behalf. This special type of
super-peer is called Relay Peer, implementing the Relay and
Proxy JXTA services. The former is used in JXTA networks
where there is no direct connectivity between peers, to
traverse firewalls or NATs. The latter allows access to peers
which do not implement all of the JXTA basic services.
The communication between the Proxied and Relay Peer is
performed with a simplified protocol based on HTTP. By
default, a single Relay Peer can support up to 150 Proxied
Peers.

The main responsibilities of the Relay Peer on regards to
its Proxied Peers are:

• Listen to and answer requests from the Proxied Peer.
• Translate to XML messages received from the Proxied

Peer and retransmit them to the JXTA network.
• Store messages received from the JXTA network for

the Proxied Peer. Such messages are only actually
retransmitted when polled by the Proxied Peer.

• Summarize and translate XML messages from the
JXTA network into a simple format which the Proxied
Peer is able to understand.

The main components of JXME-Proxied can be identi-
fied in Figure 1. Due to its limitations and reliance on a
Relay Peer, the kind of operations that a Proxied Peer can
actually execute are limited: Join a group, Search or Create
resources (such as Peer Groups or pipes), Listen to a pipe to
receive data, Send data to a specific pipe, Close a pipe and
Poll the Relay Peer for messages from the JXTA network

Figure 2. Proxied communication scheme

that have the Proxied Peer as the final destination.
The communication between the Proxied and Relay Peer

follows a simple protocol using HTTP-POST encapsulation.
A Message, formed by a set of Elements, is created when-
ever an operation is executed and sent to the Relay Peer.
Every Proxied Peer queues ongoing messages, which are
actually sent at a set interval, using the poll operation. Thus,
communication time is restricted to specific periods.

Figure 2 shows the communication scheme between a
Proxied Peer and its Relay Peer. In this scheme, two com-
munication types can be identified, one between the Proxied
Peer and the Relay Peer and another between the Relay Peer
and the JXTA network. In the former a Proxied Peer uses a
local identifier within the Relay Peer context, a local PeerId
(from now on, we will refer to it as just PeerId). In the latter
this identifier is translated to a global identifier for the JXTA
network, a JXTA PeerId.

The standard JXME-Proxied general operation cycle in-
cludes the same steps as in JXTA:

1) Platform startup: This is the first action performed
by a JXME Peer and consists in loading the required
libraries. Then, the peer associates with a Relay Peer,
and a internal and JXTA PeerId are created.

2) Peer Group joining: The peer joins a Peer Group and
from then on, is able to interact with other Peer Group
members. This stage is managed by the Membership
Service, just like in standard JXTA.

3) Resource discovery and publication: Encompasses
the distribution of Advertisements. A resource cannot
be accessed without previously retrieving its Adver-
tisement.

4) Message exchange: This is the most frequently action
performed by Proxied Peers. A Proxied Peer has two
operations available in order to exchange messages:
listen and send.

5) Disconnection: This is the last step a peer performs
in order to exit the JXTA network and disconnect.

After this overview of the JXME-Proxied version, it is
obvious that the need of Relay Peers is the main design
divergence and limitation of this approach from original
JXTA. The main consequences are twofold. First of all,
if a set of Proxied Peers join the network using a single

Relay Peer, then a central point of failure is created for all
of them. However, and secondly, if a single Proxied Peer
simultaneously connects via different Relay Peers in order
to avoid the former pitfall, it will be assigned a different
JXTA PeerId by each Relay Peer. Thus, the Proxied Peer, by
simultaneously having different identities, will be considered
as several different peers within the JXTA network.

B. Related work

Different proposals in the literature on JXME are reviewed
in this section. The objectives of conducting this review are,
first of all, identifying noteworthy studies or proposals about
JXME, and secondly, looking for security proposals.

A comprehensive study on P2P applications, developed
with JXME, is detailed in [10]. Piedrahita and Montoya
present a testing model to be able to measure some aspects
of the JXME system. The authors consider that JXME for
CLDC (JXME-Proxied) cannot be completely considered
a P2P system, since a full dependency on the Relay Peer
exists. If the Relay Peer fails, the system does not have
the ability to automatically choose another one for the
application to continue working.

Other applications for JXME are found in [11] and [12].
In the former, Blundo et al. propose JXBT as an implementa-
tion of the JXTA/JXME infrastructure using Bluetooth as the
communication channel. In the latter, Tahsin et al. present
two P2P demo applications for mobile devices based on
JXME: a Message Passing application and a File Sharing
application. The goal of these two applications was to show
that it is possible to develop a P2P application for mobile
devices capable of identifying and transferring large files
without depending on a central server.

A framework for mobile devices optimized to MANET
networks which is compatible with JXTA protocols is de-
veloped in [13], where devices interact with each other in
an ad-hoc style. Furthermore, authors analyze the perfor-
mance overhead introduced by maintaining interoperability
with JXTA protocols. Their concussion is that the small
overhead introduced by using XML is acceptable because
of the advantages that be interoperable with JXTA protocols
provides.

As far as security is concerned, Kawulok et al. [14] show
a framework which allows wireless and remote peers to
participate in a JXTA network. Authors describe the most
interesting implementation details of the framework as well
as all changes made in the JXTA core and JXME packages.
The proposed framework adds a new authentication scheme
based on certificates and PKI [15]. This authentication is
provided by the Relay Peer, which uses an external Sign and
LDAP Server, breaking completely the P2P model proposed
by JXTA.

In [16] a security analysis of JXME-Proxied has been
conducted. Authors highlight that the work done in JXME
security is very poor and conclude that this version does

not have an appropriate security baseline. The main reason
for this is the fact that, since messages are exchanged
with the Relay Peer in clear text and no authentication is
provided, many different attacks are very easy to pull off.
For instance, any Proxied Peer is easily able to impersonate
another Proxied Peer by just directly usurping its PeerId, or
use its open pipes to send messages on its behalf.

From this literature review, it can be concluded that
there are several publications and projects about JXME, but,
unfortunately, there are few contributions to JXME security.
Also, the security baseline provided by JXME-Proxied is
found to be insufficient.

III. IMPROVING JXME-PROXIED SECURITY

The security analysis presented in [16] shows that the
security mechanisms provided by JXME-Proxied are still
not sufficient to secure standard mobile applications. This is
because the current version is vulnerable to a wide range of
attacks. However, some attacks can be prevented by simple
schemes that extend the basic protocols used in JXME-
Proxied, adding only a bounded complexity. In particular,
we present a proposal to avoid Spoofing and Replay attacks.
It is important to highlight that this new mechanism does not
try to solve every single vulnerability which was identified,
but provides a initial protection in the communication by
guaranteeing lightweight authentication. This is the first step
in providing a secure mobile framework.

A. JXME-Proxied vulnerabilty overview

The main vulnerabilities found in JXME-Proxied are
produced by the insecure communication link between the
Proxied Peer and its associated Relay Peer. For that reason,
the proposed security scheme tries to secure the common
message protocol over HTTP between the Proxied and Relay
Peer. A secure extension for this communication protocol is
built. Under the assumption that a Proxied Peer is a very
limited device, the proposed protocol extensions are based
on basic lightweight cryptographic operations, mainly hash
functions.

Protection against spoofing and replay attacks may be
obtained in a straightforward manner by securely identifying
the Proxied Peer through any well known authentication
scheme. However, this proposal pretends to be as simple
as possible since the constrained resources of devices where
Proxied Peers are executed must be taken into account. For
that reason, the protection against spoofing and replay is
obtained not by linking messages to a particular peer identity
but by guaranteeing that, given a set of messages, all come
from the same source peer, whichever that source might be.
Thus, once an identifier is assigned, it can be guaranteed no
intruder is able to insert false messages impersonating the
source peer. To achieve such goal, we propose that a hash-
chain [17] based scheme is used to create a set of linked
values which will be used as local identifiers.

In this scheme, is really important to understand in detail
how a Proxied Peer performs the platform startup stage,
described in Section II-A. A Proxied Peer first loads the
platform binaries and before it can join the JXTA network,
it must associate to any available Relay Peer. According
to the JXME specification, during this process, the Proxied
Peer requests a new identifier, PeerId, which, according to
the JXME specification, should be generated by the Relay
Peer and sent back to the Proxied Peer. Such identifier is
only used within the context of Proxied Peer and Relay
Peer message exchange and has no prevalence in the general
JXTA network. Thus, the PeerId generation process is very
important, since the Relay Peer is only able to identify
Proxied Peers by their PeerId. However, it was found that in
the actual implementation Proxied Peers can freely generate
their own PeerId and connect to the Relay Peer, skipping
most of this process. In fact, due to this occurrence, any peer
may trivially impersonate others by self-assigning a PeerId
already in use.

The PeerId generation process is an exception to the
JXME-Proxied message format since the request is sent
using HTTP-GET. An example of an identifier request
message is shown in Listing 1. It can be recognized as such
since the PeerId is specified as unknown-unknown in the
GET command.

GET /unknown-unknown?0,-1,http://192.168.0.37:2481/
EndpointService:jxta-NetGroup/uuid-DEAD...05/pid HTTP/1.1
Connection: close Content-Length: 0
User-Agent: UNTRUSTED/1.0
Host:172.16.0.37:2481

Listing 1: - Proxied Peer PeerId request message

Therefore, we propose a security extension to the basic
PeerId generation protocol at the platform startup stage in
order to counter attacks regarding authenticity at every stage
in a peer’s lifecycle. When the PeerId is obtained, Proxied
Peers generate a sufficiently long hash-chain (taking into
account available resources) and use each intermediate value
as its PeerId in each successive message exchange with its
associated Relay Peer. In this way, the PeerId attached in a
message changes for each successive message in a manner
that cannot be predicted by a possible attacker. However,
the Relay Peer will be able to easily track identifier changes
and recognize each message as originating from the same
source. Using a changing PeerId allows us to use exactly
the same original protocol format, without the need to add
additional fields.

B. Protocol initialization

The proposed scheme needs and initialization process
executed during the Proxied Peer startup step and boot
operation. In this process, the hash-chain is created, the
values are stored in the Proxied Peer internal memory and

Figure 3. Hash-Chain creation

Figure 4. initId generation

the first PeerId is transmitted to the Relay Peer. Then, the
communication messages between the Proxied Peer and the
Relay Peer are executed using each successive PeerId from
the generated hash-chain. The verification process allows
the Relay Peer to ensure that all messages come from the
same Proxied Peer. Such verification can be performed by
computing one hash value and comparing it with the one
obtained in the previous messages.

The detailed initialization process is next described:
1) At the startup stage, the Proxied Peer chooses a

random seed, s.
2) The Proxied Peer generates a hash-chain hc(s) =
{h0(s), · · · , hn(s)} by iteratively applying n times
the hash function h(·) on s, so that h0(s) = s and
hi(s) = h(hi−1(s)). All values in hc are stored in
the peers’ local memory. Figure 3 summarizes this
process.

3) The Proxied Peer’s initial PeerId, initId, is created
from hn(s). A PeerId may be created from any value
in hn(s) according to the following steps (summarized
in Figure 4). The result fulfills the JXTA peer identifier
specification.

• The PeerId starts with the string uuid−.
• The 16 most significant bytes, msb16(initId) or

Peer Group UUID, are the NetPeerGroup identi-
fier.

• From the 16th to the 31st byte the Peer UUID
(from now on, summarized as as PUUID) is
specified. The 16 least significant bytes of the
hash value, lsb16(hn(s)), are assigned.

• The 32th byte describes the ID type identifier.
In this case, being a PeerId, the value 0x03 is
assigned.

4) A PeerId request message is sent to the Relay Peer
using its well-known address. However, instead con-
taining an unknown-unknown string, as would be
used in the original unsecure protocol, initId is an-
nounced.

Figure 5. Hash-Chain consumption and identifier translation

5) When the request is received, the Relay Peer randomly
generates a new JXTA PeerId, jxtaID1, as would be
done in standard JXME. At this point, the Proxied
Peer is considered associated to the Relay Peer.

6) The Relay Peer keeps track of the identifiers for its
possible different Proxied Peers in a local translation
table Tproxied that contains two fields: lastId and
globalId. The former contains PeerId’s and the
latter JXTA PeerId’s. The Relay Peer translates local
PeerId’s to JXTA ones (as explained in Section II-A)
when acting as some Proxied Peers behalf in the JXTA
network. At this point a new entry is added to the table,
lastId = initId and globalId = jxtaId, where
initId is considered the entry’s key.

C. Protocol execution

After the initialization process has been performed, secure
communication between the Proxied Peer and the Relay Peer
can begin. Each message will use a new PeerId generated
from the successive values extracted from the hc(s). These
values are retrieved in the descending order from their
generation, starting from hn−1(s) and ending in s. That is, in
the second message, the Proxied Peer will use the identifier:

newId = ”uuid− ”||NetPeerGroupUUID||lsb16(hn−1(s))||”03”

In general, the j-th message between the Proxied and the
Relay Peers will contain the identifier

newId = ”uuid−”||NetPeerGroupUUID||lsb16(hn−j+1(s))||”03”

The identifier consumption from hc(s) and the translation
between the changing PeerId and the static JXTA PeerId
is represented in Figure 5. To simplify this figure the
identifier is represented as the PUUID part of the Proxied
Peer identifier, which is the only one which varies at each
message exchange.

The verification process is executed at the Relay Peer,
validating that all successive messages come from the same
Proxied Peer. This validation may be actually performed
since, assuming that lastPUUID is the PUUID section in

Figure 6. PUUID verification process performed by the Relay Peer

the identifier from the last message sent from the Prox-
ied Peer (stored in the lastId field of Tproxied), then
the PUUID section from the current message’s identifier,
currentPUUID, must hold true that

h(currentPUUID) = lastPUUID

.
The detailed verification process, for the PUUID of the

j-th message can be seen in Figure 6 and its detailed
explanation follows:

1) The Relay Peer takes the message identifier
currentId.

2) The PUUID section of the identifier,
currentPUUID, is extracted from currentId.

3) The Relay Peer calculates h(currentPUUID). From
this value a PeerId is generated following the steps
described in Figure 4.

4) The result is looked up among the currently stored
values in Tproxied’s lastId field.

5) If a match exists, the message is not a result of
spoofing or a replay attack, since no other peer would
be able to predict the currentPUUID (hn−j+1(s)) from
lastPUUID (hn−j+2(s)) and use it as a portion of
the message identifier. Only the legitimate hash-chain
generator is able to calculate it, from its hash-chain.

6) The Relay Peer stores currentId into Tproxied replac-
ing the old value matched in step 5. It becomes the
entry’s new key.

7) If, as a result of the received request, the Relay Peer
needs to send messages towards the JXTA network
on behalf of the Proxied Peer, the value stored in the
globalId field is used.

D. Hash-chain refresh

When a hash-chain is about to reach s, a new one must
be generated and its initial value refreshed at the Relay Peer
so the new hash-chain values may be used. s will be used
as the PUUID part of the PeerId in the refresh message. To
allow this process, the set of operations that a Proxied Peer
can perform using HTTP-GET is extended with a renew
command. This new parameter is used to announce a refresh
in the hash-chain, containing the newId

”uuid− ”||netPeerGroupUUID||hn(newSeed)||”03”

Figure 7. Mean time consumed by execute a hash operation

as its associated parameter.
When the Relay Peer receives any message which contains

a renew command, in step 6 of the verification process,
its content value (newId) is the one stored instead of
the message’s currentId, initializing the new set of local
identifiers.

IV. SECURITY OVERHEAD ANALYSIS

The actual implementation performance of our proposal
has been evaluated by assessing how the protocol extensions
added by this new security scheme would affect a Proxied
Peer in terms of resource utilization. A mobile device acts
as a Proxied Peer and a computer acts as a Relay Peer in
these tests.

This mobile device needs network connectivity to ex-
change data with the Relay Peer and an open operating
system which allows the execution of java applications and
obtains information about the state of its resources, such as
memory or battery usage. Based on these requirements, the
device chosen was the HTC Hero. This is a popular mobile
phone which is able to run JXME and has the following
specifications:

• Processor: Qualcomm MSM7200A, 528 MHz
• Operating System: Android [3]
• Memory: ROM: 512 MB
• Memory: RAM: 288 MB
• Display: 3.2-inch TFT-LCD touch-sensitive screen with

320x480 HVGA resolution
• Network: HSPA/WCDMA: Up to 2 Mbps up-link and

7.2 Mbps down-link speeds
• Network: Wi-Fi: IEEE 802.11 b/g
• Battery: Rechargeable Lithium-ion battery with 3.7 V

and 1350 mAh of capacity
The computer have to be powerful enough to be a Relay

Peer, which is meet by most of today’s computers. The
chosen computer has been a laptop, a MacBook Pro.

The first test consisted in computing many hash oper-
ations, and then obtaining the average time required to

Figure 8. Time consumed by compute a hash-chain depending its size

HC size min poll interval (s) memory required (KB)
50 1 1,6
250 5 8
500 10 16
750 15 24

Table I
HASH-CHAIN OVERHEAD

compute each one. Figure 7 shows the average time that
it takes to compute a single hash operation when computing
hash-chains of 250 elements, and repeating this experiment
50 times. After this test, it is obtained that the average time
it takes to compute a hash operation in a hash-chain of 250
elements is 20.28 ms. The values obtained during the 50
repetitions mainly fluctuate between 20 and 20.5 ms.

The previous test was focused in how long it takes to
compute a single hash operation, but it is also important to
know how long it will take to compute a hash-chain. The
main reason is that while the hash-chain is being computed
no communications between the Proxied and Relay Peer can
be performed. Therefore, the size of the hash-chain will limit
the minimum time between polls from the Proxied Peer to
the Relay Peer. Figure 8 shows how long it takes to compute
hash-chains of different sizes. It also shows that the time
required to compute a hash-chain increments linearly when
the size of the hash-chain increments.

Since Proxied Peer devices are expected to have limited
resources, it is important to identify how much memory is
occupied by the hash-chain, which is shown in Table I. The
amount of memory required goes from 1,6KB when using
a hash-chain of 50 elements to 24KB when using a hash-
chain of 750 elements. This is respectively a 0.0005% and
0.008% of the total memory of the device used. In order to
give some more perspective, for much more limited devices
such as Sun SPOT [18], that would amount to 0.16% or
2.34% memory utilization.

From the data of Table I, Figure 9 is generated, showing
how often the hash-chain will have to be renewed depending
on its size and the poll interval time in seconds used.
For instance, if an application requires a poll interval of

Figure 9. Time between hash-chain renews depending its size and poll
interval time

Figure 10. Overhead percentage depending of the size of the hash-chain
and the poll interval time

5 seconds, the hash-chain can contain from 50 up to 250
elements. In the former, the memory required is 1.6KB and
the hash-chain will expire each 4.17 minutes, whereas in the
latter the memory required is a bit higher, 8KB, but it will
last more time, 20.83 minutes.

Finally, Figure 10 shows the overhead percentage added
by the periodically computation (renew) of the hash-chain
depending on the hash-chain size and poll interval time. This
overhead is calculated dividing the amount of time it takes
to compute a hash-chain to the amount of time between
renewing hash-chains. The results manifest that the overhead
produced depends on the poll time interval and does not
depend on the hash-chain size. For instance, using a poll
time of 1 second the overhead will be of about 2% but using
a poll time of 15 seconds the overhead will be just 0.13%.

V. CONCLUSIONS AND FURTHER WORK

The current version of JXME-Proxied is completely de-
void of any security mechanism, thus being prone to all
kinds of attacks. This paper proposes a simple security
scheme for JXME-Proxied to solve the most glaring vul-
nerabilities which currently exist, providing basic protec-

tion against simple spoofing and replay attacks. A basic
lightweight method based in hash-chains is chosen to extend
the existing protocols, taking into account the idiosyncrasies
of the devices which will host a JXME Peer.

The proposal minimizes the modifications of the JXME
protocols, since no additional request type is defined.
The renew command piggybacks inside any other naturally
occurring request, such as a polling listen request, as
an additional parameter, and will be processed along the
original request. Therefore, there is no need to send a single
message with the sole purpose of transmitting hash-chain
data, reducing the overhead by taking advantage of existing
transmissions. Furthermore, while no refresh is needed, the
secure scheme does not even impact on the HTTP-GET
protocol, since the peer identifier field is invisibly used,
instead of using additional message element types.

In addition, we have run some experimental tests on
JXME-Proxied so it is possible to evaluate the proposal and
confirm that it is a light security mechanism in terms of
resources consumption. Form the results, it can be concluded
that the impact of applying the secure protocol is low, mainly
due to its reliance on hash value computations.

Once an initial secure protocol extension has been es-
tablished, further research includes providing additional
lightweight security services to JXME which may counter
other vulnerabilities. Furthermore, it is also important to
compare these proposals to those provided by other middle-
wares for constrained devices, from both a qualitative and
quantitative standpoint.

REFERENCES

[1] J. Frankel and T. Pepper, “Gnutella,”
http://rfc-gnutella.sourceforge.net, 2000.

[2] K. Matsuo, L. Barolli, F. Xhafa, A. Koyama, and A. Durresi,
“Implementation of a JXTA-based P2P e-learning system and
its performance evaluation,” International Journal of Web
Information Systems, vol. 4, no. 3, pp. 352–371, 2008.

[3] Google Inc., “Project Android’,”
http://code.google.com/intl/es/android, 2007.

[4] Skype, “Skype on your mobile,” 2004,
http://www.skype.com/mobile.

[5] G. Kortuem, “Proem: a middleware platform for mobile peer-
to-peer computing,” SIGMOBILE Mob. Comput. Commun.
Rev., vol. 6, no. 4, pp. 62–64, 2002.

[6] B. Christensen, “Experiences developing mobile P2P ap-
plications with lightpeers,” Peer-to-Peer Computing, IEEE
International Conference on, vol. 0, pp. 229–230, 2006.

[7] Sun Microsystems, “Project JXME,” 2003,
https://jxta-jxme.dev.java.net.

[8] Oracle, “Project JXTA,” 2001, http://www.jxta.org.

[9] Sun Microsystems, “J2ME building blocks for
mobile devices. white paper on KVM and the
connected, limited device configuration (CLDC),” 2000,
http://java.sun.com/products/cldc/wp/.

[10] T. Piedrahita and E. Montoya, “Performance analysis of
JXTA/JXME applications in hybrid fixed/mobile environ-
ments,” Revista Colombiana De Computación, vol. 7, no. 1,
2006.

[11] C. Blundo and E. D. Cristofaro, “A bluetooth-based JXME
infrastructure,” in Lecture Notes in Computer Science, vol.
4803/2009, 2009, pp. 667–682.

[12] T. Tahsin, L. Choudhury, and L. Rahman, “Peer-to-Peer
mobile applications using JXTA/JXME,” in 11th International
Conference on Computer and Information Technology, vol. 1,
2008, pp. 702–707.

[13] M. Bisignano, G. D. Modica, and O. Tomarchio, “JMo-
biPeer: a middeware for mobile peer-to-peer computing in
MANETs,” in Distributed Computing Systems Workshops,
2005. 25th IEEE International Conference on, pp. 785–791.

[14] L. Kawulok, K. Zielinski, and M. Jaeschke, “Trusted group
membership service for JXME (JXTA4J2ME),” in Wireless
And Mobile Computing, Networking And Communications,
(WiMob’2005), IEEE International Conference on, vol. 4,
Aug. 2005, pp. 116–121.

[15] “Internet x.509 public key infrastructure.” 1999,
http://www.ietf.org/rfc/rfc2459.txt.

[16] M. Domingo-Prieto, J. Arnedo-Moreno, and J. Herrera-
Joancomarti, “Jxta security in mobile constrained devices,”
in Advanced Information Networking and Applications Work-
shops, International Conference on, vol. 0. IEEE Computer
Society, 2010, pp. 139–144.

[17] L. Lamport, “Password authentication with insecure commu-
nication,” Communications of the ACM, vol. 24, no. 11, pp.
770–772, 1981.

[18] Sun Microsystems, “Sun spot,” 2007,
http://www.sunspotworld.com/.

