
Video over Software-Defined Networking (VSDN)

Harold Owens II
Indiana University-Purdue University Indianapolis

Dept. of Computer and Information Science
Indianapolis, IN USA

Email: owensh@cs.iupui.edu

Arjan Durresi
Indiana University-Purdue University Indianapolis

Dept. of Computer and Information Science
Indianapolis, IN USA

Email: durresi@cs.iupui.edu

Abstract—Supporting end-to-end quality of service (QoS) for
video applications requires the network to select optimum path
among multiple paths to improve application performance.
Multiple network paths from source to destination may be
available but due to the current network high coupling design
identifying alternate paths is difficult. Network architecture,
like Integrated services (IntServ), installs a single path from
source to destination which may not be the optimum path for
the application. Furthermore, it is an arduous task for video
application developers to request service from IntServ.

This paper provides three contributions to research on
providing end-to-end QoS for video applications. First, it
presents video over software defined networking (VSDN) - an
architecture that is capable of making optimum path selection
utilizing a global network view. Second, it describes the VSDN
protocol used by video application developers to request service
from VSDN enabled networks. Third, it presents the results
of implementing a prototype of VSDN and quantitatively
evaluates its behavior. The prototype illustrates that requesting
video service from VSDN is simple for the video application
developer. The results show that VSDN has a linear-message
complexity.

I. INTRODUCTION

Integrated Services (IntServ) framework is a flow based
quality of service (QoS) architecture that specifies elements
(i.e., Sender, Receiver and routers along path) and allows
each element to request and receive resource reservations
which guarantee end-to-end QoS from network. IntServ
framework uses two protocols, flow specifications which
is used to describe the traffic pattern and a reservation
protocol which is used to transmit the reservations among
network elements and to allow reservations to be made
by applications (e.g.,video and voice) that QoS sensitive
tasks (e.g., video and audio compression) require guaranteed
bandwidth and bounded delay and jitter.

Supporting end-to-end QoS for video applications requires
network to select the optimum path among multiple paths to
improve application performance. Today’s network control
protocols do not always install the optimum QoS path for
video applications and is not capable of exploring alternative
paths since it relies on routing protocol in selecting path. For
example, if there exists two network paths (i.e., Path1 and
Path2) from source to destination; Path1 is 3 hops with
congestions and Path2 is 5 hops with no congestion. If

routing protocol uses shortest path then Path1 with 3 hops
will be selected to install reservation. Selecting Path1 for
QoS aware applications like video will result in negative
impact on end user’s video playback experience because of
congestion along Path1 which data (i.e., video) packets
travel.

The path selection process should be adaptive to changing
network conditions (e.g., link and node failures) and should
be context aware about the state of path (i.e., bandwidth,
jitter and delay). Although data-carrying mechanisms like
MPLS are capable of multiple QoS path selection, it is not
dynamic and network operators must manually configure
paths along each router within the network [1]. Today’s
network control protocols are capable of adapting to network
failures but data packets are lost or receive best-effort service
between time of failure and time of next PATH refresh
messages which can be 30 seconds or more before PATH is
updated and resources are allocated to network flow.

Therefore, this paper presents experience and results of
identifying a network architecture that is capable of ensuring
end-to-end QoS for video applications. The main contribu-
tions of this paper are:

• It presents Video over Software Defined Networks
(VSDN), which is an architecture and protocol for
supporting video over IP networks;

• It presents QoS API used by Sender and Receiver to
request video over SDN;

• It presents the results of implementing VSDN as a
simulator; and

• It presents an empirical study that evaluates VSDN
runtime performance in terms of message complexity

Paper organization. The remainder of this paper is orga-
nized as follows: Section II motivates the need for Video
over software defined networking (VSDN); Section III dis-
cusses the design and implementation of VSDN; Section IV
presents results of simulating SVDN in a simulator and
interpretation of the results; Section V compares VSDN to
related works; and Section VI provides concluding remarks
and lessons learned.__

This is the author's manuscript of the article published in final edited form as:
Owens II, H., & Durresi, A. (2015). Video over Software-Defined Networking (VSDN). Computer Networks, 92, Part 2,
341–356. http://doi.org/10.1016/j.comnet.2015.09.009

http://doi.org/10.1016/j.comnet.2015.09.009

II. MOTIVATION: INTSERV QOS MODEL

Integrated Services (IntServ) architecture uses reservation
protocols to signal end-to-end QoS over IP networks. The
resources are reserved on a hop by hop basis using two
messages. The PATH message is used by sender to install
reverse routing path on each router along path and convey to
receiver the characteristics of traffic. The RESV message is
used by receiver to request QoS of packets from each router
along path. Reservation protocols use PATH and RESV
messages to install soft states along network paths which
IP packets traverse. The soft states contain descriptions of
traffic characteristics (e.g., rate, queue size and peak rate)
of data flow to be received. The reservation protocol works
independently of a particular routing protocol and therefore,
installs soft states in routers along same path which IP
packets traverse from source to destination.

Sender Receiver R1

R3

R4 R2

R5

AS1

Figure 1. Simple Network Topology with a Sender and a Receiver

As previous stated, where reservation paths are installed
depends on the path of IP packets selected by a routing
protocol (e.g., RIP, IS-IS or OSPF). Current reservation pro-
tocols have advantages that include soft-state adaptive nature
flexibility of receiver initiating reservation and possibility
to merge reservation requests. IntServ architecture using
current reservation protocols also has its disadvantages. For
example, in figure 1, let us assume that best path to send
video in terms of bandwidth, jitter and latency is R1 - R2
- R4 - R5. If the routers within autonomous system one
(AS1) is running OSPF and Receiver wanted to receive
video from Sender, the shortest path that would be stored
in each routers’ link state database would be R1 to R5.
Therefore, video packets from Sender to Receiver will
follow path R1 - R5 which is two hops.

In this case, the reservation protocol would install PATH
and RESV states on R1 and R5 for supporting QoS for
video application although the best path for video, as stated
earlier, is R1 - R2 - R4 - R5. With current InServ
architecture it is not possible for network to select the best
path for video in this context. Furthermore, if a link failure
occurs between routers R1 and R5, a new path will need to
be found. The network will make the following adjustments:
OSPF will detect link failure and update link state database

of each router to reflect link R1 - R5 failure. The next
path in terms of hops (cost) is path R1 - R3 - R5 which
video data traverses after failure but the best path for video
is R1 - R2 - R4 - R5. The network has failed to find
the optimum path for video service.

Because relying on current network architecture routing
protocols and access control lists to provide end-to-end QoS
to video application can result in non-optimum path being
selected, there are two issues that must be addressed:

Issue 1: Identify architecture needed to support opti-
mum video path selection. As figure 1 illustrates, selecting
the optimum or feasible path requires global knowledge of
the network. Hop by hop decision making leads to non-
optimum path selection. An architecture needs to be devel-
oped that can dynamically make optimum path selections
and provide feasible backup paths in case of failure.

Issue 2: Develop protocol that allows video applications
to request end-to-end QoS from network. A protocol
needs to be developed to allow developers of video appli-
cations to request network services from new architecture.
The protocol should be simple and only request and maintain
states that are necessary to ensure optimum path selection
for video.

This papers keeps usability in mind when designing and
implementing support for video network services. The rest
of this paper discusses how these issues are addressed.

III. DESIGN AND IMPLEMENTATION

One key design requirement for addressing - Issue 1:
Identify architecture needed to support optimum video path
selection - is the need to have a global view of network
state to make optimum path selection. This requirement
leads to use of software defined networking (SDN) [2] and
OpenFlow [3] to solve Issue 1. Figure 1 has been re-
designed to utilize SDN architecture and OpenFlow protocol
as illustrated in figure 2. An SDN controller which has global
view of network state has been added. The next section
briefly discusses SDN.

1) Software Defined Networking (SDN): Figure 2 illus-
trates SDN. SDN separates the control plane (i.e., routing
decision) from data plane (i.e.,forwarding decision). The
control plane is implemented in software in an element
known as the SDN controller. The routers and switches
become dumb devices only performing forwarding based
on instructions from the SDN controller. OpenFlow is the
protocol used to communicate between the control and data
plane since in SDN they are distributed and no longer on
the same device (i.e., router or switch).

A. Overview of Video Over SDN (VSDN)

Video over SDN is an architecture that allows video
applications to request video service from network. VSDN
design integrates a high level of usability.

Sender Receiver R1

R3

R4 R2

R5

AS1

SDN
Controller

OpenFlow

Figure 2. Software Defined Network with a Sender and a Receiver

SDN Controller

QoS
Process

Admission
Control

Policy
Control

Routing
Module

Secure Channel

Flow
Table

S
c
h
e
d
u
l
e
r

Flow
Table

Secure Channel

Flow
Table

S
c
h
e
d
u
l
e
r

Flow
Table

Secure Channel

Flow
Table

S
c
h
e
d
u
l
e
r

Flow
Table

QoS Aware
Application

QoS Aware
Application

Network Card Network Card

OpenFlow

OpenFlow

Sender Receiver

R1

R3

R2

QoS API QoS API

Figure 3. Overview of VSDN. A Sender and Receiver utilizing QoS API
and QoS provided by network to transmit and receive video.

Figure 3 illustrates VSDN at a high level. The architecture
has four system elements: Sender, OpenFlow switch, video
QoS SDN controller and Receiver. The Sender and
Receiver relies on network composed of R1, R2 and R3
to provide end-to-end QoS.

The Policy Control (PC) is separated from the
physical device (i.e., router) and is installed on video QoS
controller (VQC) to provide policy consistency among sys-
tem elements. The PC is an important part of VQC. It
accepts commands from network administrator about how
new traffic should be handled. It is responsible for enforcing
constraints imposed by network administrator [4]. A policy
translator is used to map policies to network configura-
tion which is stored in policy database. The resource
monitor (RM) is used to monitor current network re-
sources. It periodically collects counters from physical de-
vices. The RM stores network state information in resource
database.

Physical Resources (links, switches)

Control
Plane

Data
Plane

Video QoS Process

Routing
Module

Admission
Control

Policy
Control

Topology
Monitor

Resource
Monitor

Policy
DB

Resource
DB

Topology
DB

Policy

Network Operating System (NOS)

VSDN

Figure 4. Video Controller receives QoS signaling and determines if
network is capable of servicing request.

The Admission Control (AC) on VQC occurs when
a request attempts to reserve network resources. When a
request is received on an interface, admission control will
be performed on that interface of provider edge (PE) router.
If the resources are available on the interface in which
the request was received, VSDN process will attempt to
find an optimum or feasible path from PE ingress to PE
egress that can service the request. If resources are not
available on ingress port, VQC will return an admission
error to requester. AC must manage the pool of resources
(e.g., number of interfaces, bandwidth, memory, CPU, etc.).
Resources are subtracted from the pool when a request
is serviced and resources are added back to pool when a
requester has finished with the resources.

The Routing Module (RM) is used to calculate fea-
sible paths from PE ingress router to PE egress router.
Constraint based routing algorithms and implementations
have been studied in detail [5]. The requirement for Routing
Module is that it returns a list of subgraphs (i.e., paths)
that meets QoS request constraints (e.g., bandwidth, jitter
and delay). The Topology Monitor (TM) updates the
network configuration when there is a change (i.e., failure,
deletion or addition) to nodes or links. The network topology
is stored in a database which is utilized by RM to find
feasible paths.

The main element of architecture is Video QoS
Process (VQP) illustrated in figure 4. VQC is used to han-
dle all VSDN messages. It must be able to process Sender,
Receiver and error messages. The VQP must maintain the
correct state for each session as described by the protocol.
If a host does not follow protocol, VQP must generate
an error stated why request has failed. A valid request
from Sender will generate a new session in the session
database. The session database contains enough information
(i.e., SessionID and destination and source address and

port) to uniquely identify a flow. After a valid request is
received from Sender, the message will be forwarded
to Receiver. If Receiver wants to accept request or
reservation, it will send a receiver request message to VQC.
Upon receiving a valid receiver request message, the VQC
will perform policy and admission control management to
determine if reservation can be made. If reservations are
allowed, VQP will request feasible paths from RM. The
RM will return a subgraph which is used to configure the
physical devices. After devices are configured, the VQC re-
turns a confirmation message to Receiver which forwards
message to sender. At this point, Sender and Receiver
are able to communicate over the requested QoS path. Once
interaction between Sender and Receiver has finished,
either host can send a remove request to network to remove
session and release network resources. How the remove
message is handle will be covered in detail in next section.
Finally, the VQP needs to ensure that sessions are updated
or timed-out and removed. Figure 4 shows VQC running on
network operating system [6] which provides a uniform and
centralized programmatic interface to the entire network.

Video Application

Packet
Classifier

Data

Network

Control
Plane

Data
Plane

Packet
Scheduler

Slicing Layer
OpenFlow
Controller

VSDN
API

Figure 5. Host system where video QoS Application resides. Application
communicates using QoS API provided as a library for developers.

Figure 5 illustrates architecture of hosts (i.e., Sender and
Receiver). Sender and Receiver will be running video
application which is VSDN enabled. The Slicing layer [7] is
used to allow multiple service providers to share a common
infrastructure; and supports many policies and business
models for cost sharing. The slicing layer will allow VSDN
service providers to control their share of the host’s network.
The video application will communicate with VSDN enabled
network by using VQP API. The VPQ API is described
in next section. The packet classifier is responsible for
identifying which packet belongs to which flow. The packets
are identified using sender and destination address, sender
and destination port, and protocol ID. The packet scheduler
is responsible for ensuring the packets generated by the
application is in specification with agreed service (e.g.,
rate, bandwidth and queue size). Packet scheduler should
ensure that packets are in specification before packets are
transmitted to network. In VSDN enabled networks, the
network administrator will issue global policy control over
network elements (i.e., hosts, switches, routers, applications
and etc.).

Figure 6 illustrates architecture of VSDN switch (i.e., R1,
R2 and R3). VSDN switches are OpenFlow enabled. The
VSDN controller, upon receiving and validating QoS service

P
ac

ke
t

B
u

ff
er

in
g

Fl
o

w
 T

ab
le

 0

Fl
o

w
 T

ab
le

 1

Fl
o

w
 T

ab
le

 n

Ex
ec

u
te

A

ct
io

n
 S

et

Queue 1

Queue 2

…

Queue n

Sc
h

ed
u

le
r

B
ac

kp
la

n
e

In
te

rf
ac

e

Weighted
Fair

Queuing (WFQ)

Token
Bucket

Shaping (TBS)

Packet Processing

IN OUT

Traffic Management

VSDN
Controller

OpenFlow

Shape 1

Shape 2

…

Shape n

Figure 6. VSDN Switch Architecture

request from host, will issue Set-Queue Action to each
VSDN switch in path selected by RM. The VSDN controller
will issued Flow-Add Action to each VSDN switch in QoS
path after sending Set-Queue request. If either Set-Queue or
Flow-Add Action request fails VSDN switch must return an
error message to VSDN controller. The Set-Queue request
will cause VSDN switch to create a per flow weighted fair
queue (WFQ) and traffic shaper or regulator based on Traffic
SPECification (TSpec) [8] supplied by VSDN controller.

As shown in Figure 6, a packet will enter a VSDN
switch and will be queued. It will be forwarded to flow
table pipeline where packet based on policy will be sent
to VSDN controller, drop or continue through flow table
pipeline until there is a matching flow table entry. The packet
is eventually forwarded to port where VSDN end-to-end
QoS has been configured. Forwarding behavior is dictated
by the configuration of the queue and is used to provide
basic Quality-of-Service (QoS) support. Full end-to-end QoS
support over SDN is not implemented in OpenFlow [3].
Section III-C will discuss necessary changes needed to
OpenFlow for VSDN integration.

B. Video over SDN Protocol

This section discusses actions of each element of video
over SDN architecture and how Sender and Receiver
interact with network.

1) Sender’s Actions: The Sender in figure 2 makes a
call in QSP API using requestQoS(video service, destination
address, destination port). RequestQoS returns a SessionID
which is used to remove session from network when ap-
plications are done using network resources; developer of
video application may request three video services: common
interchange format (CIF), enhanced definition and high
definition. PE router R1 forwards message to VQC after
receiving message from Sender in figure 2. VQC will
determine if Sender’s request already exists. If session does
exists, VQC responds with invalid request if this message is
not from a timeout request from Sender. If session does not
exist and policy allows Sender to issue request, VQC will
create a new session and respond to R1 which will forward

packet to Receiver via R2. The Sender waits on
confirmation from Receiver. After receiving confirmation
from Receiver, the Sender and Receiver begins to
communicate over installed path.

2) Receiver’s Actions: The Receiver receives request
from Sender on an application callback processRe-
quest(SessionID) and calls acceptQoSRequest(SessionID).
Application should store SessionID which is used to ac-
cept request and to remove session from network. The
Receiver makes reservation with network using descrip-
tion of traffic from Sender. PE router R2 will receive
Receiver request and forward it to VQC where the con-
troller will determine if session exists. If session doesn’t ex-
ist, an error is generated by VQC and is sent to Receiver.
If session does exist, the VQC contacts policy and admission
control and router module to make reservation if Receiver
is authorized. The router module returns feasible routes for
request. VQC will decide which route to select and issue
request to network operating system (NOS) to configure de-
vices if a feasible route exists. The VQC sends Receiver
via R2 a confirmation about QoS route being installed and
network ability to service request. The Receiver, after
receiving confirmation from VQC, sends a confirmation to
Sender. If feasible route does not exist, an error is returned
to Receiver. The path is considered to be installed when
confirmation message from receiver is received by Sender.

3) Removing Reservation: Removing reservation from
Sender, Receiver or network can be performed explic-
itly by host by calling removeQoSRequest(SessionID) or
implicitly via timer expiration from the OpenFlow enabled
switches and hosts. The remove request message from
Sender, Receiver is forwarded by edge switch to VQC
to determine validity of message. The VQC, after verifying
message, removes session from session database and flow
entries from switches and hosts. The VQC returns message
back to edge router which forwards remove message to
destination. If message is not received by OpenFlow enabled
host, the session will be removed.

4) VDSN Controller Actions: The VDSN Controller re-
ceives request from receiver. Upon receiving request from re-
ceiver, VDSN Controller will perform admission and policy
control. Policy control will be used to determine if receiver
can make reservation and admission control will be used
to determine if resources are available to service request.
Assuming that receiver is able to make request, VDSN
Controller will first find a constraint path that can service
request. After identifying constraint path, VDSN Controller
will instruct VSDN switches and hosts to adjust their flow
tables and add required QoS queuing to port. The controller
will then forward a success message back to receiver. The
receiver will respond to sender with a success message.

5) VDSN Switch Actions: The VDSN Switch is a dumb
device that takes instructions from the VSDN controller.
When a VSDN request message is received by VDSN

Switch, it forwards request to VSDN controller. The VSDN
controller will perform the necessary logic to determine if
a reservation can be made by receiver. The VDSN Switch
will be required to add flow to flow table and QoS queuing
to port or return error to controller if unable to complete
operations.

6) VDSN Host Actions: The VDSN Host is a hybrid
device that takes instructions from the VSDN controller. The
host configures its flow table as instructed when a VSDN
request message is received from VSDN controller. The
VDSN host will be required to perform instructions (i.e.,
add or delete flow and QoS queuing on port) from VSDN
controller or return error to controller if unable to complete
operations.

C. OpenFlow Changes
An OpenFlow switch provides limited Quality-of-Service

support (QoS) through a simple queuing mechanism [3]
in version 1.3.1. Therefore, VSDN switches will require
changes to OpenFlow queue structures as shown in List-
ing 1. The queue properties struct ofp queue properties
has been modified to support guaranteed service (GS). A
new property has been added to support GS based queuing.
ofp queue prop gs rate contains required fields for token
bucket based traffic shaping. As illustrated in figure 6,
VSDN switch will need to create a token bucket shaping
queue for each requested flow. The queuing process using
GS must be able to regulate traffic per flow based on traffic
specification provided by VSDN controller.
1
2 /∗ D e s c r i p t i o n o f p r o p e r t y r e l a t e d w i t h a queue ∗ /
3 enum o f p q u e u e p r o p e r t i e s {
4 /∗ Minimum d a t a r a t e g u a r a n t e e d . ∗ /
5 OFPQT MIN RATE = 1 ,
6 /∗ Maximum d a t a r a t e . ∗ /
7 OFPQT MAX RATE = 2 ,
8 /∗ Guaranteed s e r v i c e (GS) d a t a r a t e . ∗ /
9 OFPQT GS RATE = 3 ,

10 /∗ E x p e r i m e n t e r d e f i n e d p r o p e r t y . ∗ /
11 OFPQT EXPERIMENTER = 0 x f f f f
12 } ;
13
14 /∗ GS−Rate queue p r o p e r t y d e s c r i p t i o n . ∗ /
15 s t r u c t o f p q u e u e p r o p g s r a t e {
16 /∗ prop : OFPQT MIN , l e n : 1 6 . ∗ /
17 s t r u c t o f p q u e u e p r o p h e a d e r p r o p h e a d e r ;
18 /∗ Average r a t e o f t r a f f i c . ∗ /
19 u i n t 3 2 t t o k e n r a t e ;
20 /∗ S i z e o f b u c k e t . ∗ /
21 u i n t 3 2 t b u c k e t s i z e ;
22 /∗ Maximum da ta r a t e per second . ∗ /
23 u i n t 3 2 t p e a k r a t e ;
24 /∗ Minimum p a c k e t s i z e . ∗ /
25 u i n t 1 6 t m i n p o l i c e d u n i t ;
26 /∗ Maximum p a c k e t s i z e . ∗ /
27 u i n t 1 6 t m a x p a c k e t s i z e ;
28 /∗ Maximum l i n k c a p a c i t y or peak r a t e . ∗ /
29 u i n t 3 2 t Rate ;
30 /∗ 64− b i t a l i g n m e n t ∗ /
31 u i n t 8 t pad [4] ;
32 } ;
33
34 OFP ASSERT (s i z e o f (s t r u c t o f p q u e u e p r o p g s r a t e) == 3 2) ;
35 } ;

Listing 1. OpenFlow Changes Needed to Support VSDN

D. Video over SDN Host API

The video of SDN API allows hosts to request QoS from
network. VSDN provides user with a simple and consistent
interface. The detail of API is not known to user (i.e.,
developer).

Name Description
requestQoS(v, d, p) generate a QoS request

acceptQoSRequest(s) accept QoS request
removeQoSRequest(s) remove QoS request
processRequest(s, d) callback for application

Table I
HOST VIDEO OVER SDN API FOR REQUESTING, ACCEPTING AND

RESPONDING TO QOS REQUEST

Video QoS is requested by calling requestQoS(v, d, p).
The Sender can request three types of video services: Com-
mon Interchange Format (CIF), Enhanced Definition (ED)
and High definition (HD).

The Receiver accepts request calling acceptQoSRe-
quest(s). Sender and Receiver may remove session
by calling removeQoSRequest(s). The application receives
network related events using processRequest(s, d).

E. VSDN QoS Mapping

Name Description
Token Rate (r) Average rate or rate which tokens fill

bucket
Token Bucket Size (b) The number of bytes that token bucket

can hold before overflow occurs.
Peak Data Rate (p) The maximum data rate in bytes per

second
Minimum Policed Unit (m) The minimum packet size in bytes
Maximum Packet Size (M) The maximum allow packet in bytes

Rate (R) Maximum link capacity or peak rate
Slack Term (s) Additive end-to-end delay that the

sender can tolerate between nodes if a
node modifies requested flow specifica-
tions

Table II
GUARANTEED SERVICES (GS) PARAMETER

There are two service specifications for real-time tolerant
applications like video streaming and real-time intolerant
applications like interactive video. The two service specifica-
tions are Controlled Load (CL) [9] and Guaranteed Service
(GS) [8]. The VSDN framework utilizes GS in this paper.
The attributes in table II are used by VSDN protocol to
configure VSDN switches’ token bucket processes [10].

The Host applications only specifies video type (i.e., CIF,
ED and HD) and not flow specification attributes. The VSDN
controller understands video types and must convert from
video type to TSpec and send request over OpenFlow to
VSDN switches. Therefore, a mapping scheme is needed to
map between video type request from host to TSPec.

Table III describes the mapping between Video Type and
GS specification. The values were derived from available

data from Netflix and VUDU on-demand Internet streaming
media service providers. The frame size in KB was used
to determined the number of packets or bucket size (b)
needed on average to deliver a single frame. For example,
HD requires 60KB per frame which is forty 1.5KB packets.
At 30 fps, video type HD would have a Rate (r) of 1200
(fbs * b) and bucket size of 40 to hold a single frame. The
slack term (s) is dependent on service level agreement (SLA)
between service provider and customer. Slack term will not
be used by VSDN switches because in VSDN architecture,
they do not make such decision about computational or
communicational resources. The slack term will be used by
VSDN controller to make necessary adjustments on network
resources when required.

IV. RESULTS

In this section, this paper analyzes the number of and
type of messages in system with relationship to number of
request from hosts.

Message type Description
setqueue used by SDN controller to add flow

table to OpenFlow devices
unsetqueue used by SDN controller to remove flow

table to OpenFlow devices
request used by hosts to request video service

from VSDN framework
accept used by hosts to accept video request

from sender
remove used by hosts to explicitly remove ses-

sion from network

Table IV
TYPES OF MESSAGES

Performance metrics - To assess the performance of
VSDN algorithm, this paper chooses the following perfor-
mance metric:
• Message complexity - measures the number of messages

generated by VSDN framework per host’s request. The
types of messages are shown in table IV .

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 500 1000 1500 2000 2500 3000 3500 4000

N
um

be
r

of
 M

es
sa

ge
s

Number Of Host Request

Number of Messages with 6 Nodes

setqueue
unsetqueue

request
remove
accept

total # of messages

Figure 7. VSDN number of messages in system based on number of
request from host(s)

Video
Type

Bandwidth
(BW)

Rate (r) Bucket
Size (b)

Peak
Rate (p)

Minimum
Policed
Unit (m)

Maximum
Packet
Size (M)

Rate (R) Slack
Term (s)

Frames
Per
Second
(FPS)

CIF 1.0Mbps 168 7 168 74 1522 168 SLA 24
(FPS)

ED 1.5Mbps 500 20 500 74 1522 500 SLA 25
(FPS)

HD 3.0Mbps 1200 40 1200 74 1522 1200 SLA 30
(FPS)

HDx 6.0Mbps 1620 54 1620 74 1522 1620 SLA 60
(FPS)

Table III
VSDN VIDEO TYPE TO SERVICE SPECIFICATION

Figure 7 illustrates the number of messages in system
with a topology of 6 nodes. At 500 request, the number
of setqueue and unsetqueue messages is 2000. The number
of request messages is 2000. The number of remove and
accept message is 3000 because each remove and accept
messages must traverse the control plane of controller for
resource management. At 1000 requests, the number of
setqueue and unsetqueue messages are 4000. The number of
request messages is 4000. The number of remove and accept
messages is 6000. Each message type increases linearly from
500 requests to 4000 requests. The total number of messages
in system for 500 requests is 12000. At 2000 requests, the
total number of messages is 48000. At 4000 requests, the
total number of messages in system is 96000. From the
results, it can be argued that total number of messages in
the system at a given time is 24 times the number of host
requests. This paper did not introduce network errors during
test runs which would affect the number of messages in the
systems (i.e., number of error messages which is 0 in this
experiment).

 0

 20000

 40000

 60000

 80000

 100000

 120000

 500 1000 1500 2000 2500 3000 3500 4000

N
um

be
r

of
 M

es
sa

ge
s

Number of Host Requests

Number of Messages with 13 Nodes

setqueue
unsetqueue

request
remove
accept

total

Figure 8. VSDN number of messages in system based on number of
request from host(s)

Figure 8 illustrates the number of messages in system
with a topology of 13 nodes. At 500 requests, the number
of setqueue and unsetqueue messages is 2500 . The number

of remove and accept messages is 3500. At 1000 requests,
the number of setqueue and unsetqueue is 5000. The number
of remove and accept messages is 7000. At 2000 requests,
the number of setqueue and unsetqueue messages is 10000.
From the results, each message type increases linearly from
500 host requests to 4000 host requests. The total number
of messages at 500 requests is 14500. At 1000 requests,
the total number of messages is 29000. At 2000 requests,
the total number of messages in system is 58000. At 3000
requests, the total number of messages in system is 87000.
Finally, at 4000 requests, the total number of messages in
system is 116000. From these results, it can be argued that
the total number of messages in the system at a given time
is 29 times the number of request into system. In these
test runs, this paper did not introduce network errors which
would effect the number of messages in the systems (i.e.,
number of error messages which were 0 in this experiment).

Between figure 7 and figure 8, the total number of
messages in system at a given time is 24 and 29 times
number of host requests respectively. In figure 8, the total
number of messages is 5 times more than total messages in
figure 7 due to longer path length from source to destination
with a 13 node topology. Each additional node along path
will need to be configured with VSDN messages. Therefore,
the number of messages will be affected by number of nodes
in path.

V. RELATED WORKS

There are mainly three architectures that deals with pro-
viding end-to-end quality of services in IP network.

IntServ architecture [11] is a flow based concept that
uses reservation protocols to signal end-to-end QoS between
sender, network and receiver. VSDN is similar to IntServ’s
reservation protocols because to provide end-to-end qual-
ity of service, resources are reserved explicitly along the
network path between sender and receiver. Unlike IntServ,
VSDN does not require refresh messages to refresh the soft-
states per flow at routers. Flooding of soft-state refresh is
one of the major disadvantages of IntServ which affects
scalability [12]. VSDN is capable of selecting optimal path

based on requirement of video application. IntServ is not
capable of exploring alternate paths and install or select path
based on IP routing protocol.

Differentiated Services(DiffServ) [12] uses flow aggrega-
tion and a hop by hop decision making process to address
scalability issues that were associated with IntServ. DiffServ
applies a network-wide set of traffic classes. Flows from
sender and receiver are classified in a predefined manner
by network operator. A router or switch, upon receiving a
packet marked with DiffServ value, will apply scheduling
and shaping techniques based on class. The classification
is based on Type of Service (TOS) header field in IP
header. Unlike VSDN, DiffServ can not guarantee QoS to
application because each router is configured independently
of the other and network wide policing is difficult because
there is no global network view.

MPLS is a layer 2.5 label switching technique that inserts
a label for a network prefix to allow routers to perform
a quick look up of label instead of using longest prefix
matching [13]. This technique allows MPLS to perform
faster packet classifications and forwarding. As with Diff-
Serv a number of flows can be aggregated or classified
along a path. VSDN works on a per flow basis but could
aggregate flows from a single user for prefix to further
optimize VSDN. Unlike VSDN, MPLS does not have the
real-time path configuration ability. VSDN can make real-
time configuration changes due to network conditions (e.g.,
link errors and network congestion) without prior knowledge
about network traffic. Aggregation of flows from same host
or prefix by MPLS is a technique that VSDN could utilize.

VI. CONCLUSION AND FUTURE WORK

This paper presented Video over Software Defined Net-
working (VSDN). VSDN is capable of selecting the optimum
path for video applications which can improve the QoS
of video applications. A VSDN API allows application
developers to request service from VSDN enabled net-
works. A prototype was developed to illustrate VSDN core
functionality. The experiment with prototype suggests that
message complexity of VSDN is linear.

After conceptualizing, designing and implementing
VSDN in a simulator, the following lessons where learned.
• Development of a network service. Developing a

network service requires deep thought about usability.
• Using a single SDN controller. Using a single network

controller for large scale networks can lead to perfor-
mance issues.

• Separation of control and data plane. Separating the
control and data plane allows a great deal of flexibility
in designing VSDN.

REFERENCES

[1] H. Egilmez, B. Gorkemli, A. Tekalp, and S. Civanlar, “Scal-
able video streaming over openflow networks: An optimiza-
tion framework for qos routing,” in Image Processing (ICIP),

2011 18th IEEE International Conference on. Brussels,
Belguim: IEEE, sept. 2011, pp. 2241 –2244.

[2] O. N. F. (ONF), “Software-defined networking: The new
norm for networks,” https://www.opennetworking.org/images/
stories/downloads/white-papers/wp-sdn-newnorm.pdf, 2012.

[3] OpenFlow, “Openflow switch specification, version 1.3.0,”
https://www.opennetworking.org/images/stories/downloads/
specification/openflow-spec-v1.3.0.pdf, 2012.

[4] E. Al-Shaer and S. Al-Haj, “Flowchecker: configuration anal-
ysis and verification of federated openflow infrastructures,”
in Proceedings of the 3rd ACM workshop on Assurable and
usable security configuration, ser. SafeConfig ’10. New
York, NY, USA: ACM, 2010, pp. 37–44.

[5] O. Younis and S. Fahmy, “Constraint-based routing in the
internet: Basic principles and recent research,” IEEE Com-
munications Surveys and Tutorials, vol. 5, pp. 2–13, 2003.

[6] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McK-
eown, and S. Shenker, “Nox: towards an operating system for
networks,” SIGCOMM Comput. Commun. Rev., vol. 38, no. 3,
pp. 105–110, July 2008.

[7] Y. Yiakoumis, K.-K. Yap, S. Katti, G. Parulkar, and
N. McKeown, “Slicing home networks,” in Proceedings of
the 2nd ACM SIGCOMM workshop on Home networks, ser.
HomeNets ’11. New York, NY, USA: ACM, 2011, pp. 1–
6. [Online]. Available: http://doi.acm.org/10.1145/2018567.
2018569

[8] S. Shenker and C. Partridge, “Specification of guaranteed
quality of service,” http://www.ietf.org/rfc/rfc2212.txt, 1997,
rFC 2212.

[9] J. Wroclawski, “Specification of the controlled-load network
element service,” http://www.ietf.org/rfc/rfc2211.txt, 1997,
rFC 2211.

[10] P. P. Tang and T.-Y. C. Tai, “Network traffic characteriza-
tion using token bucket model,” in In Proceedings of IEEE
Infocom99, 1999, pp. 51–62.

[11] X. Xiao and L. M. Ni, “Internet qos: A big picture,” IEEE
Network, vol. 13, pp. 8–18, 1999.

[12] R. Chakravorty, S. Kar, and P. Farjami, “End-to-end internet
quality of service (qos): An overview of issues, architectures
and frameworks,” 2000.

[13] J. Ruela and M. Ricardo, “MPLS - Multiprotocol Label
Switching,” in The Industrial Information Technology Hand-
book, 2005, pp. 1–9.

