
1

Hopcount in Application Layer Multicast Schemes
Milena Janic, Novi Ineke Cempaka Wangi, Xiaoming Zhou and Piet Van Mieghem

Delft University of Technology
Faculty of Electrical Engineering, Mathematics and Computer Science

P.O. Box 5031, 2600 GA Delft, The Netherlands
{M.Janic, N.Ineke, X. Zhou, P.VanMieghem}@ewi.tudelft.nl

Abstract— Application Layer (AL) multicast emerged as a
response to a slow deployment of IP multicast. However, the gain
of AL multicast over unicast is questionable. Here, we investigate
the efficiency of the two prominent protocols, MCAN and Scribe,
in terms of the number of hops. We compare the efficiency of
these algorithms to the efficiency of unicast and IP multicast
via extensive simulations, as well as via measurements on the
PlanetLab network. We introduce modifications to the MCAN
algorithm that lead to a reduction in the hopcount. Finally,
we demonstrate that the topology unawareness under certain
conditions can make these schemes less efficient than unicast.

I. INTRODUCTION

As a response to the slow deployment of IP multicast, the
network layer solution to the group communication, numerous
Application-Layer (AL) multicast proposals have appeared
in the last few years [14][7][1][5]. In AL multicast packet
duplication and routing is handled by the participating end
hosts, instead of by the network routers in IP multicast.

The reduced complexity of AL multicast with respect to IP
multicast comes at the expense of efficiency, because in AL
multicast packets may traverse the same link several times.
AL multicast only makes sense if its performance is better
than that of unicast. Therefore, one of the crucial questions
is "how efficient is application layer multicast?" AL multicast
algorithms proposed so far all claim to be more efficient than
unicast, and slightly less efficient than IP multicast. These
claims are usually supported by a few simulation results.
In most cases different algorithms are not compared under
the same conditions, which complicates conclusions drawn.
We take the viewpoint that understanding the performance of
existing AL mcast protocols will teach us how to optimize and
improve the best among them.

In this paper we focus on AL multicast schemes on top of
overlay networks, due to their superior scalability. An overlay
network is a virtual network constructed in the application
layer. A number of structured peer-to-peer (p2p) overlays (e.g.
CAN [6], Chord [11], Pastry [9] and Tapestry [13]) have
emerged lately. These overlays can be used to provide AL
multicast. AL multicast is then realized either by flooding
(MCAN [7]) or tree building (Bayeux [14], Scribe [5]).

There are two main objectives in this paper:
1. To evaluate the performance of two scalable application

layer multicast algorithms, CAN-based multicast (MCAN)
[7] and Scribe [5]. As a performance metric the number of
hops has been used. We compare these schemes mutually,
as well as to multiple unicast connections (m-Unicast) and

IP multicast. Furthermore, we introduce and evaluate mod-
ifications to MCAN that lead to a better performance in
terms of the number of hops (duplicate packets). We perform
this evaluation both via extensive simulations, as well as via
experiments on PlanetLab1.

2. To investigate the influence of the underlying topology
awareness on the performance of application layer multicast.
In the early approaches, overlay networks have been created
without considering the underlying Internet topology. How-
ever, if an overlay network is built in this manner, then the two
neighboring nodes in the overlay may be separated by many
hops on the IP layer. Consequently, even if optimal in the
number of application layer hops, a path between the source
and the destination on the overlay may consist of a large num-
ber of IP-layer hops. Achieving the congruency of the overlay
with the underlying IP-layer network in the optimal way is
not a trivial problem. Several methods have been developed
for realizing the partial topology awareness, and they can be
classified in three groups proximity routing, topology-based
nodeId assignment, and the proximity neighbor selection. They
will be described in the following Sections. In this paper,
for each of the implemented algorithms, we have considered
two extreme situations: no topology awareness, and absolute
topology awareness. Whereas under the no topology awareness
conditions nodes in overlay are placed randomly, without
taking the underlying IP-layer topology into account, the term
absolute topology awareness indicates the ideal situation in
which the complete knowledge of the underlying substrate is
attained and used in the creation of the overlay.

To the best of our knowledge, the only study similar to
ours has been provided by Castro et al. [3]. However, our
study differs from [3] in several aspects. First, some argue
([8][5]) that for an efficient operation of their protocols, the
indications about the position of users suffice, without the need
for the exact topological information. In this paper however
we do not attempt to estimate the underlying topology. Instead,
we assume that the underlying topology is either completely
known to the joining overlay nodes (absolute awareness) or
completely unknown. In this way, we try to establish the upper
and lower boundaries for the hopcount of these two algorithms.
Secondly, we use the hopcount as a metric, since it is an
important quantity from a network point of view. Third, we
perform our simulations on a very large number of different
substrates (up to 105) which ensures the statistical credibility

1http://www.planet-lab.org/



2

of our results. Fourth, we introduce the modifications to
MCAN algorithm that lead to improved results for hopcount
compared to the original algorithm. Finally, we evaluate our
results via experiments on the PlanetLab network, which to
the best of our knowledge has not been done so far.

The paper is organized as follows: Section II provides the
brief description of the CAN overlay network and MCAN, and
introduces our improvements to the CAN-base multicasting
algorithm. In Section III Pastry overlay network and Scribe
are described. In Section IV we first explain the simulation
designs of five compared schemes: MCAN with and without
improvements, Scribe, m-Unicast and IP multicast. The same
Section further presents and discusses the simulation results
for different types of the underlying topology. In Section V the
results of the measurements on PlanetLab have been presented.
Finally, we conclude in Section VI.

II. CAN-BASED MULTICAST

A. CAN overlay network
The nodes in a Content Addressable Network (CAN) are

identified in a d-dimensional Cartesian coordinate space on
a (d + 1)-torus. Every node in a CAN holds an individual
zone, determined by its coordinates. Each CAN node learns
and maintains IP addresses of his neighbors, i.e. nodes whose
zones are adjacent to its own zone2. The overlay is formed in
the following way: a joining node first discovers a node already
participating in CAN. Next, it chooses randomly a point in the
CAN space. The zone in which this point lies is then split in
two: one half is kept by the current holder of that zone, and
the other half is allocated to the new node. Both nodes update
their routing table and this change is subsequently announced
to their neighbors. The routing of the message in CAN is
performed in a greedy forwarding fashion: the packet is sent
to that neighbor with the coordinates closest to the coordinates
of the destination.

B. Topology Awareness in CAN overlay network
Originally, in the CAN overlay nodes were allocated to

zones at random, such that there is no relation between node
coordinates and the underlying topology. Hence, neighbors
on a CAN are not necessarily physically near each other in
the Internet. The topology awareness technique implemented
in CAN is coined topology-based nodeID assignment. The
designers of CAN proposed in [8] a landmark-based placement
for accounting for the underlying topology when creating
CAN. Each joining node probes a set of landmark machines,
estimates network distances by measuring the round-trip-time
and orders the RTTs in increasing order. The CAN space
is then divided into evenly sized bins and the split node is
randomly chosen within the bin area. These bins are clusters
of nodes with same landmark ordering. Note that even though
the underlying substrate is accounted for, the reflectance of
the underlying topology on the overlay is partial, due to the
incomplete knowledge of the underlying network.

2Two nodes are neighbors if their zone coordinates overlap along all but
one dimension and abut in one dimension.

C. CAN based Multicast (MCAN)

The simplest way to achieve multicasting in CAN is to
perform flooding over the CAN space. Since the flooding
induces a large number of duplicate packets, a more efficient
forwarding algorithm has been proposed in [7], that we refer
to as MCAN1. Nonetheless, even the improved algorithm
generates a substantial number of duplicates. Therefore, we
introduce the modifications hat lead to a further reduction of
duplicates. Here, we describe the resulting modified algorithm,
that we refer to as MCAN2. For the description of the original
MCAN1 algorithm, we refer to [7]. We explain the MCAN2
algorithm on an example of a two-dimensional CAN, and
illustrate it Figure 1.

1) Multicast CAN Modified Forwarding Algorithm
(MCAN2):

Origin forwarding rule: The source that generates a message
forwards the message to all its neighbors along the x-axis, but
only one neighbor per direction along the y-axis. In Figure
1(a), A forwards the message to C and N along the x-axis,
but only to H and only to E in positive and negative direction
of y-axis respectively.

General forwarding rule: A node that receives the message
along the y-axis, forwards the message to all the neighbors
along the x-axis. However, it will forward the message to only
one neighbor in a particular direction along the y-axis (the
direction away from the source). If there are several neighbors
in that direction, the neighbor to which the message will be
sent is chosen randomly. A node that receives the message
along the x-axis, forwards it to all the neighbors along the
x-axis that lie in the direction opposite of that from which the
node received the message (e.g. node C and node D in Figure
1(b)).

The halfway rule and the cache suppress rule remain un-
modified:

The halfway rule: A node does not forward a message along
a particular direction if the message has already propagated
halfway across the space from the source coordinates along
that dimension. This rule prevents the flooding from looping
round the back of the space.

Cache suppress rule: A node caches the sequence numbers
of received messages and does not forward the same message
more than once.

The corner filter rule: In the modified algorithm, the corner
filter rule is applied only on forwarding along the x-axis. In
Figure 1(d) M only receives the message from J since M ’s
corner is in contact with J’s zone. However, in the y-axis
forwarding, even though E’s zone does not touch F ’s corner,
E will forward the message to F .

III. SCRIBE

A. PASTRY

In the Pastry overlay network, each node has a unique
identifier (nodeId). The identifiers are chosen out of the
128-bit circular space and assigned to the nodes. NodeIds
are presented as a sequence of digits in base 2b (b is a
configuration parameter with typical value 2 or 4).



3

(a)

(d)

B

A C

D E

F

K L

G H
I

J
M

N

B

A C

D E

F

K L

G H
I

J
M

N

CF

CM

halfway border of x axis

(b)

B

A C

D E

F

K L

G H
I

J
M

N

(c)

B

A C

D E

F

K L

G H
I

J
M

N

ha
lfw

ay
 b

or
de

r o
f y

 a
xi

s

Fig. 1. The modified multicast forwarding algorithm in CAN (MCAN2)

To route a message, a node uses a leaf set and a routing
table. A leaf set consists of typically 2b or 2 × 2b entries,
which are filled with nodeIds numerically closest to the current
node’s nodeId. A routing table consists of 128/b rows, with
2b columns per each row. The routing table is constructed in
the following way: the entry in the n-th row and k-th column
of a node’s routing table contains a nodeId that matches the
current node’s nodeId on the first n digits, and its (n + 1)-
th digit is equal to k. If there is no nodeId that satisfies this
criterion for an entry, the entry is left empty. An example of
a routing table for a node with nodeId 12030321 is illustrated
in Figure 2.

The routing in Pastry is performed as follows: upon receiv-
ing a message, a node first searches for the destination key
in its leaf set. If the leaf set does not contain that key, the
node starts searching in its routing table for the node whose
nodeId matches the destination key in at least one digit more
than the current node does. If such a node is not found in the
routing table, the current node will look back into its leaf set
and forward the message to a node whose nodeId matches the
destination key in the same number of digits as the current
node, but is numerically closer to the key.

If the number of Pastry users is sufficiently large, there
might exist several nodes that meet the criterion for an entry.
The node will then be chosen randomly out of all candidates
satisfying the criterion. Alternatively, a proximity neighbor
selection technique can be applied: an entry in the routing
table includes the nodeId of the node topologically nearest to
the current node, of all possible candidates. In the original
Pastry design, Rowstron et al. [9] assumed that a function
exists that enables each Pastry node to determine its relative
”distance” to another node, given the node’s IP address.

B. SCRIBE

Scribe is a tree-based application layer multicast mechanism
built on top of Pastry. Scribe builds a single multicast tree for
the whole group. Each group has a unique groupId and a root
of the group tree. The tree is created by combining Pastry paths

NodeId 1 2 0 3 0 3 2 1

0 1 2 3 0 1 0 0 1 2 3 0 1 2 1 0 1 3 2 1 3 2 0 1 2

0 1 2 3

0

1 0 2 3 3 2 2 1 1 1 0 0 0 1 2 3 2 1 3 2 0 1 3 2 31

0 1 2 1 0 3 3 2 0 1 2 2 3 1 0 2 2 1 2 3 3 2 1 0 12

1 2 0 0 3 2 1 1 1 2 0 1 2 3 0 1 1 2 0 2 3 0 0 2 33

0 1 2 0 3 1 3 1 0 1 2 0 3 2 2 1 1 1 2 0 3 3 0 0 14

1 2 0 3 0 0 0 1 1 2 0 3 0 1 2 1 1 2 0 3 0 2 2 1 35

26

17

Routing Table

Leafset

Smaller Larger

1 2 0 3 0 2 2 1

1 2 0 3 0 0 0 0

1 2 0 3 0 1 2 3

1 2 0 3 0 2 2 0

1 2 0 3 1 2 1 0

1 2 0 3 1 0 0 1

1 2 0 3 1 3 1 0

1 2 0 3 2 0 0 1

Fig. 2. Leaf set and Routing table for node in Pastry with nodeId 12030321.
Depending on the destination key, the node choses the next hop from the
routing table according to the longest prefix rule. E.g., for a destination keys
31032030 and 12030000, the next hop would be 32132012 (row 0 column
3 in routing table) and 12030000 (in leaf set) respectivelly.

from each group member to the tree root. A node wishing to
send a message to the group delivers the message first to the
root. From the root, multicast messages are then distributed
along the multicast tree.

IV. EVALUATION VIA SIMULATIONS

In our simulations, we confine ourselves to random graphs
of class Gp (N) [2] with N nodes, and independently chosen
links with probability p, and link weights equal to 1. We first
generate a graph consisting of N > 100 nodes, representing
the routers. For each graph of N nodes, we define the number
of multicast users m in the network, such that a ratio ρ =
m/N lies in the set ρ = {0.05, 0.1, 0.2, 0.5, 0.7, 0.9}. For
each N , 105 different topologies are generated. One node was
designated as a source node.

Two different scenarios for the members’ location have been
considered: in the scenario a, some multicast members (or
Pastry nodes) may belong to the same router, while in the
scenario b, each member is attached to a different router.

In each underlying topology, the following six different mul-
ticast schemes have been implemented: multiple-connections
unicast, IP multicast, the original MCAN with and without the
topology awareness (M-CAN1 and M-CAN1top), the modi-
fied MCAN with and without topology awareness (M-CAN2
and M-CAN2top), Scribe without the topology awareness
(Scribe1) and Scribe with the absolute topology awareness
(Scribe2).

For each mechanism and each underlying topology, the
number of hops in the path is computed and stored in a
histogram. In a multiple-connections unicast, the total hop-
count is the sum of the hopcounts along shortest paths from
a source to each of the m − 1 destinations individually. For
IP multicast, we assumed that the message is disseminated



4

along the Shortest Path Tree3, since the most of the current
IP multicast routing protocols forward packets based on The
(Reverse) Shortest Path. The total hopcount is equal to the
sum of the links in a multicast tree.

For MCAN, in addition to the total number of hops tra-
versed, an effective number of hops has been computed and
stored. An effective number of hops is computed by only
including the hops traversed in order for all destinations to
be reached, without including the forwarding paths of the
duplicate messages.

A. MCAN on a random graph

We have assumed for simplicity that all nodes in a CAN
form a multicast group, and we created a two-dimensional
CAN. In order to evaluate MCAN on top of a random graph,
three different sets of simulations have been performed:

(i) Single overlay: in this set of simulations, no topology
awareness is included. For each underlying topology
and a position of users, the CAN overlay structure is
kept the same. Hence, after a CAN overlay consisting
of m MCAN members is generated, the m MCAN
members are mapped onto each of the underlying
topology in the following way: in scenario a, each
MCAN member is mapped to the one out of N nodes
in the underlying network randomly. In this scenario,
the same node can be chosen multiple times, i.e.
several MCAN members can be attached to a same
router. In scenario b, m out of N nodes in the
underlying network are chosen randomly, and each of
the m MCAN members is assigned to one of them.
Hence, each member is attached to a different router.
For each scenario, and each underlying topology,
all 6 schemes have been implemented, and their
hopcounts have been stored in histograms. From
each histogram, the probability density function of
the hopcount was deduced, together with the mean
E[HN ] and the variance var[HN ].

(ii) Multiple overlays: For each underlying topology
r = 1000 different samples of a CAN overlay, each
consisting of m members, have been generated. For
each of the overlay instances, the identical procedure
as described in (i) has been applied.

(iii) Topology aware overlay: For each m and N, and
both scenarios a and b, in each of the generated
underlying topology, the identical nodes (routers)
to those chosen in (i) have been selected. CAN
overlay is here constructed using the information
about the distances in the underlying network. Each
newcoming node learns the hopcount to all the other
nodes already in CAN using the Dijkstra algorithm.
The nearest node is then chosen to be the split node.

In Table I we summarize the parameters used in simulations.
In the remainder of this Section we present the results of our
simulations.

3A Shortest Path Tree is the union of the shortest paths between the source
and all m destinations.

150 200 250 300 350 400
10

−4

10
−3

10
−2

10
−1

10
0

k

P
r[H

o
p

=k
]

Pr[HopCan
1
]

Pr[HopCan
2
]

Fig. 3. The pdfs of MCAN1 and MCAN2 in a single CAN overlay (schemes
4-6 and 10-12), N = 200, ρ = 0.5, 0.7, 0.9, scenario a

100 150 200 250 300 350 400 450 500 550 600
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

k

P
r[H

o
p

=k
]

Pr[HopCan
1
]

Pr[HopCan
2
]

Fig. 4. The pdfs of MCAN1 and MCAN2 in multiple CAN overlay (schemes
16-18 and 22-24), N = 200, ρ = 0.5, 0.7, 0.9, scenario a

1) The pdf of hopcount in MCAN: Figure 3, Figure 4
and Figure 5 present the probability density functions (pdf)
of the hopcount of both M-CAN1 and M-CAN2 algorithms
in a single (schemes 1-12), multiple (schemes 13-24) and a
topology aware (schemes 25-36) CAN structure respectively,
for N = 200, scenario a, and high values of ratio ρ = m/N .
Figure 3 suggests for simulations on a single overlay for
both MCAN1 and MCAN2 a similar, bell-shape form of pdf.
However, the average hopcount of MCAN2 is up to 11% lower
than that of MCAN1 with the increase of m (ρ). In Figure 4
and Figure 5 we observe another interesting phenomenon: a
"clustering" effect for the hopcount in MCAN1. These Figures,
particularly Figure 4, indicate that the values of hopcount
of MCAN1 in multiple overlays (schemes 13-18), for both
scenario a and b, concentrate around several dominant values.
This suggests that there seems to exist a finite number of
"groups" of CAN structures.

This behavior is observed in the topology-aware CAN as
well (scheme 25-30), however the number of values around
which hopcount concentrates is lower. This phenomenon is
not reflected in the hopcount of MCAN2, as can be observed
from same Figures. The pdf of MCAN2 is bell-shaped, with a
variance much lower variance of MCAN1. The average hop-
count of MCAN1 is again 10% higher than that of MCAN2.



5

sch. MCAN m/ρ 1/2 sch. MCAN m/ρ 1/2 sch. MCAN m/ρ 1/2
1 single 10/0.05 1 13 multiple 10/0.05 1 25 top. aw. 10/0.05 1
2 single 20/0.1 1 14 multiple 20/0.1 1 26 top. aw. 20/0.1 1
3 single 40/0.2 1 15 multiple 40/0.2 1 27 top. aw. 40/0.2 1
4 single 100/0.5 1 16 multiple 100/0.5 1 28 top. aw 100/0.5 1
5 single 140/0.7 1 17 multiple 140/0.7 1 29 top. aw. 140/0.7 1
6 single 180/0.9 1 18 multiple 180/0.9 1 30 top. aw. 180/0.9 1
7 single 10/0.05 2 19 multiple 10/0.05 2 31 top. aw. 10/0.05 2
8 single 20/0.1 2 20 multiple 20/0.1 2 32 top. aw. 20/0.1 2
9 single 40/0.2 2 21 multiple 40/0.2 2 33 top. aw. 40/0.2 2
10 single 100/0.5 2 22 multiple 100/0.5 2 34 top. aw. 100/0.5 2
11 single 140/0.7 2 23 multiple 140/0.7 2 35 top. aw. 140/0.7 2
12 single 180/0.9 2 24 multiple 180/0.9 2 36 top. aw. 180/0.9 2

TABLE I
THE SIMULATED SCHEMES 1-36. THE NUMBER OF NODE N=200. THE COLUMN 1/2 STANDS FOR TYPE OF MCAN ALGORITHM: MCAN1 IS THE

ORIGINAL, MCAN2 IS THE MODIFED. EACH SCHEME 1-36 HAS BEEN SIMULATED IN BOTH SCENARIO A AND B. (SOURCE)

100 150 200 250 300 350 400
10

−4

10
−3

10
−2

10
−1

k

P
r[H

o
p

=k
]

Pr[Hop
CAN1

]
Pr[Hop

CAN2
]

Fig. 5. The pdfs of MCAN1 and MCAN2 in topology aware CAN overlay
(schemes 28-30 and 34-36), N = 200, ρ = 0.5, 0.7, 0.9, scenario a

2) Effect of the topology awareness on MCAN1 and
MCAN2: The average hopcount in MCAN1 and MCAN2 as a
function of m, in a single, multiple and topology aware CAN
(schemes 1-36), has been plotted in Figure 6 for scenario b.

Remarkably, in scenario b the topology awareness does not
seem to impact the hopcount significantly. Moreover, for a
small ratio ρ (ρ ≤ 0.2), the hopcount of MCAN1 obtained
in a topology aware CAN (schemes 25-30) is higher than the
hopcount in multiple overlays (schemes 13-18). A possible
explanation is that when a new user joins the group, it chooses
the nearest node in CAN as the split node, which consequently
may separate two nodes already neighboring each other in
CAN. This phenomenon is illustrated in Figure 7. We consider
a small portion of CAN overlay, where two users A and B,
close to each other in the underlying network, are neighbors in
the CAN space. Node C lies in another part of the underlying
network. If a newcomer C is close to A on the underlying
substrate, it chooses A as the nearest node already in CAN.
A splits its zone and assigns half of it to C. However, this
partitioning can be performed in such a way that the addition
of C in the existing CAN structure will separate A and B,

0 20 40 60 80 100 120 140 160 180
0

50

100

150

200

250

300

350

400

E
[H

o
p

C
an

1]

m

one overlay
topology awareness
multiple overlay

Fig. 6. Effect of overlay creation on hopcount of MCAN1 (N = 200,
scenario b)

A B

A C B

B

BC

A

A

(a)

(b)

Fig. 7. Joining of the node C increases the distance between A and B.

resulting in a higher hopcount among them (as exemplified in
Figure 7).

3) The total and effective hopcount of MCAN1 and
MCAN2: The average total and effective hopcount of MCAN1
and MCAN2 in scenario b has been displayed in respetively
Figure 8 for multiple CAN overlays and Figure 9 for topology
aware CAN overlays (schemes 13-36). The effective hops
are the hops a message traverse until it reaches each of the
destinations for the first time, and do not include the forward-



6

0 20 40 60 80 100 120 140 160 180
0

50

100

150

200

250

300

350

E
[H

o
p

]

m

E[H
M−CAN1

]
E[H

M−CAN2
]

E[Useful
M

C
AN1

]

E[Useful
M−CAN2

]

Fig. 8. Comparison of total and effective hopcount in MCAN1 and MCAN2
for multiple CAN overlays (scheme 13-24)

0 20 40 60 80 100 120 140 160 180
0

50

100

150

200

250

300

E
[H

o
p

]

m

E[H
M−CAN1

]
E[H

M−CAN2
]

E[Useful
M

C
AN1

]

E[Useful
M−CAN2

]

Fig. 9. Comparison of total and effective hopcount of MCAN1and MCAN2
in topology aware overlays (scheme 25-36)

ing paths of the duplicate messages. For both multiple and
topology-aware CAN (schemes 18-24, and 30-36), the ratio
of the total and the effective hopcount of MCAN2 is around
1, implying that the modifications we introduce eliminate most
of the duplicate messages. In a topology aware CAN (schemes
25-36), the number of effective hops is the same for both
algorithms, indicating that the total hopcount of MCAN2 is
approximately the same as the effective hopcount of MCAN1.
In multiple overlays (schemes 13-24), the effective hopcount
of MCAN1 is up to 5% lower than the effective hopcount of
MCAN2, suggesting, as expected, that the message forwarded
with MCAN1 will reach all users in a smaller number of
hops. However, MCAN2 optimizes the total number of hops
traversed by the message.

B. Scribe on a random graph
For the simulations of Scribe, exactly the same random

graphs as those used in the analysis of MCAN have been
generated. In order to simulate Scribe, we first define a
number of Pastry nodes NPastry.Random nodeIds in the range£
0, 2128 − 1

¤
are assigned to those nodes. Since we only

simulated a small number of users (NPastry ¿ 2128), we
confined ourselves to b = 2. The leaf set of each Pastry
node consists of 8 entries. Again two different scenarios have

0 20 40 60 80 100 120 140 160 180
0

50

100

150

200

250

300

350

E
[H

o
p

]

m

E[H
M−CAN1

]
E[H

M−CAN2
]

E[H
IPMulticast

]
E[H

m−UniCast
]

E[H
Scribe1

]
E[H

Scribe2
]

Fig. 10. Comparison of MCAN in multiple-overlay (schemes 13-24) with
other mechanisms (N = 200, scenario a)

0 20 40 60 80 100 120 140 160 180
0

50

100

150

200

250

300

350

E
[H

o
p

]

m

E[H
M−CAN1

]
E[H

M−CAN2
]

E[H
IPMulticast

]
E[H

m−UniCast
]

E[H
Scribe1

]
E[H

Scribe2
]

Fig. 11. Comparison of MCAN in multiple-overlay (schemes 13-24) with
other mechanisms (N = 200, scenario b)

been simulated: scenario a, in which several Pastry nodes
may belong to the same router, and scenario b, where each
Pastry node is attached to a different router. Subsequently,
a subset of m Pastry nodes has been chosen, representing
Scribe participants. Also, a root for the group tree has been
determined. A Scribe tree is built by combining Pastry paths
from each Scribe member to the root.

Two different sets of simulations: Scribe1, the Scribe algo-
rithm without topology awareness and Scribe2, in which the
absolute topology awareness has been integrated.

1) Comparative analysis on a random graph: In Figure 10
and Figure 11 the average hopcount in Scribe1, Scribe2, m-
Unicast and IP Multicast, together with MCAN1 and MCAN2
in multiple CANs (schemes 13-24) has been plotted for both
scenarios a and b, respectively. The results correspond to
NPastry = m. As anticipated, IP Multicast achieves the
best performance. These Figure further reveals that the lowest
number of hops is reached with Scribe2, and the highest one
with MCAN1. Furthermore, the hopcount of MCAN1 in both
scenarios is higher than that of m-Unicast. The hopcount of
MCAN2 is in both scenarios comparable to the hopcount of
m-Unicast. In scenario b, Scribe1 performs slightly worse
than MCAN2 but comparable to m-Unicast. In scenario a,
for ρ > 0.5, the hopcount of Scribe 1 decreases compared
to MCAN2 and m-Unicast. These Figures indicate a great



7

0 20 40 60 80 100 120 140 160 180
0

50

100

150

200

250

300

350

E
[H

o
p

]

m

E[H
M−CAN1

]
E[H

M−CAN2
]

E[H
IPMulticast

]
E[H

m−UniCast
]

E[H
Scribe1

]
E[H

Scribe2
]

Fig. 12. Comparison of MCAN in topology aware-overlay (schemes 25-36)
with other mechanisms (N = 200, scenario a)

0 20 40 60 80 100 120 140 160 180
0

50

100

150

200

250

300

350

E
[H

o
p

]

m

E[H
M−CAN1

]
E[H

M−CAN2
]

E[H
IPMulticast

]
E[H

m−UniCast
]

E[H
Scribe1

]
E[H

Scribe2
]

Fig. 13. Comparison of MCAN in topology aware-overlay (schemes 25-36)
with other mechanisms (N = 200, scenario b)

influence of topology awareness on the hopcount in Scribe.
The difference in average hopcount in Scribe1 and Scribe2
raises dramatically with ρ. For ρ ≥ 0.1 the average hopcount
is up to 40% lower than that of Scribe2.

Figure 12 and Figure 13 display the average hopcount
in Scribe1, Scribe2, m-Unicast, IP Multicast, together with
MCAN1 and MCAN2 in a topology-aware CAN (schemes
25-36) in both scenarios a and b, respectively. These Figures
seem to indicate that in scenario a the hopcount achieved with
MCAN1 is lower than that of m-Unicast, that performs the
worst. In both scenarios, MCAN2 performance is better than
that of Scribe1. In scenario b, the results are the same as for
the multiple CANs, MCAN1 obtaining the highest hopcount
of all, with a slightly improved performance of MCAN1 and
MCAN2.

V. EVALUATION VIA MEASUREMENTS ON PLANETLAB

In addition to simulations, we evaluated the performance
of AL multicast protocols under realistic conditions, by per-
forming experiments on PlanetLab. Our experiments have been
executed on November 10th 2004. At that moment, there were
445 PlanetLab nodes running on locations in USA, Asia and
Europe. We have performed two sets of measurements.

1) For the measurements corresponding to the scenario b,
we selected one node per PlanetLab site, resulting in totally

0.001

2

3

4

5
6
7

0.01

2

3

4
5
6
7

0.1

Pr
[H

op
s=

k]

12001000800600400200

k

 MCAN1_m10p
 MCAN1_m20p
 MCAN1_m40p
 MCAN2_m10p
 MCAN2_m20p
 MCAN2_m40p

Fig. 14. The pdfs of MCAN1 and MCAN2 in multiple CAN overlay derived
from experiments on PlanetLab

79 nodes. Each of these nodes represents a multicast group
member.

2) For the 79 selected nodes Scribe and MCAN without
topology awareness have been implemented. One node has
been designated as a source. Among the neighbors on the
overlay, traceroutes [10] were collected. The hopcounts of
MCAN, Scribe, multicast and m-unicast have been computed.

3) Based on the traceroutes collected among these 79 nodes,
the underlying router-level topology has been created. This
topology consisted of 4226 nodes and 7171 links. No alias
resolution technique has been implemented.

4) With the knowledge of this topology, topology aware
MCAN and Scribe have been created and implemented, and
subsequently, hopcount has been computed.

Figure 14 and Figure 15 show the results of our PlanetLab
experiments. Figure 14 gives the pdf of the hopcount in
multiple MCAN1 and MCAN2. Also this Figure reveals the
clustering effect in the hopcount of MCAN1 as we observed
for simulations of multiple CAN. In Figure 15 we have plotted
the average values of hopcount for each of the schemes.
This Figure resembles the corresponding Figure 11 and 13
obtained from simulations. Again, IP multicast achieves the
lowest hopcount. The values of hopcount of MCAN, Scribe1
(without topology awareness), seem all to be approximately
equal to unicast. The hopcount of Scribe 2 (with absolute
topology awareness) is only slightly lower than topology aware
MCAN2, but lower than unicast. Strikingly: the hopcount of
topology aware MCAN1 is even larger than that of unicast!
One possible explanation is illustrated in Figure 16. The
sequence of Figures 16(a) to 16(e) shows the process of nodes
joining CAN network. First, only node 1 is in CAN, and then,
one by one, other nodes join. Let us assume that node 2 is
the nearest node to the newcomer 5. Node 5 then chooses
node 2 as the split node. However, even though they will be
neighbors in CAN, due to the way MCAN algorithm operates
(as described in Section II), they do not send messages to
each other. Hence, even though the nodes will be neighbors
in CAN, the hopcount among them will not be diminished. In
addition, as illustrated earlier in Figure 7 as well, the addition
of node 6 (close to, e.g., node 3) may separate nodes 3 and
4, which are nearby in the underlying topology.



8

1500

1000

500

E[
ho

p]

70605040302010

m

 MCAN1
 MCAN2
 multicast
 unicast
 Scribe1
 MCAN1_top
 MCAN2_top
 'Scribe2'

Fig. 15. The average hopcount of all schemes of interest, derived from
experiments on PlanetLab

6

21 2 2

3

1 1 1 12 2

553 4 3 4 3 46

1 2

543 6

1 2

543

(a) (b) (c) (d) (e)

MCAN 1 MCAN 2

Fig. 16. The node 5, although neighbor of 2, does not receive messages
from him..

VI. CONCLUSIONS

Our goal was to examine the performance of several scalable
Application Layer multicast mechanisms, MCAN and Scribe,
under the same conditions, with the hopcount as a performance
metric. In addition, we aimed at establishing the upper and
lower boundaries for the hopcount of these two algorithms, as
a function of the network awareness. Here, we summarize our
observations:

1) We observe a hopcount "clustering" effect in MCAN.
2) The number of duplicate messages in MCAN is fairly

eliminated with the modifications to forwarding algo-
rithm we introduced.

3) There is no significant influence of topology
(un)awareness on the hopcount of MCAN in scenario b
(all members attached to different routers).

4) For a small number of multicast users compared to N
(ρ = m/N ≤ 0.1), the hopcount obtained in a topology
aware overlay is slightly higher than the hopcount
in topology unaware overlays, in scenario b.The same
phenomenon observed in the measurements results. One
possible explanation is the way topological information
has been integrated in CAN.

5) In Scribe, we observe a large influence of topology
awareness on the hopcount. The difference in hopcount
can reach 40%.

6) When the underlying topology is completely known,
and each user is attached to a different router, Scribe
achieves the same number of hops as IP multicast. The
hopcount of a complete topology aware Scribe when the
users may connect to the same router remains higher
than that of IP multicast. The performance of Scribe
without topology awareness is comparable to m-Unicast,
if each user is attached to a different router. It does
achieve lower hopcount than m-Unicast if users may be
attached to the same router. MCAN seems to outperform
m-Unicast only if CAN is completely topology-aware,
and users may attach to the same router multiple times.
Under all the other circumstances, the number of hops
of MCAN1 is higher than m-Unicast. The modified
CAN algorithm outperforms m-Unicast. It outperforms
the topology unaware Scribe as well, unless MCAN2 is
applied on a topology unaware CAN and users may join
the same router several times.

7) The results of experiments on PlanetLab match our
simulation results.
We can conclude that all the schemes perform poorly
when underlying topology is unknown. However, in case
of CAN, the topology awareness can even lead to an
increase in the hopcount.

REFERENCES

[1] S. Banerjee, B. Bhattacharjee, and C. Kommareddy. ”Scalable applica-
tion layer multicast”, Proceedings of ACM SIGCOMM 2002 Pittsburg,
PA, August 2002.

[2] B. BOLLOBAS, Random Graphs, Academic Press, 1985.
[3] M. Castro, M. Jones, A-M Kermarrec, A. Rowstron, M. Theimer, H.

Wang, A. Wolman, ”An Evaluation of Scalable Application-level Mul-
ticast Using Peer-To-Peer overlays”, Proceedings of IEEE INFOCOM
2003, San Francisco, CA, April 2003.

[4] S. Deering, ”Multicast routing in a datagram internetwork”, PhD thesis,
Stanford University, Palo Alto, CA, December 1991.

[5] P. Druschel, M. Castro, A.-M. Kermarrec, and A. Rowstron. ”Scribe: A
large-scale and decentralized application-level multicast infrastructure”,
IEEE Journal on Selected Areas in Communications (JSAC), 20(8),
October 2002.

[6] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, ”A scal-
able content-addressable network”, Proceedings of ACM SIGCOMM
2001, San Diego, CA, August 2001.

[7] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker, ”Application-
level multicast using content-addressable networks,” Proceedings of the
Third International Workshop on Networked Group Communication,
November 2001.

[8] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker, "Topologically-
aware overlay construction and server selection," in Proceedings of IEEE
INFOCOM, 2002.

[9] A. Rowstron, P. Druschel, ”Pastry: Scalable, Decentralized Object
Location and Routing for Large-Scale Peer-to-Peer Systems”, 18th
IFIP/ACM Conference on Distributed Systems Platforms, Heidelberg
(D), November 2001.

[10] W. RICHARD STEVENS, TCP/IP Illustrated, Addison-Wesley, 1994.
[11] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan.

”Chord: A scalable peer-to-peer lookup service for Internet applica-
tions”, Proceedings of ACM SIGCOMM 2001, San Diego, CA, August
2001.

[12] P. Van Mieghem, G. Hooghiemstra, R. van der Hoftstad, ”On the
Efficiency of Multicast”, IEEE Transactions on Networking, 9(6), 719 -
732 , December 2001.

[13] B.Y. Zhao, J. D. Kubiatowicz and A. D. Joseph, ”Tapestry: An in-
frastructure for fault tolerant wide-area location and routing”. Tech. Rep.
UCB/CSD-01-1141, UC Berkeley, April 2001.

[14] S. Q. Zhuang, B. Y. Zhao and A. D. Joseph, ”Bayeux: An architecture
for scalable and fault-tolerant wide-area data dissemination”, In 11th
ACM/IEEE NOSSDAV, New York, June 2001.


