Congestion Control for Distributed Hash Tables *

Fabius Klemm, Jean-Yves Le Boudec, and Karl Aberer
School of Computer and Communication Sciences
Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
{fabius.klemm, jean-yves.leboudec, karl.aberer} @epfl.ch

Abstract

Distributed Hash Tables (DHTs) provide a scalable
mechanism for mapping identifiers to socket addresses. As
each peer in the network can initiate lookup requests, a
DHT has to process concurrently a potentially very large
number of requests. In this paper, we look at congestion
control for DHTs. Our goal isto control the flow of lookup
requests that are routed in the overlay network. We first
show that congestion control is essential for certain appli-
cations with high lookup rates. We then present two con-
gestion control mechanisms for DHTs and compare their
performances in different network conditions.

1 Introduction

Distributed Hash Tables (DHTSs) are used to efficiently
store and lookup data in a peer-to-peer (P2P) network. Data
is addressed by an identifier (or key) from a common iden-
tifier space. Each peer in the network is responsible for
a subset of identifiers. For increased reliability, multiple
peers can be responsible for the same identifiers. The main
operation of a DHT is lookup(id), which returns socket ad-
dresses (i.e. the IP addresses and port numbers) of respon-
sible peers for id. Each peer maintains a routing table to
forward requests it is not responsible for. Most DHTS, such
as Chord, Pastry, or P-Grid [11, 9, 1] create routing tables of
size O(log(n)), where n is the number of peers in the sys-
tem. The routing entries are chosen in such a way that the
resulting graph has small-world properties [5, 4]. Resolving
any lookup request started at any peer is then guaranteed to
take O(log(n)) overlay hops on average.

There are two ways of resolving lookup requests in a
DHT: when recursive routing is applied, a peer that is not
responsible for a requested identifier id, forwards the re-

*The work presented in this paper was carried out in the framework of
the EPFL Center for Global Computing and supported by the Swiss Na-
tional Funding Agency OFES as part of the European FP 6 STREP project
ALVIS (002068).

quest to a next hop found in its routing table. We call a
peer that forwards a request a relay peer. This forwarding
process continues until a responsible peer for id,, is found,
which returns a reply to the requester (i.e. the initiator of
the lookup request for id,). Whereas, in iterative routing
instead of forwarding a lookup request, a relay peer returns
the socket address of the next hop to the requester. The re-
quester then contacts the next hop directly. This process
continues until the requester knows the address of the re-
sponsible peer for id,..

A lookup request contains the socket address of the re-
quester to allow the responsible peer to return a direct reply.
However, in some cases due to firewalls, Network Address
Translation (NAT), or link failures, direct IP. communication
between two peers is not always possible. In such cases, the
reply is relayed back to the requester by one or several in-
termediate peers.

In this paper, we study the problem of congestion control
(CC) for DHTs. Dealing with CC for DHTs might not be
necessary if only a moderate number of messages is routed
in the system: for file sharing, for example, a peer would
typically provide some hundreds to a few thousands of files,
which are indexed using only a few keywords. Bursts in in-
dexing traffic could be avoided by gradually inserting the
index. Further routing traffic is caused by user queries that
are very likely to stay well below one query/s per peer and
are therefore not heavily loading the network. In such a
scenario, a DHT without any CC mechanisms will work ac-
ceptably most of the time.

In the past years, however, the usage of DHTS has passed
simple file sharing. A large research community is now
working on providing full-text retrieval on top of DHTSs,
e.g. [6, 12]. Performing information retrieval on top of a
DHT (P2P-IR) drastically increases the load of the system
by at least two orders of magnitude, compared to file shar-
ing. In P2P-IR each peer extracts several thousands of keys
from its local document collection to be inserted into the
DHT for indexing. We will show in section 3 that such a
load will lead to a congestion collapse of a DHT if no pre-
cautions are taken. When a DHT has to handle a very large

number of requests, CC is essential to guarantee the correct
and efficient functioning of the system.

In this paper, we will present two CC mechanisms
for recursive routing, Credit System Congestion Control
(CSCCQ) in section 2.1 and Back-Pressure Congestion Con-
trol (BPCC) in section 2.2. CSCC detects packet loss to
determine the routing capacity of a DHT, whereas BPCC
propagates congestion state towards sending peers, which
then react accordingly. We will explain how both mech-
anisms can be used in current DHT implementations. In
section 3 we will analyze the performance of both mecha-
nisms. In sections 4 and 5 we present related work and our
conclusions.

o

P7 Pi

° °
0.875 »0.125
Pse 0.75 A 025 F2
0.625 0.375
Ps ® v ®p;

0.5
°
P4

Figure 1. Ring topology

2 Congestion Control for DHTs

Controlling the flow of lookup requests in a DHT be-
comes necessary when there is heavy load and the peers in
the DHT have different processing capacities. Consider fig-
ure 1: Assume that peer P, for example, sends messages to
peer P, with rate A\; and peer P, processes messages with
rate Ao. If Ay > s the incoming queue of peer P, will
start to fill up. Once the queue limit is reached there are two
options: a) P, drops further incoming messages or b) P,
informs sending peers (here Py) that it temporarily cannot
accept more messages. We will use option a), which is sim-
ilar to TCP/IP, for CSCC (section 2.1) and option b), which
is referred to as back-pressure CC, in our second mecha-
nism called BPCC (section 2.2). Both options have been
studied in the computer networking domain for end-to-end
traffic flows. Our proposals for CC in DHTS re-use success-
ful principles whenever applicable. We shall see, however,
that there are many unique features of CC in DHTS.

CSCC

CSCC |« ack

‘ Layer 2 ‘ ‘ Layer 2 ‘ ‘ Layer 2 ‘ ‘ Layer 2 ‘
‘ Layer 1 ‘ ‘ Layer 1 ‘ ‘ Layer 1 ‘ ‘ Layer 1 ‘

U S

requester relay peer relay peer responsible peer

Figure 2. Architecture with CSCC

2.1 Credit System Congestion Control
(CSCCOC)

For ease of explanation, we will structure a peer into
multiple layers (cf. figure 2). Layer 1 provides commu-
nication between two neighboring peers, which is done us-
ing TCP. Layer 2 performs recursive routing in the overlay
network, i.e. it decides to which neighbor messages are for-
warded. Applications using the DHT, such as information
retrieval, are on layer 3.

Our first congestion control mechanism, CSCC, works
on top of overlay routing, i.e. between layer 2 and 3. It reg-
ulates the insertion rate of lookup requests initiated at layer
3. CSCC passes messages to layer 2, where they are (re-
cursively) routed via several relay peers to the responsible
peer (cf. figure 2). At the responsible peer, for each re-
ceived message, CSCC returns an acknowledgment (ACK)
directly to the socket address of the requester. In our im-
plementation an ACK contains only a 4 byte ACK id. We
therefore chose UDP as the transport protocol to send the
ACK. Opening a TCP connection to the requester to return
the ACK would be overkill, in particular because in a large
network nearly every ACK goes to a different requester and
thus the chances of reusing an open TCP connection are
very low. Another option would be to route the ACK back
using the DHT. This option is more expensive (O(log(n))
messages), however it might be necessary in certain envi-
ronments, where direct IP communication is limited (e.g.
by NATs and firewalls). In all cases the ACK messages can
be used to piggyback small replies, e.g. the socket address
of the responsible peer. Notice that all peers in the system
are requester, relay, and responsible peer at the same time.

Each peer buffers incoming messages in a queue that is
situated in layer 2. For CSCC, once a specified queue limit
is reached, further incoming messages are dropped silently
(as in an IP router). Neighbor-to-neighbor communication
on layer 1 is implemented using TCP, i.e. all messages are
reliably transmitted to the next hop. However, a forwarding

peer will not take notice whether a message is dropped at
the next hop. TCP CC between two neighbors deals with
congestion in the IP network and is therefore independent
of CSCC.

2.1.1 Credits

The CSCC layer at each peer maintains credits that rep-
resent outstanding messages, i.e. requests for which the
peer has not received an acknowledgment yet. CSCC does
not maintain any destination-specific state. The number of
available credits represents the capacity of the whole DHT.
For setting the credits, we use the standard textbook algo-
rithm for setting a TCP send window: for each received
acknowledgment, the requester will increase its credits ¢ as
follows:

if (c < ssthresh) ¢ := ¢ + 1;

else c :=c¢c+ 1/ c;

ssthresh is the slow start threshold. CSCC changes ¢ and
ssthresh in case of detected packet loss:
if (¢ > ssthresh) ssthresh := 0.8 % c;
else ssthresh := 0.8 x ssthresh;

c = 5;

When packet loss occurs, ssthresh is set to 0.8 * ¢ if ¢ had
passed ssthresh, otherwise its decreased by multiplication
with 0.8. ¢ is set to 5 to instantly relieve congestion. As
long as ¢ < ssthresh, ¢ will quickly increase. Once ssthresh
is reached, CSCC limits the speed of growth of ¢ to 1/c for
each acknowledged message.

2.1.2 Retransmission Timeout

CSCC retransmits a message if it has not been acknowl-
edged within a certain time. We maintain a RTT esti-
mate (RTT _est) that is the exponential average of measured
RTTs. We also estimate the RTT variance (errorEst). The
timeout is the estimated RTT plus 10 times the estimated er-
ror, which empirically gives a good tradeoff between timely
detection of loss and low number of unnecessary early re-
transmissions.

RTT_est := 0.875 % RTT_est + 0.125 % last_RTT;
errorEst := 0.75 x errorEst + 0.25 x lastErr;
timeout := RTT_est + 10 % errorEst;

Notice that these constants to increase and decrease the
credits, as well as to calculate the RTT are empirically cho-
sen for the environment we will present in section 3. A more
detailed study about the effects of changes of these numbers
in different environments is part of future work.

2.1.3 Discussion

CSCC has similarities with CC in TCP. The most impor-
tant difference is that TCP is used for long-lasting flows be-
tween two end systems. In DHTSs, such long-lasting overlay

flows do not exist, as lookup requests are for different des-
tinations. Given two different identifiers, a peer does not
know whether two or only one peer is responsible. Once
a requester knows the socket address of a responsible peer
P, for an identifier, it can communicate directly with P,
(with UDP or TCP) without having to use the DHT. As
TCP is end-to-end and delivers messages in sequence, it
uses a sliding window: the reception of an acknowledge-
ment increases the set of messages that can be sent only if
the acknowledgement includes the oldest outstanding mes-
sage. CSCC, on the contrary, cannot guarantee in-order de-
livery and therefore uses a credit system. It can send a new
message whenever an outstanding one has been acknowl-
edged.

A requester retransmits a message when it does not re-
ceive an acknowledgement within a certain time. Peers can
therefore receive the same message several times. To detect
duplicate messages, each peer would have to keep track of
which messages were received from which peer. The cost
of keeping this sender-specific state would be O(n). CSCC
therefore does not guarantee that each message is delivered
exactly once to the application layer but only at least once
(in the absence of exceptional errors). Exactly-once seman-
tics has to be implemented by the application if needed.

2.2 Back-Pressure
(BPCCOC)

Congestion Control

We will now introduce our second CC mechanism us-
ing back-pressure. When back-pressure is used, no mes-
sages are dropped at layer 2. Instead, a peer signals its cur-
rent queue state to sending peers. Congestion in the DHT
thus propagates back to requesting peers that adjust their
lookup rates accordingly. Back-pressure requires neighbor-
to-neighbor flow control that can be implemented by using
TCP at layer 1. When the queue of a relay peer P, is full, in-
stead of dropping packets, it will stop reading packets from
the TCP sockets of incoming connections. TCP flow control
will automatically slow down all peers forwarding messages
to P,.

2.2.1 Risk of Deadlocks

One problem in a back-pressured network is the risk of
deadlocks. A sending peer is blocked when the incoming
queue at the receiver is full. It has to wait for the receiving
peer to process queued messages. However, the receiving
peer itself might be waiting for another peer. A deadlock
can occur when there is a cycle in the buffer waiting graph.
Consider again routing in the Chord-ring [11] of figure 1:
assume that P, is sending packets to Ps via Py, Py is send-
ing to P; via Py, and Pg to Py via Py. This scenario can lead
to a deadlock, when P, is waiting for P,, P, is waiting for

Pg, and Py is waiting for Py. In a distributed environment
such deadlocks are extremely difficult to detect and resolve.

2.2.2 Deadlock-Free Back-Pressure

A known principle in packet-switched networks is that a
routing scheme is deadlock free if and only if there are no
cycles in the buffer waiting graph [10, 7]. There have been
many proposals for routing in DHTS, e.g. [11, 9, 1], many
of which build a ring or a tree topology. We will show in
the following that for ring and tree topologies it is possi-
ble to obtain a deadlock-free overlay network if each peer
has an individual queue per neighbor. Each peer thus main-
tains O(log(n)) queues for outgoing messages. As before,
a sending peer is blocked when the queue it inserts into (at
the next hop) is full. However, other sending peers can still
insert messages into the remaining queues if there is space.

2.2.3 Ring

Ring topologies are used, for example, in the Chord DHT.
We will show that the ring topology is deadlock-free when
each peer maintains a separate queue for each neighbor. The
Chord routing protocol prescribes that at peer P, a message
for identifier d is forwarded in a clockwise direction to the
neighbor P, in the routing table that is closest to id with the
condition that P, lies between P, and id (going in clock-
wise direction starting at P,). Consider again the network
in figure 1: if peer P, wants to route a message with identi-
fier id = 0.375, the next hop would be P, as it lies between
Py and «d.

A ring topology with all routing entries correctly set is
deadlock-free if there is one outgoing queue per neighbor:
each message in a given queue will travel on its next hop at
most half the distance of its previous hop. A queue of a link
of distance d; can only wait on a queue of a link of distance
dy < 1/2 - dy. Therefore, there are no cycles in the buffer
waiting graph.

224 Tree

P-Grid [1] routes using a tree structure. Figure 3 shows a
P-Grid tree with eight peers (P, to P;). Each peer has three
routing entries. A routing entry can be filled with any peer
from the corresponding opposite subtree. Consider the ex-
ample shown for peer P: entry 1 can be filled with any
peer from the largest opposite subtree, i.e. P4 to P; (here
Ps was chosen); entry 2 can be filled with either P, or P,
and entry 3 is Ps. Routing is performed by forwarding into
the smallest known subtree of the destination: if P, routes
a message for destination Py, it will forward to a peer in the
right subtree, in this case Ps. Ps will forward the message
into the next smaller subtree (here either P, or Ps). If each

peer has a queue per routing entry, the P-grid routing proto-
col is deadlock free: when a peer forwards a message to the
next hop, it is inserted into a queue that will not lead back to
the subtree the message is coming from. The buffer waiting
graph is therefore cycle-free.

N

P1 Ps Pes P7

Table for P2:

1. any one from P4 to P7
2. any one from Po to P1
3.P3

Figure 3. Routing in P-Grid.

3 Evaluation

In this section we will present our experimental results.
The goal was a) to show that without CC, the system goes
to a congestion collapse state when peers increase the load.
Furthermore, we would like b) to evaluate the performance
of CSCC and BPCC.

We implemented a fully functional P2P client in Java us-
ing the Chord routing protocol and both CC mechanisms.
The experiments were performed in a cluster of five ma-
chines using ModelNet. ModelNet allows us to emulate
a wide-area network, where several peer client applications
run on the same physical machine, however each of them
receives its own IP address. We set the link capacity per
peer to 1 Mbit/s with 30 ms delay between any two peers
and zero loss.

3.1 a) Congestion collapse

The first experiment evaluates the performance of the
DHT under an increasing load. Starting at the same time,
all peers in the network perform each 2000 lookup requests
for random identifiers. 2000 requests per peer is still a small
value compared to the number of requests necessary to in-
dex a document collection of reasonable size. The experi-
ment was performed with 16 peers. Such a relatively small
number of peers is already sufficient to cause a congestion
collapse. The same effect is visible in larger networks.

We first run the experiment with CC disabled. We gradu-
ally increase the lookup request rate (offered load) per peer

Lhttp://issg.cs.duke.edu/modelnet.html
Make sure Java uses IPv4 (java -Djava.net.preferlPv4Stack=true).

from 15 msg/s to about 100 msg/s. Figure 4 shows the re-
sults averaged over 5 runs with mean deviation error bars.
Without CC, up to an offered load of ~80 msg/s per peer,
the achieved throughput matches the offered load. When
the peers further increase their sending rates the achieved
throughput starts to drop instead of further increasing. This
behavior is called a congestion collapse.

achieved throughput per peer [msg/s]
90 T T T T T T T T T

80 |
70 t
60 |
50 |
40 t
30 |
20 |
10 |

achieved throughput per peer [msg/s]

O 1 1 1 1 1 1 1 1 1
10 20 30 40 50 60 70 80 90 100

offered load [msg/s]

Figure 4. CSCC achieves arate of ~60 msg/s,
BPCC ~80 msg/s. Without CC, the system
suffers congestion collapse when the offered
load per peer exceeds 80 msg/s.

We then enable either CSCC or BPCC. Now all peers
perform requests as fast as possible and CC regulates the
rate to match the capacity of the DHT. CSCC achieves a rate
of ~60 msg/s, with approx. 5% retransmissions (4% caused
by drops and 1% by early timeouts). BPCC performs bet-
ter with a rate of ~80 msg/s, which matches the maximum
rate when no CC is applied. With 16 peers, BPCC achieves
thus a global rate of almost 1300 lookup requests per sec-
ond. One reason for the better performance of BPCC is that
it is loss-free and thus does not have to retransmit dropped
messages. A large difficulty in CSCC, however, is strongly
varying RTTs as each packet has a different destination.
Such variations make it harder for CSCC to find the opti-
mal capacity of the DHT.

Obviously, in such a small network, each peer could
cache the socket addresses and according id ranges of all
other peers instead of performing a fresh lookup for each
request. The larger the network, however, the less effective
such a cache would be. Our goal is to study the behavior of
the overlay network under heavy load. We therefore do not
cache any lookup replies.

3.2 b) BPCC and CSCC under Cross-
Load

We perform further experiments to compare BPCC and
CSCC under more hostile conditions. We simulate vary-
ing cross-loads at each peer, which could be caused by e.g.
other processes running on the same machine together with
the peer client. When a peer is cross-loaded it will stop
completely (i.e. pause) forwarding messages. Cross-load
can also be seen as simulation of delays caused by failed
routing entries that have to be repaired before routing at a
peer can continue. We choose an exponentially distributed
pause-time with average of 2 s. Figure 5 shows the result
for 0% pause-time (no cross-load) to 15% pause time (i.e.
each peer pauses routing traffic for 15% of the time on av-
erage). We perform the experiments with total buffer sizes
of 100 and 400 messages per peer (i.e. in BPCC, each peer
has four outgoing buffers of either size 25 or 100 messages,
whereas in CSCC each peer has one buffer of size 100 or
400 messages).

achieved throughput [msg/s]

90 T T T T

BPCC, 400

80
70
60 | |
NES

40 |
30 t
20 + -

2] B

achieved throughput [msg/s]

O 1 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14

cross-load (pause-time in % of time)

Figure 5. CSCC and BPCC under cross-load
with different buffer sizes. BPCC largely out-
performs CSCC.

With increasing cross-load BPCC more and more out-
performs CSCC. Cross-load largely increases RTT varia-
tions as well as message drops, which severely diminishes
the performance of CSCC. Increasing the buffer size helps
BPCC to deal with cross-load, whereas it has no effects on
CSCC.

3.3 Discussion
CSCC and BPCC can regulate the request rate of peers

under heavy load and successfully avoid a congestion col-
lapse. Our initial results showed that BPCC performs better

than CSCC. However, BPCC might not be the right choice
for extremely distributed and uncontrolled systems as there
is a risk of deadlocks as soon as even a few peers behave
maliciously (for cooperative peers BPCC is deadlock-free
as shown in section 2.2). The DHT routing protocols pre-
sented in section 2.2 are no longer deadlock-free when, for
example, a responsible peer (illicitly) returns a lookup reply
using overlay routing instead of sending a direct message to
the socket address of the requester. Techniques to detect and
avoid such scenarios are beyond the scope of this paper.
The experiments we present can at best indicate the per-
formance of the two CC mechanisms. Both mechanisms
are in an initial state and have to be further developed. For
a complete analysis other factors, such as churn, ungraceful
leaves, and the behavior in large heterogeneous peer popu-
lations have to be taken into account. Due to the complex-
ity of performing large-scale experiments with thousands of
peers these extensions are part of ongoing and future work.

4 Related Work

Few papers have discussed CC in DHTs so far.
For recursive routing many DHT proposals use either
TCP for neighbor-to-neighbor routing or a simplified re-
implementation of TCP using UDP, e.g. in Tapestry [14].
However, it is not further specified whether these systems
contain DHT-wide CC mechanisms and how they behave
under heavy loads. Most of the current DHT implementa-
tions are designed for low to moderate loads and CC has not
been an issue yet.

For iterative routing, in DHash++ [3] presents the
Striped Transport Protocol (STP), which has similari-
ties with CSCC as it maintains DHT-wide destination-
independent congestion state. The difficulty in iterative
routing, however, is that a peer has to directly communicate
with many other peers for which reliable RTT estimates are
not available. STP uses a mix of Vivaldi latency predictions
and past delays to calculate retransmission timeouts. How-
ever, when the network becomes congested, latency predic-
tions might not be accurate anymore. Furthermore, it be-
comes difficult to distinguish between failed and overloaded
peers.

[2] proposes component-based transport protocols for
highly distributed applications. They provide higher flex-
ibility to perform application-specific optimizations regard-
ing (among other things) congestion control in peer-to-peer
networks.

CC in DHTs is orthogonal to most of the load balancing
work that has been done for P2P systems. [8], for example,
proposes mechanisms to reduce the imbalance of data items
stored at peers. Though important for DHTS, these mecha-
nisms cannot avoid congestion caused by routing traffic in
a DHT.

Further work on P2P CC is in the area of multi-cast over-
lay networks. [13], for example, studies the performance of
a back-pressure mechanism.

5 Conclusions

In this paper, we have introduced congestion control for
DHTs. To the best of our knowledge, this is the first pa-
per that specifically deals with CC in DHTs. Our goal
is not to present a final solution for CC in DHTs. We
rather want to demonstrate that CC in DHTS is essential
for certain DHT applications that send very large numbers
of small messages, such as in peer-to-peer information re-
trieval. We have presented two initial CC mechanisms,
CSCC and BPCC, which successfully prevent a congestion
collapse. Preliminary experimental results with a real DHT
implementation in Java show that our CC mechanisms work
and can sustain high loads, even under low to moderate
cross-load. There are still many possibilities for increas-
ing the performance of our proposals. Future work includes
a throughput analysis of DHTs for different network con-
ditions, further experimental results with more peers, and
implications of malicious peers on CSCC and BPCC.

6 Acknowledgements

We would like to thank Patrik Bless and Steven Dropsho
for setting up a ModelNet cluster at EPFL.

References

[1] K. Aberer. P-Grid: A self-organizing access structure for
P2P information systems. Sxth International Conference
on Cooperative Information Systems, 2001.

[2] T. Condie, J. M. Hellerstein, P. Maniatis, S. Rhea, and
T. Roscoe. Finally, a Use for Componentized Transport Pro-
tocols. In Proceedings of the Fourth ACM Workshop on Hot
Topics in Networks (HotNets-1V), 2005.

[3] F. Dabek, J. Li, E. Sit, J. Robertson, M. Kaashoek, and
R. Morris. Designing a DHT for low latency and high
throughput, 2004.

[4] S. Girdzijauskas, A. Datta, and K. Aberer. On small world
graphs in non-uniformly distributed key spaces. 2005.

[5] J. Kleinberg. The Small-World Phenomenon: An Algorith-
mic Perspective. In Proceedings of the 32nd ACM Sympo-
sium on Theory of Computing, 2000.

[6] J. Li, T. Loo, J. Hellerstein, F. Kaashoek, D. Karger, and
R. Morris. On the Feasibility of Peer-to-Peer Web Indexing
and Search. IPTPS03, 2003.

[7]1 G. D. Pifarre, L. Gravano, G. Denicolay, and J. L. C.
Sanz. Adaptive deadlock- and livelock-free routing in the
hypercube network. |EEE Trans. Parallel Distrib. Syst.,
5(11):1121-1139, 1994.

(8]

9]

[10]

[11]

[12]

[13]

[14]

A. Rao, K. Lakshminarayanan, S. Surana, R. M. Karp, and
I. Stoica. Load balancing in structured p2p systems. In
IPTPS pages 68-79, 2003.

A. Rowstron and P. Druschel. Pastry: Scalable, distributed
object location and routing for large-scale peer-to-peer sys-
tems. InIFIP/ACM International Conference on Distributed
Systems Platforms (Middleware), 2001.

L. Schwiebert and D. N. Jayasimha. A universal proof
technique for deadlock-free routing in interconnection net-
works. In SPAA '95: Proceedings of the seventh annual
ACM symposium on Parallel algorithms and architectures,
pages 175-184, New York, NY, USA, 1995. ACM Press.

I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Bal-
akrishnan. Chord: A Scalable Peer-to-peer Lookup Ser-
vice for Internet Applications. In Proceedings of ACM S G-
COMM, 2001.

C. Tang and S. Dwarkadas. Hybrid Global-Local Indexing
for Efficient Peer-to-Peer Information Retrieval. First Sym-
posium on Networked Systems Design and Implementation
(NSDI’04), San Francisco, 2004.

G. Urvoy-Keller and E. W. Biersack. A congestion control
model for multicast overlay networks and its performance.
In NGC' 2002, 4th international workshop on network group
communication, 23-25 October, 20002 - Boston, USA, Oct
2002.

B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph,
and J. D. Kubiatowicz. Tapestry: A resilient global-scale
overlay for service deployment. |EEE Journal on Selected
Areas in Communications, 22(1):41-53, Jan. 2004.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

