
Eventual Leader Service in Unreliable Asynchronous Systems: Why? How?

Michel RAYNAL
IRISA, Université de Rennes, Campus de Beaulieu 35 042 Rennes, France

raynal@irisa.fr

Abstract

Providing processes with an eventual leader service is
an important issue when one has to design and implement a
middleware layer on top of a failure-prone asynchronous
distributed system. This invited lecture investigates this
problem. It first shows that such a service cannot be built
if the underlying system is fully asynchronous. Then, the
paper visits several additional behavioral assumptions that
have been proposed in the literature to cope with this impos-
sibility and presents corresponding eventual leader election
protocols. This lecture can be seen as a guided tour of the
eventual leader service problem, whose aim is to benefit re-
searchers and system engineers working in distributed mid-
dleware built on top of asynchronous networks.

Keywords: Assumption coverage, Asynchronous system,
Behavioral assumption, Distributed algorithm, Eventual -
source, Eventual leader, Failure detector, Fault-tolerance,
Message pattern, Omega, Oracle, Partial synchrony, Pro-
cess crash, System model, Eventual timely link.

1 Introduction

The problem Implementing an eventual leader service
(i.e., solving the eventual leader election problem) consists
in providing the processes of a failure-prone asynchronous
distributed system with a primitive denoted (1) that
returns a process identity (pid) each time it is called, and (2)
after some finite time, always returns the same pid, that pid
being the identity of a non-failed process. When one is in-
terested in solving that problem, a part of the difficulty lies
in the type of failures we want to cope with. This paper
considers the simplest failure model, namely, the process
crash failure model. This means that a process can halt pre-
maturely (process crash failure) and, after it has crashed,
a process executes no computation step (there is no recov-
ery). There is no process Byzantine failure, and the com-
munication medium used by the processes to communicate
information and synchronize is assumed to be reliable.

A synchronous distributed system is characterized by
known bounds on process speed and message delay. It is
relatively easy to eventually elect a leader in such a system,
despite process crashes. A simple protocol implementing
an eventual leader service consists in directing the processes
to progress by rounds (i.e., in a lock-step manner) in such
a way that, at each round, every non-crashed process (1)
sends a message to each other process, and (2) elects as its
current leader the process with the smallest pid from which
it has received a message during that round. Given a run of
the system, it is easy to see that, after the last round during
which a process crashes, all the non-crashed processes elect
forever the same leader.
An asynchronous distributed system is characterized by

the absence of bounds on process speed and message de-
lay. In such a context, it becomes impossible for a pro-
cess to distinguish a crashed process from a process that is
very slow or a process with which communications are very
slow. This impossibility makes some problems impossible
to solve. Eventual leader election is such an impossible
problem to solve in asynchronous distributed systems prone
to process crash failures (ore more severe failures). This im-
possibility is inherently due to the net effect of asynchrony
and failures.

Why an eventual leader service is important: on a more
practical side The eventual leader election problem is a
problem encountered in a lot of applications as shown by
the two following examples.
It is well-recognized that active replication is a way to

cope with failures. This is the well-known state machine
replication paradigm. Clients send their commands (opera-
tions) to a “logical” server (state machine) that is physically
replicated. Each alive replica executes the command, and
sends back an answer to the client. Finally, the client con-
siders the first answer it receives. The main issue for the
replicas is to guarantee the one-copy semantics, i.e., from
a logical point of view, everything has to appear as if there
was a single reliable server that processes all the commands
(operations). To obtain this goal, the servers have to coop-

erate in order to process the commands in the same order 1.
This is a typical agreement problem that has received a lot
of attention, namely the consensus problem: the alive repli-
cas have to agree on the order in which they have to process
the commands issued by the clients. It has been shown that
the output of an eventual leader service represents the weak-
est service (in terms of information on failures) required to
solve the consensus problem [5]. So, the ability to imple-
ment a replicated state-machine relies on the ability to solve
the consensus problem that, in turn, relies on an eventual
leader service.
Let us consider a set of interconnected sensors, deployed

on some area. The aim of this set of sensors is to repeatedly
sense its environment and send the corresponding data to a
base station. In order to save energy and prevent message
clogging at the base station, it is required that eventually
one sensor only senses the environment and sends the cor-
responding data. Then, when the selected sensor crashes
(e.g., battery exhaustion), another sensor has to be selected,
etc. As a sensor network is a crash-prone asynchronous dis-
tributed system, the problem we are faced with is a typical
leader election problem: determine a unique sensor that, un-
til it crashes, plays a particular role.

Why an eventual leader service is important: on a more
theoretical side An eventual leader service is specified by
a set of abstract properties. These properties define an ob-
ject, usually denoted [5], that belongs to the family of fail-
ure detector objects [4, 23]. The failure detector objects are
also called oracles. The oracle has a noteworthy feature,
namely, it allows the design of indulgent protocols [10].
Let be an oracle-based protocol that produces outputs,

and be the safety property satisfied by its outputs.
is indulgent with respect to its underlying oracle if, what-
ever the behavior of the oracle, its outputs never violate the
safety property . This means that each time produces
outputs, they are correct. Moreover, always produces out-
puts when the underlying oracle meets its specification. The
only case where can be prevented from producing out-
puts is when the implementation of the underlying oracle
does not meet its specification. (Let us notice that it is still
possible that produces outputs despite the fact that its un-
derlying oracle does not work correctly.) Interestingly, is
an oracle that allows designing indulgent protocols [10, 11].
From a protocol design point of view, as it is not knowwhen
the eventual leader is elected, the main main work of an -
based protocol consists is guaranteeing that its safety prop-
erty is never violated.

Content of the paper An eventual leader service can-
not be implemented in a pure (shared memory or message-

1Assuming (to simplify) that the server provides the clients with deter-
ministic commands.

passing) asynchronous system as soon as even a single pro-
cess can crash. So, considering asynchronous message-
passing systems, the paper (1) focuses on additional as-
sumptions (proposed so far) that, when satisfied by the un-
derlying system, allow implementing an eventual leader,
and (2) presents corresponding protocols. The paper first
shows that no eventual leader service can be implemented
in a fully asynchronous system prone to process crashes
(Section 3). It then quickly surveys the different approaches
that have been proposed to circumvent this impossibility
(Section 4). The paper then presents several of these ap-
proaches in more details (Section 5 to Section 8).
After having shown the difficulty of the problem, the aim

is to give the readers an idea of the type of behavioral as-
sumptions that allows electing an eventual leader. A more
ambitious goal of this lecture is to provide the readers with
concepts and techniques that allow obtaining a better view
of the uncertainty that has to be mastered when one has to
develop reliable distributed middleware.

2 A simple base model for asynchronous
message-passing systems

We consider systems consisting of a finite set of
processes, namely, . The integer is
the identity of (pid). A process can fail by crashing, i.e.,
by prematurely halting. It behaves correctly (i.e., according
to its specification) until it (possibly) crashes. A process
that does not crash in a run is correct in that run. Otherwise,
it is faulty in that run. The model parameter denotes the
maximum number of processes that may crash in any run
().
Processes communicate and synchronize by sending and

receiving messages through channels. Every pair of pro-
cesses is connected by a channel. Channels are assumed
to be reliable: they do not create, alter or lose messages.
In particular, if sends a message to , eventually re-
ceives that message (unless fails). (Let us observe that
channels are not required to be FIFO.)
This base model is characterized by the fact that there

are assumptions neither on the speed of one process with
respect to another, nor on message delays. This is the clas-
sical asynchronousmessage-passing systemmade up pro-
cesses where up to may crash. It is denoted in
the following. To simplify the presentation we consider in
the rest of the paper that a local processing takes no time.

3 Impossibility of electing an eventual leader
in a pure asynchronous system

Consensus can be solved in an asynchronous systemwith
a majority of correct processes, equipped with an eventual

leader service [5, 11, 14, 19]. It consequently follows from
the fact that the consensus problem cannot be solved in
purely asynchronous systems [9], that an eventual leader
service cannot be implemented in an asynchronous system

with . The theorem that follows
shows a more general result in the sense that it requires no
constraint on . (Its proof is a direct impossibility proof in
the sense that it does not rely on the impossibility of solving
another distributed computing problem -such as the consen-
sus problem [9]-. It is inspired from [3].)

Theorem 1 No eventual leader service can be implemented
in with .

Proof The proof is by contradiction. Assuming that there
is a protocol implementing an eventual leader service, we
construct a crash-free execution in which there is an infinite
sequence of leaders such that any two consecutive leaders
are different, from which it follows that the eventual leader-
ship property cannot not satisfied.

Let be a crash-free execution, and be the time
after which some process is elected as the definitive
leader.
Moreover, let be an execution identical to until

, and where crashes at .

Let be a crash-free execution identical to until
, and where the messages sent by after

are arbitrarily delayed (until some time that we will
specify later).
As, for any process , cannot be distin-
guished from , it follows that some process

is elected as the definitive leader at some time
. After is elected, the messages from

can be received.
Moreover, let be an execution identical to until

, and where crashes at .

Let be a crash-free execution identical to until
, and where the messages from are delayed

(until some time that we will specify later).
Some process is elected as the definitive
leader at some time . After is elected,
the messages from are received. Etc.

This inductive process, repeated indefinitely, constructs a
crash-free execution in which an infinity of leaders are
elected at times and such that no two
consecutive leaders are the same process. It follows that
there is no finite time after which the same correct process
is forever elected as the single common leader.

4 Existing approaches to build an eventual
leader service

Up to now two main approaches have been investigated
to implement an eventual leader service () in crash-prone
asynchronous distributed systems. Both enrich the asyn-
chronous system with additional assumptions that, when
satisfied, allow implementing . These approaches are or-
thogonal: one is related to timing assumptions, the other is
related to message pattern assumptions.

The eventual timely link approach The first approach
considers that the asynchronous system eventually satis-
fies additional synchrony properties. Considering a reliable
communication network, the very first papers (e.g., [15])
assumed that all the links are eventually timely. This as-
sumption means that there is a time after which there is a
bound -possibly unknown- such that, for any time ,
a message sent at time is received by time . A pro-
tocol based on such an assumption is presented in Section
5.
This approach has then been refined to obtain weaker

and weaker assumptions. It has been shown in [1] that it is
possible to implement in a system where communication
links are unidirectional, asynchronous and lossy, provided
that there is a correct process whose output links are
eventually timely. This assumption has further been weak-
ened in [2] where it is shown that can be built as soon as
there is a correct process that has only eventually timely
links (let us recall that is an upper bound on the number of
processes that can crash in a run); such a process is called an
eventual -source. (Let us notice that, after the receiver has
crashed, the link from a correct process to a crashed pro-
cess is always timely). A protocol based on such a -source
assumption is presented in Section 6.
Another time-based assumption has been proposed in

[16] where the notion of eventual -accessibility is intro-
duced. A process is eventual -accessible if there is a time
such that, at any time , there is a set of

processes such that and a message broadcast by
at receives a response from each process of by time

(where is a bound known by the processes). The
very important point here is that the set of processes
whose responses have to be received in a timely manner is
not fixed and can be different at distinct times.
The notions of eventual -source and eventual -

accessibility cannot be compared (which means that none
of them can be simulated from the other). In a very
interesting way these two notions have been combined
in [12] where is defined the notion of eventual -moving
source. A process is an eventual -moving source if there
is a time such that at any time there is a set
of processes such that and a message broadcast

by at is received by each process in by time .
As we can see, the eventual -moving source assumption is
weaker than the eventual -source as the set can vary
with .

Other time-based approaches are investigated in [7, 13].
They consider weak assumptions on both the initial knowl-
edge of processes and the network behavior. Protocols
building are presented [7, 13] that assume the initial
knowledge of each process is limited to its identity and the
fact that no two identities are the same (so, a process knows
neither nor). An unreliable broadcast primitive allows
the processes to communicate. It is shown in [13] that
can be built as long as there is one correct process that can
reach the rest of the correct processes via eventually timely
paths; the corresponding protocol requires a correct process
to send messages forever. Differently, one of the protocols
presented in [7] is communication-efficient (after some time
a single process has to send messages forever) while, as far
as the network behavior is concerned, it only requires that
each pair of correct processes be connected by fair lossy
links, and there is a correct process whose output links to
the rest of correct processes are eventually timely. This pro-
tocol is presented in Section 8.

The message pattern approach A totally different ap-
proach to build has been introduced in [17]. That ap-
proach does not rely on timing assumptions and timeouts.
It states a property on the message exchange pattern that,
when satisfied, allows to be implemented. The statement
of such a property involves the system parameters and .
Let us assume that each process regularly broadcasts

queries and, for each query, waits for the corresponding
responses. Given a query, a response that belongs to the
first responses to that query is said to be a winning
response. Otherwise, the response is a losing response
(then, that response is slow, lost or has never been sent
because its sender has crashed). It is shown in [20] that
can be built as soon as the following behavioral property is
satisfied: “There are a correct process and a set of
processes such that and eventually the response of
to each query issued by any is always a winning

response (until -possibly- the crash of).” When ,
this property becomes: “There is a link connecting two
processes that is never the slowest (in terms of transfer
delay) among all the links connecting these two processes
to the rest of the system.” A probabilistic analysis for the
case shows that such a behavioral property on the
message exchange pattern is practically always satisfied
[17]. A protocol based on that time-free message pattern
approach is presented in Section 7.

Combining both approaches This message pattern ap-
proach and the eventual timely link approaches cannot be
compared. Interestingly, the message pattern approach and
the eventual -source approach have been combined in [21].
This combination shows that can be implemented as soon
as there is a correct process such that there is a time af-
ter which there is a set of processes such that
and either (1) each time a process broadcasts a query,
it receives a winning response from , or (2) the link from
to is timely. As it can be seen, if only (1) is satisfied,

we obtain the message pattern assumption, while, if only
(2) is satisfied, we obtain the eventual -source assumption.
A even more general protocol based on weaker assumptions
has recently been designed in [8].
More generally, here, the important fact is that the mes-

sage pattern assumption and the timely link assumption are
combined at the “finest possible” granularity level, namely,
the link level, allowing thus the design of protocols with a
better assumption coverage [22].

5 The eventually synchronous assumption

5.1 The additional assumption

The first additional assumption that we consider to en-
rich the base system model in order to implement
an eventual leader service is a relatively strong assump-
tion as it considers that eventually the system has a syn-
chronous behavior. More precisely, that assumption is the
following [4, 6].

“There are a finite time and a bound , such
that after , the transmission delay of any mes-
sage is upper bounded by time units.”

It is important to notice that neither nor are a pri-
ori known, and they can never be explicitly known. The
time is called the Global Stabilization Time. It is im-
portant to notice that this assumption does not depend on
the system parameter . The corresponding system model is
consequently denoted .

5.2 The LFA protocol

Several protocols that builds an eventual leader service
in have been proposed. We present here
one of them that is particularly elegant. This algorithm, due
to Larrea, Fernandez and Arevalo [15], is based on the fol-
lowing simple idea: elect the correct process that has the
smallest pid. To that end, each process considers only
the processes with an identity such as can-
didates for being the eventual leader. The current leader
of (whose pid is kept in the local variable) is de-
fined as the process such that suspects all the processes

init: : default value;
; set to

task : repeat every time units:
(101) if) then : send ALIVE() to end if

task : when ALIVE is received from : % Here we always have %
(102) case) then set to
(103)) then ;
(104) set to ;
(105)
(106)) then skip
(107) end case

task : when expires:
(108) ;
(109) if then set to end if

task : when is invoked by the upper layer:
(110) let ;
(111) return

Figure 1. The LFA protocol [15] (code for)

to have crashed. It follows, that when a
process suspects all the processes , it
considers it is the leader. When this occurs, sends period-
ically an ALIVE() message to each process with a higher
identity (i.e.,) to inform them it is alive. A process
suspect another process to have crashed by using a local
timer (denoted) and a corresponding timeout value
(kept in).
It is of course possible that, before the global stabiliza-

tion time occurs, a process receives a message from
a process , such that . This means that
suspected (maybe erroneously) to have crashed. In that
case, in order to correct its mistake, locally demotes its
current leader and considers instead as its new
leader. The cause of such a mistake by is due to the fact
that did not wait a long enough period before suspecting
. So, when this happens, in order to reduce the possibility

of a future mistake with respect to (i.e., expires
too early while is ’s current leader), increases the
corresponding timeout period .
The corresponding protocol is described in Figure 1. It is

self-explanatory (is a positive value that can be arbitrary).

5.3 Short discussion

A correctness proof of this protocol can be found in [15]:
in all the runs of the system that satisfy the eventual syn-
chrony assumption, there is a time after which all the alive
processes have forever the same leader (that is an alive pro-
cess). Actually, a more precise look into the way the pro-
tocol works shows a weaker synchrony and reliability as-

sumption is sufficient, namely, it is sufficient that only the
output links of the correct process with the smallest identity
are eventually reliable and timely.
The protocol, that is not counter-based, requires a single

type of message, and each message has to carry only the
pid of its sender, which means that its size is . It is
easy to see that after an eventual leader has been elected,
that process only sends messages forever. It follows that
the protocol is communication optimal (as the process that
is eventually elected as the single common leader has to
forever indicate to the other processes that it is still alive).

6 The eventual -source assumption

6.1 The additional assumption

This section considers a synchrony assumption weaker
than the previous one [2].That assumption called “ -
source” is the following.

“There are a finite time , a correct process ,
a bound , and output channels of , such that,
after , any message sent by on one of these
channels is received at most units of time after
it has been sent (such a channel is eventually -
timely).”

Let us notice that it is not required that the destination pro-
cesses associated with the channels involved in the -
source be correct. Some -or all- of them can be faulty. This
means that, as soon as processes have crashed, any remain-
ing process trivially becomes a -source. Let -

source] denote a distributed system satisfying this syn-
chrony assumption.

6.2 The ADFT protocol

The -source assumption has been introduced by Aguil-
era, Delporte-Gallet, Fauconnier and Toueg in [2] where
they also present an eventual leader election protocol for

-source]. Its code for process is described in
Figure 2. Each process manages an array .
This array is such that counts the number of suspi-
cions of as known by . It is managed in such a way that
it remains boundedwhen is a correct -source, while it
increases without bound when crashes. The leader is the
process whose counter has the smallest value (task).
The key of the protocol is the management of each

counter , i.e., the way such a counter is (or not)
increased. To that end, each process manages an array

as follows (task): keeps track of
the set of processes that currently suspect to have crashed
(task). When this set contains processes, con-
siders there are enough processes that suspect in order to
increase . When this occurs resets
to .
As already indicated, the -source assumption allows

showing that every process that crashes will be forever
suspected (i.e., will never stop increasing), while

remains bounded if is a -source. Conse-
quently, there is at least one entry of that remains
bounded and all the entries of that remain bounded
correspond to correct processes. The process that is elected
by is the process it suspects the less (as counted in

).
Process identities are used to do a tie-break when there

are several processes that are the less suspected. being a
set of pairs, the function returns the smallest pair
of . Let us recall that iff

(this is the classical lexicographical ordering).

6.3 Short discussion

A proof of the protocol can be found in [2]. It is easy
to see an y correct process sends forever message. So, this
protocol is not communication efficient. Moreover, some
variables can increase forever.

7 The eventual message pattern assumption

This section presents a behavioral time-free assumption
that allows implementing an eventual leader. This assump-
tion is due to Mostefaoui, Mourgaya and Raynal [17].

7.1 The additional assumption

Query-response mechanism For our purpose, we con-
sider that each process is provided with a query-response
mechanism. Such a query-response mechanism can eas-
ily be implemented in a time-free distributed asynchronous
system. More specifically, any process can broadcast a
QUERY ALIVE() message and then wait for corresponding
RESPONSE() messages from processes (these are the
winning responses for that query). The other RESPONSE()
messages associated with a query, if any, are systematically
discarded (these are the losing responses for that query).
A query issued by is terminated if has received the

corresponding responses it was waiting for. We
assume that a process issues a new query only when the
previous one has terminated. Without loss of generality,
the response from a process to its own queries is assumed
to always arrive among the first responses it is
waiting for. Moreover, QUERY ALIVE() and RESPONSE()
are assumed to be appropriately tagged in order not to
confuse RESPONSE() messages corresponding to different
QUERY ALIVE() messages.

The time-free assumption That assumption, denoted
, is the following [17].

“There are a time , a correct process and a set
of processes (, and are not known

in advance) such that, after , each process
obtains a winning response from to each of

its queries (until possibly crashes).”

As we can see, this assumption imposes no constraint on
message transfer delays; those can increase forever. It is
not based on a constraint related to physical time, but on a
logical time notion, namely, a message delivery order. The
corresponding system model is denoted .

7.2 The MMRT protocol

The following protocol (due to Mostefaoui, Mourgaya,
Raynal and Travers [18]) is made up of three tasks executed
by each process. Its underlying principles are relatively
simple. It is based on the same heuristic as previously: each
process elects as leader the process it suspects the less. To
implement this idea (as in the protocol described in Figure
2) a process manages an array in such a way
that counts the number of times suspects to
have crashed.
The aim of the tasks and is to manage the ar-

ray . To benefit from the property, the task
uses the underlying query-response mechanism. Periodi-
cally, each issues a query and waits for the corre-
sponding winning responses (lines 301-302). The response

init:
: ; set to ;

;

task : repeat periodically every time units:
(201) : send ALIVE to

task : when ALIVE is received from :
(202) : ;
(203) reset to

task : when expires:
(204) ;
(205) : send SUSPECT to ;
(206) reset to

task : when SUSPECT is received from :
(207) ;
(208) if then
(209) ;
(210) end if

task : when leader() is invoked by the upper layer:
(211) let ;
(212) return

Figure 2. The ADFT protocol [2] (code for process)

from carries the set of processes that sent winning re-
sponses to its last query (this set is denoted .
Then, according to the sets it has received,
updates accordingly its array.

The QUERY ALIVE() messages implementing the query-
response mechanism are used as a gossiping mechanism to
disseminate the value of the array of each process
. This gossiping mechanism ensures that all the correct

processes eventually elect the same leader.

7.3 Short discussion

A proof of this protocol can be found in [18]. It is im-
portant to observe that query-response “challenges” issued
by different processes are independent one from the other.
This has an interesting consequence, namely, a process can
introduce an arbitrary delay before issuing a query-response
challenge (line 301). Therefore, each process can, indepen-
dently of the other processes, dynamically define and set
such a delay to match the bandwidth that failure detector
messages are allowed to use. As the protocol based on the
-source assumption (Figure 2), the protocol based on the

assumption requires that each correct process sends
messages forever (query-response mechanism).

8 Weak assumptions on initial knowledge,
communication reliability and synchrony

All the previous protocols implicitly or explicitly assume
that each process knows and the identity of the other pro-
cesses. So, one could ask whether these knowledge assump-
tions are necessary to implement an eventual leader service.
This section shows that these implicit assumptions are not
necessary. The ideas developed in the following have been
introduced by Arevalo, Fernandez, Jimenez and Raynal in
[7, 13].

8.1 A set of weak assumptions

The assumptions investigated in [7] are the following
ones.

Initial knowledge of processes. A process knows ini-
tially neither , nor , nor the identities of the other
processes. It only knows its own identity, and the fact
that the identities are totally ordered and no two pro-
cesses have the same identity.

Communication reliability. Each pair of correct pro-
cesses is connected by a pair of typed fair lossy chan-
nels2. Moreover, there is a correct process whose out-

2A typed fair lossy channel is a channel such that, given an y message
type, if it is used to transmit an infinite number of messages of that type,

init: ; ;

task :
repeat

(301) : send QUERY ALIVE to ;
(302) wait until corresponding RESPONSE received from proc. ;
(303) let of all the received at line 302;
(304) let ;
(305) : ;
(306) let the set of processes from which received a RESPONSE at line 302

end repeat

task : upon reception of QUERY ALIVE from :
(307) : ;
(308) send RESPONSE to

task : when leader() is invoked by the upper layer:
(309) let ;
(310) return

Figure 3. The MMRT protocol [18] (code for process)

put channels to every correct process are eventually
timely.

Since processes do not know the identity of the other pro-
cesses, they cannot send point-to-point message to them.
Instead, the processes are provided with a broadcast prim-
itive that allows each process to simultaneously send the
same message to the rest of processes in the system (e.g.,
like in Ethernet networks, radio networks, or IP-multicast).
It is nevertheless possible, depending on the quality of the
connectivity (link behavior) between and each process,
that the message is received in a timely manner by some
processes, asynchronously by other processes, and not at all
by another set of processes.
Let denote an asynchronous system

whose runs satisfy the two previous assumptions.

8.2 The FJR protocol

A protocol that elects an eventual leader in
is described in Figure 4. This proto-

col is due to Fernandez, Jimenez and Raynal [7]. The code
of each process is made up of two tasks.

The task That task is where, when it considers it is the
leader, a process sends messages in order not to be erro-
neously suspected by the other processes (line 401). More-
over, if, after being a leader, considers it is no longer a
it delivers an infinite number of these messages. This allows it to lose an
infinite number of messages. As an example, let the infinite sequence of
messages be the set of all the integers. If the channel lose all odd numbers
and deliver all even numbers it is fair. From a practical point of view,
this means that a simple retransmission mechanism allows transmitting any
message in a reliable way.

leader, it broadcasts a message to indicate that it considers
locally it is no longer leader (line 404). A message sent with
a tag field equal to heartbeat (line 403) is called a heartbeat
message; similarly, a message sent with a tag field equal to
stop leader (line 404) is called a stop leader message.

Local variables Each process maintains the following
local variables.

: set containing all the process ids that is
aware of.

: timer used by to check if the link from
is timely. The current value of is used as
the corresponding timeout value; it is increased each
time expires.

is a set containing the ids of all the processes
such that has expired since its last reset-

ting; is a set containing the ids of the pro-
cesses whose timer has to be reset.

has the same meaning as in the previous pro-
tocols, namely, to ’s knowledge, it represents the
number of times that has been suspected. It is man-
aged in such a way that only can increase ;
it does it when it receives a message from a process
indicating that suspects it. Moreover, each message
broadcast by includes in order each other
process updates .

The set contains the ids of the processes
that compete to become the final common leader, from
’s point of view. So, we always have

. Moreover, we also always have

Init: allocate ; ;
; ;

———————————————————————————————————————
Task :

repeat forever
;

(401) while leader() = do every time units
(402) if then ; end if;
(403) broadcast heartbeat

end while;
(404) if then broadcast stop leader end if

end repeat
———————————————————————————————————————
Task :
when leader() is invoked:

let ;
return

when expires:
(405) ; broadcast suspicion ;
(406)

when is received with :
(407) if then ;
(408) allocate and ;
(409) ; ;
(410) allocate and ; end if;
(411) ;
(412) if heartbeat
(413) then set to ; end if;
(414) if stop leader
(415) then ;
(416) stop ; end if;
(417) if suspicion then end if

Figure 4. The FJR protocol (code for)

. This ensures that a leader election is not
missed since is always locally competing to become
the leader.

The local counter registers the number of distinct
periods during which considered itself the leader. A
period starts when leader becomes true, and
finishes when thereafter it becomes false (lines 401-
404).

The counter contains the greatest
value ever received in a stop leader message sent

by . This counter is used by to take into account
a heartbeat message (line 412) or a stop leader mes-
sage (line 414) sent by , only if no “more recent”
stop leader message has been received (the notion of
“more recent” is with respect to the value of asso-
ciated with and carried by each message).

Messages Each message has five
fields whose meaning is the following:

The field can take three values: heartbeat,
stop leader or suspicion that defines the type of the
message. (Similarly to the previous cases, a message
tagged suspicion is called a suspicion message. Such
a message is sent only at line 405.)

The second field contains the id of the message
sender.

is the value of when sent that mes-
sage. Let us observe that the value of can be
disseminated only by .

means that suspects to be faulty. Such
a suspicion is due to a timer expiration that occurs at
line 405. (Let us notice that the field of a mes-
sage that is not a suspicion message is always equal to
.)

: this field contains the value of the period counter
of the sender when it sent the message. (It is

set to 0 in suspicion messages.)

The set of messages tagged heartbeat or stop leader de-
fines a single type of message. Differently, there are types
of messages tagged suspicion: each pair (suspicion,)
defines a type.

Process behavior When a timer expires,
broadcasts a message indicating it suspects (line 405),
and accordingly suppresses from . Together
with line 416, this allows all the crashed processes to even-
tually disappear from . When receives a

message, it allocates new
local variables if that message is the first it receives from
(lines 407-410); also updates (line 411). Then,
the processing of the message depends on its tag.

The message is a heartbeat message (lines 412-413).
If it is not an old message (this is checked with the
test), resets the cor-
responding timer and adds to .

The message is a stop leader message (lines 414-416).
If it is not an old message, updates its local counter

, stops the corresponding timer
and suppresses from .

The message is a suspicion message (lines 417). If
the suspicion concerns , it increases accordingly

.

8.3 Short discussion

The previous protocol is communication efficient (after
some finite time a single process sends messages forever).
Moreover, no messages carry values that increase without
bound: be a run finite or infinite, the counters carried by
the messages take a bounded number of values (the bound
depends on the run).

9 Conclusion

The aim of this invited paper was to introduce the readers
to issues one has to address when one has has to build re-
liable services on top of unreliable asynchronous systems.
The paper focused on the eventual leader service. It has
been shown that an asynchronous system has to satisfy ad-
ditional synchrony assumptions in order non-trivial services
can be built on top it. Several assumptions that allow imple-
menting an eventual leader service have been visited and
corresponding protocols presented. For more details on
these assumptions or the protocols, the interested reader can
consult the original papers that have been cited.

Acknowledgments

I would like to thank Ernesto Jimenez, Antonio Fer-
nandez, Achour Mostefaoui, Eric Mourgaya and Corentin
Travers for interesting discussions on the eventual leader
election problem.

References

[1] Aguilera M.K., Delporte-Gallet C., Fauconnier H. and
Toueg S., On Implementing Omega with Weak Reliabil-
ity and Synchrony Assumptions. 22th ACM Symposium
on Principles of Distributed Computing (PODC’03), ACM
Press, pp. 306-314, 2003.

[2] Aguilera M.K., Delporte-Gallet C., Fauconnier H. and
Toueg S., Communication Efficient Leader Election and
Consensus with Limited Link Synchrony. 23th ACM Sym-
posium on Principles of Distributed Computing (PODC’04),
ACM Press, pp. 328-337, 2004.

[3] Anceaume E., Fernández A., Mostefaoui A., Neiger G. and
Raynal M., Necessary and Sufficient Condition for Trans-
forming Limited Accuracy Failure Detectors. Journal of
Computer and System Sciences, 68:123-133, 2004.

[4] Chandra T.D. and Toueg S., Unreliable Failure Detectors
for Reliable Distributed Systems. Journal of the ACM,
43(2):225-267, 1996.

[5] Chandra T.D., Hadzilacos V. and Toueg S., The Weak-
est Failure Detector for Solving Consensus. Journal of the
ACM, 43(4):685-722, 1996.

[6] Dwork C., Lynch N. and Stockmeyer L., Consensus in
the Presence of Partial Synchrony. Journal of the ACM,
35(2):288-323, 1988.

[7] Fernández A., Jiménez E. and Raynal M., Eventual Leader
Election with Weak Assumptions on Initial Knowledge,
Communication Reliability, and Synchrony. Proc. Int’l
IEEE conference on Dependable Systems and Networks
(DSN’06), IEEE Computer Society Press, pp. 166-175,
Philadelphia (PA), 2006.

[8] Fernández A. and Raynal M., From an intermittent rotating
star to a leader. Submitted to publication, 2007.

[9] Fischer M.J., Lynch N. and Paterson M.S., Impossibility of
Distributed Consensus with One Faulty Process. Journal of
the ACM, 32(2):374-382, 1985.

[10] Guerraoui R., Indulgent Algorithms. 19th ACM Symposium
on Principles of Distributed Computing, (PODC’00), ACM
Press, pp. 289-298, 2000.

[11] Guerraoui R. and Raynal M., The Information Structure
of Indulgent Consensus. IEEE Transactions on Computers,
53(4):453-466, 2004.

[12] Hutle M., Malkhi D., Schmid U. and Zhou L., Chasing
the weakest system model for implementing and consen-
sus. Brief Annoucement, Proc. 8th Int’l Symp. on Stabiliza-
tion, Safety and Security in Distributed Systems (SSS’06),
Springer-Verlag LNCS #4280, pp. 576-577, 2006.

[13] Jiménez E., Arévalo S. and Fernández A., Implementing un-
reliable failure detectors with unknown membership. Infor-
mation Processing Letters, 100(2):60-63, 2006.

[14] Lamport L., The Part-Time Parliament. ACM Transactions
on Computer Systems, 16(2):133-169, 1998.

[15] Larrea M., Fernández A. and Arévalo S., Optimal Imple-
mentation of the Weakest Failure Detector for Solving Con-
sensus. Proc. 19th IEEE Int’l Symposium on Reliable Dis-
tributed Systems (SRDS’00), IEEE Computer Society Press,
pp. 52-60, 2000.

[16] Malkhi D., Oprea F. and Zhou L., Meets Paxos: Leader
Election and Stability without Eventual Timely Links. Proc.
19th Int’l Symposium on Distributed Computing (DISC’05),
Springer Verlag LNCS #3724, pp. 199-213, 2005.

[17] Mostéfaoui A., Mourgaya E., and Raynal M., Asynchronous
Implementation of Failure Detectors. Proc. Int’l IEEE Con-
ference on Dependable Systems and Networks (DSN’03),
IEEE Computer Society Press, pp. 351-360, 2003.

[18] Mostéfaoui A., Mourgaya E., Raynal M. and Travers C., A
Time-free Assumption to Implement Eventual Leadership.
Parallel Processing letters, 16(2):189-208, 2006.

[19] Mostéfaoui A. and Raynal M., Leader-Based Consensus.
Parallel Processing Letters, 11(1):95-107, 2000.

[20] Mostéfaoui A., Raynal M. and Travers C., Crash-resilient
Time-free Eventual Leadership. Proc. 23th Int’l IEEE Sym-
posium on Reliable Distributed Systems (SRDS’04), IEEE
Computer Society Press, pp. 208-217, 2004.

[21] Mostéfaoui A., Raynal M. and Travers C., Time-free and
timer-based assumptions can be combined to get eventual
leadership. IEEE Transactions on Parallel and Distributed
Systems, 17(7):656-666, 2006.

[22] Powell D., Failure Mode Assumptions and Assumption
Coverage. Proc. of the 22nd Int’l Symposium on Fault-
Tolerant Computing (FTCS-22), IEEE Computer Society
Press, pp.386-395,Boston (MA), 1992.

[23] Raynal M., A Short Introduction to Failure Detectors for
Asynchronous Distributed Systems. ACM SIGACT News,
Distributed Computing Column, 36(1):53-70, 2005.

