
Using BIP for Modeling and Verification of Networked Systems –

A Case Study on TinyOS-based Networks

Ananda Basu, Laurent Mounier, Marc Poulhiès, Jacques Pulou, Joseph Sifakis

{basu, mounier, poulhies, sifakis}@imag.fr, jacques.pulou@orange-ftgroup.com

Abstract

We apply a model construction methodology to TinyOS-

based networks, using the Behavior-Interaction-Priority

(BIP) component framework. The methodology consists in

building the model of a node as the composition of a model

extracted from a nesC program describing the application,

and models of TinyOS components. Models for networks

are obtained by composition of models for nodes by using

BIP connectors implementing different types of radio chan-

nels. This opens the way for enhanced analysis and early

error detection by using verification techniques.

1. Introduction

Wireless sensor networks are complex component-

based systems with rich dynamics subject to strong extra-

functional requirements. Their design involves the compo-

sition of a variety of hardware and software components de-

veloped with different methodologies and tools. We have a

limited understanding on how specific component features

impact the global behavior. To cope with complexity and

enhance understanding, it is important to consider wireless

sensor networks as the composition of a relatively small set

of functions, services and components by using incremen-

tal structuring principles. The main obstacle for this is the

lack of modeling frameworks encompassing heterogeneity.

Most simulation environments use simulation software built

in a more or less ad hoc manner, by integrating the ap-

plication code in specific platforms [7, 6, 10, 8, 5]. They

can be useful for debugging purposes but they are not ade-

quate for a more thorough exploration of a network’s non-

deterministic dynamics.

We apply to TinyOS-based networks, a model con-

struction methodology for building heterogeneous real-

time systems. This opens the way for enhanced analy-

sis and early error detection by using verifications tech-

niques. The methodology is not specific to TinyOS, and

we believe, can be adapted to networked systems, in gen-

eral. It uses the Behavior-Interaction-Priority (BIP) com-

ponent framework [3]. BIP consists of a language for

modeling component-based systems and associated execu-

tion/simulation and verification tools. It has sound theo-

retical foundations based on operational semantics imple-

mented by a dedicated execution/simulation platform.

For a given sensor node, a global BIP model is built by

composing BIP models for its application software and for

TinyOS. The latter is obtained by composing controllers for

the execution of tasks, events, radio and hardware devices.

The models for application software are generated automat-

ically from nesC programs by a translator (shown in fig-

ure 1) which takes annotated nesC code as input and gen-

erates the corresponding BIP components and connectors.

BIP models can be analyzed by using powerful state space

exploration techniques offered by the IF toolset [4].

Translator BIP Engine

C++ code
nesC

BIP 

tool-chain
BIP Model

(Appln+TinyOS)

Library of 

TinyOS

components 

in BIP

IF Platform

IF

Figure 1. The modeling flow.

The methodology presented is characterized as follows:

• A global model for the network is built by composition

of BIP components modeling the application software as

well as operating system and radio features. This is a main

difference with existing simulation approaches, directly us-

ing TinyOS and C code generated by the nesC compiler.

The BIP model for the TinyOS is an abstract machine driv-

ing the execution of the BIP model, obtained by translation

of the application software written in nesC.

• A significant difference with existing simulation

approaches, is that the obtained BIP models are non-

deterministic and fully characterize the behavior of the

wireless sensor network, independent of the used platform.

Furthermore, these models have a well-defined notion of

state. They can be verified by using state space exploration

techniques e.g., model-checking.

• Another important difference is incremental model

construction of BIP models [9]. Incrementality means that

the global model is obtained by progressively composing its



atomic components. This allows preservation of the struc-

ture through translation into BIP. That is, it is possible to

identify in the global model all its atomic components and

their interactions. This allows in particular, to study the im-

pact of changes of a component’s behavior or structure on

the global behavior and its properties.

The paper makes the following three main contributions.

• It provides a methodology for building global and

faithful models for heterogeneous networked systems.

• It allows a better understanding of the interplay be-

tween platform-dependent and platform-independent fea-

tures. The model of a node is the composition of an abstract

machine modeling TinyOS, and a system-oriented model of

its application software.

• It provides a single framework supporting both behav-

ioral verification and simulation of networked systems. A

comparison on common benchmarks with state-of-the-art

simulation environments, shows that this is possible with-

out significant performance degradation.

We assume the reader is familiar with nesC. Informations

about BIP can be found in [3]. An extended version of this

paper can be found in a technical report [1].

The paper is structured as follows. Section 2 describes

the modeling principle for nesC programs. Section 3 de-

scribes the modeling principle for TinyOS. The global

model construction is explained in Section 4, as the com-

position between application and TinyOS components. We

present experimental results for three examples in Section 5

and conclude in Section 6.

2. Modeling user-defined nesC components

We use a translator that takes annotated non re-entrant

nesC code as input and generates the corresponding BIP

components and connectors. Annotations are used to ex-

tract the structure characterized by the set of atomic com-

ponents and the connectors between them.

The method consists in transforming implementations of

the Commands, Events and Tasks in a nesC program into

atomic BIP components representing Command handlers,

Event handlers, and Task handlers, respectively. The mod-

eling of the behavior of the atomic components is left to the

user. The non re-entrancy limitation can be overcome by us-

ing richer models in BIP. It is possible to detect re-entrancy

in BIP models by using verification tools.

A generic BIP model for atomic components is shown

in figure 2. The interface consists of a set of ports with

associated types. The behavior is specified by the control

states IDLE, SUSP and EXE with transitions between them

labeled by ports corresponding to respective actions. EXE

is a macro state and is further decomposed into states and

transitions depending on the specific behavior of the partic-

ular component.

EXE

beg

call
ret

IDLE beg fin

post

pre

res

sigack

SUSP

resprefin

call ret post

ID

sig ack

id t

Figure 2. A nesC module in BIP.

The ports are classified in two groups:

• The first consists of the ports beg, fin, pre and res la-

beling the transitions for beginning, finishing, preempting

and resuming execution of a component. These ports may

be used in interactions between the component and TinyOS

or in interactions implementing call/return mechanisms for

Command handlers. They are incomplete [3] as they require

triggering from other components.

• The second consists of the ports call, ret, sig, ack, post

labeling the transitions for call and return of commands, sig-

naling and acknowledgment of events and posting of tasks.

The ports call and sig are of type complete [3] as they are

triggers of broadcast connectors.

A generated component also contains, in addition to

specific local variables, generic variables representing its

unique identifier (ID), the identifier of a callee (id) and the

identifier of a posted Task (t).

3. Modeling TinyOS in BIP

Our TinyOS model is the composition of two sets of

components: 1) schedulers for Events and Tasks, 2) mod-

els for hardware components representing Timers, Sensors

and Radio.

• Modeling Scheduler : We use two schedulers to model

the two-level scheduling mechanism of TinyOS. The Event

Scheduler (figure 3(a)) is responsible for the management

of events generated by hardware components. When a

hardware-generated event e is received through the port

sig, the scheduler first preempts any running component

by synchronizing through the port pre and stacks the id’s

of the preempted components received . Then, it triggers the

execution of the Event handlers identified by e by broad-

casting e through the port beg. From state BUSY1, the

Event Scheduler can either be triggered by a new hardware-

generated signal (port sig), or by a finish notification (port

fin). In the first case, it preempts the currently running

component, in the second case, depending on the state of

the stack (empty or not), it goes to IDLE or to BUSY2 from

which it resumes the last preempted component.

The Task Scheduler (figure 3(b)) receive new task post-

ings through its port post and treats the tasks in FIFO order.

It can start a new task only if the Event Scheduler is IDLE.



BUSY FREE

post

fifo.push(t) fin

beg

[fifo≠φ]

fifo.pop

beg postfin

t

post

fifo.push(t)

fifo

IDLE ACCEPT
sig

fin

[stack≠φ]

id:=stack.pop

eCount--

beg sigfin

e

BUSY1
PREEM

PT

beg

eCount++

sig
pre

stack.push(id)

pre res

id

BUSY2

res

[eCount=0]

fin

[stack=φ]

eCount--

res

[eCount>0]

eCount

stack

id

(a) (b)

Figure 3. Event(a) and Task(b) Schedulers.

• Timers, Sensors and Radio controllers are modeled as

BIP components in a similar way.

4. The global architecture

In this section we describe the composition of the BIP

components using connectors, to build the model of a node

as well as the model of the network by specifying interac-

tions between the nodes.

1) Interactions within a node : We explain the principles

of construction of BIP model for nodes by using two sets of

connectors.

• The first set models interactions between nesC com-

ponents for call statements and signal statements issued by

software. A typical call statement will generate a Call con-

nector and a set of Returni connectors as shown in fig-

ure 4. The Call connector is a broadcast connecting the call

port of the caller (c) to the beg ports of the possible callees

(p, q, r). The component c may call either p and q jointly

leading to the interaction (c.call, p.beg, q.beg),

or call r leading to the interaction (c.call, r.beg).

The selection of one of these interactions is by using ac-

tivation conditions involving comparisons between callee

identifiers (ID) and the calling identifier (id) (not shown

in figure 4).

call

ret

beg fin

beg fin

beg fin

p

q

r

c

Return1

Call

Return2

Figure 4. Connectors for a nesC call.

The Returni connectors synchronize the fin ports of the

callees to the ret port of the caller.

The signal statements representing software event sig-

nalling are handled exactly in the same manner as the call

statements explained above. However, signals representing

hardware events are treated separately and are processed by

the event scheduler.

• The second set of connectors deal with interactions be-

tween BIP components for the application and BIP compo-

nents for TinyOS (see figure 5). The connectors TBegin and

prei resi fini
begibegi fini prei resi

beg1 fin1
pre1 res1

Tasks handler

begfinpre res

Event Scheduler

beg fin

Task 

Scheduler

pre1 res1

Command 

handler

sig1

Signal
1

sig

T
B
eg
in

E
B
eg
in

Preempt

Resume

T
F
in
is
h
1

E
F
in
is
h 1

Timer/

Sensor

T
F
in
is
h
i

pre1 res1 fin1
beg1

Event handler

prei resi

sigi Signa
l i

E
F
in
is
h
i

U
se

r 
d

ef
in

ed
 

n
es

C

co
m

p
o
n

en
ts

T
in

y
O

S

co
m

p
o
n

en
ts

Figure 5. The global architecture in BIP.

EBegin deal respectively with interactions between Tasks

handlers/Task Scheduler and Event handlers/Event Sched-

uler. The connectors TFinishi and EFinishi are used by

Tasks and Event handlers to notify their completion. The

Preempt connector triggers preemption of the application

components. The Resume connector is used to resume ex-

ecution of the last suspended component. The connectors

Signali are used to signal any hardware-generated events.

Task posting is through connectors between the port post

of the Task Scheduler and the ports post of software com-

ponents (not shown in the figure).

2) Modeling Radio Links : Radio links are modelled as

BIP connectors linking the BIP components modelling ra-

dio controllers. These components have a broadcast port

to send data and a listen port to receive data. We consider

networks with static topology and use only one connector

per broadcast port. This connector links the broadcast port

with all the receivers, through their listen port. For each

connector, activation conditions depending on the distance

between sender and receiver are used to define the feasi-

ble interactions. More complex activation conditions allow

modelling lossy links.

5. Experimental results

We consider 3 examples: BlinkTask, SenseToLeds and

SenderReceiver.

The first example illustrates the utilization of verifica-

tion techniques. The two others compare our method to

specific state-of-the-art simulation methods. One would ex-

pect that the use of a general purpose modeling technique

instead of a specific one, well-tuned for a particular execu-

tion platform, would have a strongly negative impact on per-

formance. Furthermore, the use of rich (non-deterministic)

models instead of deterministic ones, could also have a sim-

ilar effect. Experimental results show no significant perfor-

mance degradation in comparison with [5] for example.

BlinkTask[2] describes a node with a variable state rep-

resenting the state of its LED. This variable is shared be-

tween the Task processing, which reads it, and the Event

handler Timer.fired(), which modifies it. For BlinkTask we

generated a timed BIP model with 4 user-defined atomic

components, 3 TinyOS components (2 schedulers and 1



Timer) and 11 connectors. Exhaustive state space explo-

ration allows detecting error states where a new timer in-

terrupt arrives while the Task processing is still being exe-

cuted. Traces leading to such error states can be obtained

by modeling an Observer component in BIP, keeping track

of the sequence of interactions of the node. As an exam-

ple, the analyzed state graph has 28,701 states and 46,197

transitions for the following execution time intervals: Timer

period [50, 50], Timer.fired() [2, 9], Leds.redOn() [2, 7],
Leds.redOff() [2, 7], processing() [20, 32]. The selected val-

ues ensure a correct behavior of the example. However,

changing the timer period to values less than [48, 48] leads

to error states as detected by the Observer.

The second example is SenseToLeds[2] which is a node

sampling data from a photo Sensor and displaying them in

the LEDs. Its nesC code consists of 4 components. The

translation to BIP produces 8 user-defined components, 4

TinyOS components (2 schedulers, 1 Timer and 1 Sensor),

and 21 connectors.

We consider a network of 250 SenseToLeds nodes with-

out radio links. For a virtual run time of 300 seconds, con-

sidering a 4 Hz timer on each node for the network, the

simulation takes 600 seconds on a standard desktop com-

puter, which stays reasonable. As expected, the simulation

time increases linearly with the number of nodes.

The third example SenderReceiver is a network of

senders and receivers, with lossless channels and static

topology. Each sender is connected to a fixed number of re-

ceivers y. Each receiver has a unique sender (no collision).

The sender nodes execute the CntToLedsAndRfm[2] nesC

program, and the receiver nodes execute the RfmToLeds[2]

program. Figure 6 shows real execution times for 300 vir-

tual seconds considering a 4 Hz timer on each node, as a

function of the number of senders x and the number of re-

ceivers per sender y.

Figure 6. SenderReceiver example.

6. Conclusion

The paper applies to TinyOS, a methodology for model-

ing and verification of networked systems. The methodol-

ogy is general and can be applied to building global models

of heterogeneous systems. It consists in modeling the exe-

cution platform as an abstract machine driving the execution

of the application software. For this, a formalization of the

language in which application software is written must be

provided, in terms of the primitives offered by the platform.

This is certainly not an easy task. The formalization should

be made at the right abstraction level. Computational gran-

ularity should be chosen so as to include in the model all

the events which are relevant for the properties to be veri-

fied. Furthermore, to keep model complexity low, it should

ignore computation sequences not involving such events.

The model generation methodology applied to nesC, can

be adapted to any language used for programming applica-

tions. Its parser can be adequately engineered to identify in

the source code, constructs generating relevant events and

determine computation granularity. This can be used for

(compositionally) generating BIP code.

We spent two man-months for developing the method-

ology for TinyOS. For other platforms, much more effort

would be needed for feature componentization at the right

abstraction level. Such an investment seems to be the only

way to overcome current limitations of model-based design

and to design systems of guaranteed quality.

References

[1] http://www-verimag.imag.fr/index.php?page=techrep-list.
[2] http://www.tinyos.net/.
[3] A. Basu, M. Bozga, and J. Sifakis. Modeling Heterogeneous

Real-Time Components in BIP. In SEFM06, IEEE Com-

puter Society.
[4] M. Bozga, S. Graf, and L. Mounier. IF-2.0: A Vali-

dation Environment for Component-Based Real-Time Sys-

tems. CAV02.
[5] E. A. L. Elaine Cheong and Y. Zhao. Joint modeling and de-

sign of wireless networks and sensor node software. Techni-

cal Report UCB/EECS-2006-150, EECS Department, Uni-

versity of California, Berkeley, November 2006.
[6] L. Girod, T. Stathopoulos, N. Ramanathan, J. Elson, D. Es-

trin, E. Osterweil, and T. Schoellhammer. A system for sim-

ulation, emulation and deployement of heterogeneous sen-

sor networks. In 2nd International Conference on Embedded

Networked Sensor Systems. ACM Press, 2004.
[7] P. Levis, N. Lee, M. Welsh, and D. Culler. Tossim: accu-

rate and scalable simulation of entire TinyOS applications.

In SenSys ’03: 1st International Conference on Embedded

networked sensor systems, pages 126–137. ACM Press.
[8] J. Polley, D. Blazakis, J. McGee, D. Rusk, and J. S. Baras.

ATEMU: A Fine-grained Sensor Network Simulator. In Pro-

ceedings of SECON, 2004.
[9] J. Sifakis. A framework for component-based construction.

In SEFM05, pages 293-300, pages 293–300. IEEE Com-

puter Society.
[10] B. L. Titzer, D. K. Lee, and J. Palsberg. Avrora: Scalable

Sensor Network Simulation with Precise Timing. In IPSN

05, 2005.


