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Abstract 

QSM is a multicast engine designed to support a 

style of distributed programming in which application 

objects are replicated among clients and updated via 

multicast. The model requires platforms that scale in 

dimensions previously unexplored; in particular, to 

large numbers of multicast groups. Prior systems we-

ren’t optimized for such scenarios and can’t take ad-

vantage of regular group overlap patterns, a key fea-

ture of our application domain. Furthermore, little is 

known about performance and scalability of such sys-

tems in modern managed environments. We shed light 

on these issues and offer architectural insights based 

on our experience building QSM. 

1. Introduction 

Web applications are becoming increasingly dy-

namic: users expect live content powered by real time 

data that can be modified, and demand a high-quality 

multimedia experience. To a degree these are opposing 

goals: peer-to-peer streaming systems are optimized to 

move data one-way; interactive client-server systems 

don’t scale as well. Reliable multicast is a useful third 

option: instead of storing content on servers, we repli-

cate it across clients and multicast updates between 

them in a peer-to-peer manner. Not every application 

can be built this way, but the model is broadly applica-

ble; in particular, it is a good fit for interactive “ma-

shups” of the sort shown on Figure 1. Each application 

object, such as a shared desktop or a text on the desk-

top, has its data replicated among all of its clients (the 

processes displaying it), which form a multicast group.  

In [22], we described a general programming 

model based on this approach. Here, we focus on how 

to implement such systems. The key element of the 

platform is a multicast engine: most objects either have 

replicated state, or are driven by a stream of updates. 

Reliability is important, but weak guarantees are often 

sufficient: one rarely needs atomic transactions or con-

sensus. Total ordering can be avoided: often updates 

originate at one or a few sources, and portions of ob-

jects can be locked prior to updating via separate lock-

ing facilities. More importantly, one needs high stream-

ing bandwidth, low CPU footprint, and the ability to 

support large numbers of users, and large numbers of 

multicast instances. The last factor is important: each 

object could be accessed by a different group of 

clients, and so it needs its “own” separate instance of a 

multicast protocol. 

Multicast groups corresponding to different ob-

jects often overlap in regular ways.  To see this, con-

sider airplane A, on a spatial desktop X of the sort 

shown on Figure 1. When the user opens X, the user 

can also see A. The group of X’s clients is thus a subset 

of A’s clients. Overlap occurs also if objects related to 

common topics are used by people with common inter-

est. Furthermore, in [28] we show that even if objects 

are used at random, we can often partition them into a 

small number of subsets such that groups in each set 

overlap hierarchically. Regularities in group overlap 

occur naturally in our application domain. As we shall 

demonstrate, they could be leveraged to amortize over-

head across protocol instances.  

In the work reported here, we focus on enterprise 

computing environments: centers with thousands of 

commodity PCs running Microsoft Windows and 

communicating on a shared high-speed LAN. While 

our broader vision can be applied in WAN scenarios, 

the path to broad adoption of the paradigm leads 

through successful use in corporate settings and on 

campus networks, in context of applications such as 

collaborative editing, interactive gaming, online 

courses and videoconferencing, or distributed event 

processing. Accordingly, we assume an environment 

with system-wide support for IP multicast, in which 

packet loss is relatively uncommon and bursty (mostly 

triggered by overloaded recipients).  

QSM is a system designed with precisely the ob-

jectives articulated above: it offers a simple, but useful 

reliability guarantee despite bursty loss. It streams at 

close to network speeds, at rates up to 9500 packets/s 

in a cluster of 1.3GHz/512MB nodes on a 100Mbps 



LAN. It has a low CPU footprint: 50% CPU usage on 

receivers at the highest data rates. Throughput falls by 

5% as group size increases to 200 nodes and degrades 

gracefully with loss. QSM exploits regularities in group 

overlap, and amortizes protocol overheads across sets 

of nodes with a similar group membership. 

In summary, this paper makes the following con-

tributions: 

 We propose a novel approach to scaling reliable 

multicast with the number of groups by leveraging 

regularity in the group overlap patterns to amortize 

overhead across protocol instances. 

 We discover a previously unnoticed connection 

between memory usage and local scheduling poli-

cy in managed runtime environment (.NET), and 

multicast performance in a large system. 

 We describe several techniques, such as priority 

I/O scheduling or pull protocol stack architecture, 

developed based upon these observations, which 

increase performance via reducing instabilities 

causing broadcast storms, unnecessary recovery 

and other disruptive phenomena. 

2. Prior Work 

Reliable multicast is a mature area [13] [16] [19] 

[23] [24], but existing systems were not optimized for 

our scenario. Most systems were designed for use with 

one group at a time. Some don’t support multiple 

groups at all, others run separate protocol instances per 

group and incur overhead linear in the number of 

groups. Popular toolkits such as JGroups [2] perform 

best at small scale [3] and aren’t optimized for network 

speeds. Systems that use IP multicast and run a proto-

col per group also suffer from state explosion: large 

numbers of IP multicast addresses in use require hard-

ware to maintain a lot of state; this caused many data 

centers to abandon IP multicast based products. Also, 

the ability of NICs at client nodes to filter IP multicast 

is limited. With 1000s of addresses in active use local 

CPU is involved even on nodes that didn’t subscribe to 

any of these addresses.  

Systems like Isis and Spread can support lots of 

groups [1] [12] [26], but these groups are an applica-

tion-level illusion; physically, there is just one group. 

In Isis, it consists of the members of all application 

groups. Spread uses a smaller set of servers to which 

client systems connect: each application-level message 

is sent to a server, multicast among servers and filtered 

depending on whether a server has clients in the desti-

nation group or not, and finally, relayed by servers to 

their clients. Support for large numbers of groups in 

such systems comes at a high cost: unwanted traffic 

and filtering in software, extra hops and higher latency, 

and bottlenecks created by the servers. 

Application-level multicast systems such as 

OverCast, NARADA, NICE or SplitStream have been 

proposed [4] [6] [8] [14] that do not use IP multicast. 

These are very scalable, but messages follow circuitous 

routes, incurring high latency. In enterprise LANs, 

where IP multicast is available, such solutions simply 

don’t fully utilize existing hardware support. Moreo-

ver, nodes are asked to forward messages that don’t 

interest them at very high rates. This imposes addition-

al overheads.  

SpiderCast [7] and the techniques proposed in [27] 

have addressed the issue of scaling with the number of 

groups, but only in the context of unreliable multicast. 

Their overall approaches differ significantly from ours. 

3. Protocol 

QSM’s approach to scalability is based on the 

concept of a region. A region is a set of nodes that are 

members of the same multicast groups. The system is 

partitioned into regions (Figure 2) by a global 
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Figure 1. Example mashups enabled by our live objects platform and targeted by QSM. Each ob-

ject shown here is replicated among its clients and backed by a multicast protocol. Other exam-

ples and videos of the platform in use can be found at http://liveobjects.cs.cornell.edu.  



membership service (GMS [15]). Nodes contact the 

GMS to join groups, and it monitors their health. As 

the system changes, the GMS maintains a sequence of 

group and region views (sets of nodes that were 

members of given groups and regions at given points in 

time) and a mapping from one to the other (Figure 3). 

Each group view in this mapping is mapped to all 

region views that contain members of this group. The 

relevant parts of it are distributed to nodes, and are 

used to construct distributed structures, such as token 

rings, in a consistent manner. The GMS also assigns an 

individual IP address to each region. Multicasting to a 

group is then done by transmitting the message to each 

region the group spans over, using a single per-region 

IP multicast (Figure 4). 

This scheme is less bandwidth-efficient than mul-

ticasting to a per-group IP multicast address, but it 

avoids the address explosion problem mentioned earli-

er: there are fewer regions than groups, and each node 

only needs to subscribe to a single IP multicast address 

at a time. The technique is most efficient when overlap 

is regular enough, so that regions consist of at least a 

few nodes, and each group maps to at most a few re-

gions. As mentioned earlier, by using a technique de-

scribed in [28], this can be achieved even in scenarios 

with irregular overlap, by partitioning groups into sub-

sets. In a nutshell, we start by choosing the largest 

group, and then look for another group that is either 

contained in it, or overlaps with it in a way that doesn’t 

produce small regions. We keep adding groups to the 

set as long as maintaining regular overlap is possible, 

and then simply start a new set of groups: pick the 

largest, and proceed as before. In the end, this greedy 

scheme yields a partitioning of groups such that in each 

partition, groups overlap regularly. The GMS can then 

simply run multiple instances of itself, each instance 

maintaining a mapping of the sort described before. 

Each node may now be a member of a few regions: at 

most one region for each subset of groups. 

Only practice can tell how well this scheme works 

in real usage scenarios, but simulation results are prom-

ising. Figure 5 shows an experiment, in which a vary-

ing number of nodes (250 to 2000) subscribed to some 

10% of a varying number of groups (1000 to 10000), 

using Zipf popularity with parameter α=1.5. Several 

studies suggest that this scenario is realistic [11] [17] 

[25]. After partitioning, an average node belongs to 

between 4 and 14 regions. Additionally, 95% of the 

packets a node will receive is concentrated in only 2 of 

these (Figure 6; here 2000 processes each join some 
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Figure 5. A set of irregularly 

overlapped groups is parti-

tioned into a small number of 

regularly overlapped subsets. 

Figure 6. Most of the traffic a 

node sees is concentrated in 

just 2 of the regions of over-

lap to which it was assigned. 

Figure 7. Recovery is done in 

a hierarchical manner, first 

locally, and then globally, via 

a hierarchy of token rings.  
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Figure 2. Groups overlap to 

form regions. Nodes belong 

to the same region if they 

joined the same groups. 

Figure 3. GMS keeps a map-

ping from groups to regions. 

Nodes use it to reliably con-

struct distributed structures. 

Figure 4. To multicast to a 

group, QSM sends the mes-

sage to each of the regions 

that the group spans over. 

 

 



10% of a set of 10000 groups). In these experiments, 

no group is ever fragmented into more than ~5 regions. 

Regions generally contained 5-10 members, and the 

most heavily loaded ones often reflected the intersec-

tion of ~10 or more groups. This result suggests that in 

our design and analysis we can henceforth focus on just 

a single subset of regularly overlapping groups. 

Recovery in QSM is hierarchical; the basic idea is 

to recover as locally as possible (Figure 7). To achieve 

this, groups are subdivided into smaller and smaller 

entities. First, a group is divided into regions it spans 

across. Each region is then subdivided into partitions 

of a fixed size. Each partition runs a local recovery 

protocol to ensure that its members received the same 

messages. Each region runs a higher-level protocol to 

ensure that all of its partitions received the same mes-

sages. Finally, a protocol run at an inter-regional level 

ensures that if the entire region lost a message, it is 

recovered from the source.  

At each level, recovery is performed by a token 

ring (Figure 8, Figure 9). At the lowest level the ring is 

run by nodes in a partition. The token is carrying ACKs 

and NAKs, which neighbors on the ring compare, and 

use to initiate push or pull recovery from each other. 

The token is also used to calculate collective ACK and 

NAK data, describing the status of the entire partition 

(messages lost or received by all). The aggregate is 

intercepted by a designated partition leader, which 

participates in a higher-level ring. Again, neighbors 

compare ACKs and NAKs collected from partitions 

they represent, and use these to initiate recovery across 

partitions and calculate aggregate ACKs/NAKs for the 

entire region. These are collected by the region leader.  

In QSM, this recursive scheme is only 3 levels 

deep, but it could be generalized [20] [21]. The over-

head is extremely low: in our experiments, tokens cir-

culate only 1 to 5 times/s. This is a key factor enabling 

high performance. Despite the low overhead, recovery 

in QSM is efficient, in part thanks to QSM’s coopera-

tive caching similar to [5], and massively parallel re-

covery. In each region only one partition, selected in a 

round-robin fashion, keeps a copy of each message. 

When a long burst of messages is lost by a node, often 

every partition is involved in recovery, and since nodes 

to recover from are picked at random among those in a 

partition, often the entire region is helping to repair the 

loss. The efficiency of this technique is especially high 

in very large regions. 

The key to QSM’s scalability edge is the observa-

tion that, since nodes in the region are all members of 

the same groups, they receive exactly the same mes-

sages. Thanks to this, QSM can run a single token ring 

in each region and partition, and use it to perform re-

covery simultaneously for all groups.  

The benefits are two-fold. First, each node in a re-

gion has at most four neighbors, and receives a fixed 

small number of control packets/s. This is in contrast to 

systems that run a separate protocol per group, where 

nodes may have unbounded in-degrees and experience 

arbitrary rates of control traffic. Furthermore, recovery 

overhead in each region depends only on the number of 

currently active senders, not on the number of groups 

or the total number of senders in the system. This is 

because when sending to a region, senders can index 

messages on a per-region basis, across groups.  

The token carries a separate recovery record on a 

per-sender basis. When a sender ceases to actively mul-

ticast, in 2-3 token rounds QSM removes its record 

from the token, to reintroduce it again next time a mes-

sage from this sender is seen in the region. 

4. Architecture 

We implemented QSM as a .NET library (mostly 

in C#). In the course of doing so, we found landmark 

features of managed environments, such as garbage 

collection and multithreading, to have surprisingly 

strong performance implications. 
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Figure 8. Token rings at the 

higher levels in the hierarchy 

are run by designated parti-

tion and regions leaders. 

Figure 9. Per-partition rings 

enable recovery within parti-

tions. Regional rings enable 

recovery across partitions. 

Figure 10. A single thread in 
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application events based on 

its internal scheduling policy. 

 

 



QSM is single-threaded and event-driven: a dedi-

cated core thread processes events from three queues. 

An I/O queue, based on a Windows I/O completion 

port, collects asynchronous I/O completion notifica-

tions for all network sockets or files used by QSM. An 

internal alarm queue based on a splay tree stores timer 

events. Finally, a lock-free request queue implemented 

on CAS-style operations allows the core thread to inte-

ract with other threads (Figure 10). The core thread 

polls its queues in a round-robin fashion and processes 

events of the same type in batches (Figure 11), up to 

the limit determined by its quantum (50ms for I/O, 5ms 

for timer events; no limit for application requests), ex-

cept that if an incoming packet is found on a socket, 

the socket is drained of I/O to reduce the risk of packet 

loss. For I/O events, QSM further prioritizes their 

processing, in a manner reminiscent of interrupt han-

dling. First, events are read off the I/O queue, and scat-

tered across 6 priority queues. Then, they are handled 

in priority order. Inbound I/O is prioritized over out-

bound I/O to reduce packet loss and avoid contention. 

Control or recovery packets are prioritized over regular 

multicast, to reduce delays in reacting to packet loss 

(Figure 12). The pros and cons of using threads in 

event-oriented systems are hotly debated. In our case, 

multithreading was not only a source of overhead due 

to context switches, but more importantly, a cause of 

instabilities, oscillatory behaviors, and priority inver-

sions due to the random processing order. Eliminating 

threads and introducing custom scheduling let us take 

control of this order, which greatly improved perfor-

mance. In Section 5 we will see that the latency of con-

trol traffic is the key to minimizing memory overheads, 

and as a result, it has a serious impact on the overall 

system performance.  

Control latencies and memory overheads motivate 

another design feature: a pull protocol stack architec-

ture (Figure 13). QSM avoids buffering data, control, 

or recovery messages, and delays their creation until 

the moment they’re about to be transmitted. The proto-

col stack is organized into a set of trees rooted at indi-

vidual sockets, and consisting of feeds that can produce 

data and sinks that can accept it. Feeds register with 

sinks. Sinks pull data from registered feeds according 

to their local rate, concurrency, windows size, or other 

control policy. Using this scheme yields two advantag-

es. First, bulky data doesn’t linger in memory and 

stress a garbage collector. Second, information created 

just in time for transmission is fresher. ACKs and 

NAKs become stale rather quickly: if sent after a delay, 

they often trigger unnecessary recovery or fail to report 

that data was received. Likewise, recovery packets 

created upon the receipt of a NAK and stored in buf-

fers are often redundant after a short period: mean-

while, the data may be recovered via other channels. 

Postponing their creation prevents QSM from doing 

useless work. 

5. Evaluation 

In our evaluation of QSM, we focus on scalability 

and on the interactions of the protocol with the runtime 

environment that have driven our architectural deci-

sions. The experiments we report reveal a pattern: in 

each scenario, performance is limited by overheads 

related to memory management in .NET, which grow 

linearly with the amount of memory in use, causing the 

.NET CLR to steal CPU cycles from QSM. Managing 

the use of memory within QSM turned out to be the 

key to achieving stable, high performance. 

In Section 5.1 and Section 5.2 we show that memory 

overhead at senders and receivers is linked to latency, 

and that latency is affected by the overhead it causes. 

In Sections 5.3 and Section 5.4, we show that this is 

also true also if the system is perturbed or if it is not 

saturated. In Section 5.5 we show how the number of 

groups can cause such effects.  

Our results are abbreviated for lack of space (de-

tails can be found in our technical report). All results 

were obtained on a 200-node Pentium III 1.3 GHz, 512 
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MB cluster, on a 100 Mbps LAN, running Windows 

Server 2003, .NET 2.0. Our benchmark is an ordinary 

.NET executable, using QSM as a library. We send 

1000-byte arrays without pre-allocating them, with no 

batching, at the maximum rate. Our 95% confidence 

intervals were not always large enough to be visible. 

5.1 Memory Overheads on the Sender 

Figure 14 shows throughput in messages/s as a 

function of the number of receivers (all in a single 

group). Why does performance decrease with the num-

ber of receivers? Figure 15 shows that receivers are not 

CPU-bound, but the sender is. Profiling reveals that the 

CLR at the sender is taking over the CPU; specifically, 

memory allocation and garbage collection costs are 

growing by as much as 10-15% (Figure 16). Inspecting 

the managed heap shows that memory is used mostly 

by the multicast messages pending ACK on the sender: 

these have to be buffered for the purpose of loss recov-

ery. Memory usage is actually 3 times larger than what 

the number of pending messages would suggest: at 

these high data rates, the CLR can’t garbage collect 

fast enough, hence old data is still lagging in memory. 

Acknowledgement latency is caused by the increase in 

the time to circulate a token around the region for the 

purpose of state aggregation (token “roundtrip time”). 

Hence, our throughput degradation is ultimately caused 

by the latency to collect control information by the 

protocol. Just a 500ms increase in token RTT resulted 

in 10MB extra memory usage, inflated overhead by 10-

15%, and degraded throughput by 5%. The need to 

reduce this latency to ensure a smooth token flow was 

among the key reasons for the architectural decisions 

outlined in the preceding section. Using a deeper hie-

rarchy of token rings would also help to alleviate this 

problem (and indeed, this idea led us to the design pro-

posed in [20]). On the other hand, simply increasing 

the token rates helps only up to a point (Figure 17), and 

causing tokens to carry larger amounts of feedback per 

round by making this amount proportional to the region 

size increases processing complexity, and despite 

memory saving, it is counterproductive (Figure 18).  

5.2 Memory Overheads on the Receiver 

The growth in cached data at the receivers repeats 

the pattern of performance linked to memory. The in-

crease in the amount of such data slows us down, de-

spite the fact that receiver CPUs are half-idle (Figure 

15). How can memory overhead affect a half-idle 

node? Figure 19 shows results of an experiment where 

we varied replication factor, the number of receivers 

caching a copy of each message, causing a linear in-

crease of memory usage. We see a super-linear in-

crease of the token roundtrip time and a slow increase 

of the number of messages pending ACK on the send-

er, causing a sharp decrease in throughput (Figure 20). 

The underlying mechanism is as follows. The increased 

garbage collector activity and allocation overheads 

slow nodes down, and processing of the incoming 

packets and tokens takes more time. Although this is 

not significant on just a single node, it accumulates, 

since a token must visit all nodes to aggregate state. 

Increasing the number of caching replicas from 5 to all 

200 nodes in the region, increases token RTT 3-fold! 

  

5.3 Overheads in a Perturbed System 

Another question to ask is whether our results 

would be different if the system experienced high loss 

rates or was otherwise perturbed. To find out, we per-

formed two experiments. In the “sleep” scenario, one 

of the receivers experiences a periodic, programmed 

perturbation: every 5s, QSM instance on the receiver 

suspends all activity for 0.5s. This simulates the effect 

of an OS overloaded by disruptive applications. In the 

“loss” scenario, every 1s the node drops all incoming 

packets for 10ms, thus simulating 1% bursty packet 

loss. In practice, the resulting loss rate is up to 2-5%, 
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because recovery traffic interferes with regular multi-

cast, causing further losses. In both scenarios, CPU 

usage at the receivers is in the 50-60% range and 

doesn’t grow with system size, but the throughput de-

creases (Figure 21). In neither case does this decrease 

in throughput seem to be correlated to the loss rate. It 

does, however, correlate perfectly to the token RTT 

and memory utilization on the sender (Figure 22, Fig-

ure 23), repeating again the by now familiar pattern. 

A closer look at this experiment reveals that while 

the increased ACK latency and resulting memory usage 

can be explained by the extra token rounds needed to 

perform recovery, the 2-fold overall increase in token 

RTT in these scenarios, as compared to undisturbed 

experiments, can’t be as easily explained. The problem 

can be traced to a priority inversion. Because of re-

peated losses, the system maintains a high volume of 

forwarding traffic. Forwarded data tends to get ahead 

of tokens both on a sending and on a receiving path. As 

a result, tokens are slowed down. 

5.4 Overheads in a Lightly-Loaded System 

We’ve just discussed a perturbed system, now 

what if it’s lightly loaded? We’ll see that load has a 

super-linear impact on overheads. As we increase the 

multicast rate, the linear growth of traffic, combined 

with our fixed rate of state aggregation, linearly in-

creases the amount of unacknowledged data and mem-

ory usage on the sender (Figure 24). This triggers high-

er overheads. For example, the time spent in the GC 

grows from 50% to 60%. Combined with the linearly 

growing demand for CPU due to the increasing volume 

of traffic, these effects together cause the super-linear 

growth of CPU overhead on the sender (Figure 15). 

The overhead skyrockets at the highest rates because 

the increasing amount of I/O slows down processing of 

control messages; much as in Section 5.2. We can con-

firm this by looking at the end-to-end latency (Figure 

25), or at the delay in firing timer events (Figure 26), 

which at the highest rates get starved by the I/O. 

5.5 Per-Group Memory Consumption 

In this set of experiments, we explore scalability in 

the number of groups. One sender multicasts to a vary-

ing number of groups, in a round-robin fashion. Each 

receiver joins the same groups; the system contains just 

one region. QSM’s regional recovery protocol is obli-

vious to the groups, but the system maintains a number 

of per-group data structures, which affects the memory 

footprint (Figure 27). Memory being involved, we ex-

pect the familiar pattern, where an increased memory 

usage triggers GC and decreases the throughput, and 
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Figure 17. Throughput and 

the # of messages pending 

ACK as a function of token 

circulation rates. 

Figure 18. With O(n) feedback 

performance is worse due to 

higher overhead, despite the 

savings on memory usage. 

Figure 19. Results of varying 

the number of caching repli-

cas per message in a 192-

node region. 
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Figure 20. As a # of caching 

replicas increases, through-

put decreases despite CPUs 

on receivers being 50% idle. 

Figure 21. Throughput in the 

experiments with a perturbed 

node (1 sender, 1 group). 

Figure 22. Token roundtrip 

time and the time to recover 

in the "sleep" scenario. 

 

  

 



this is indeed the case (Figure 28). The effect becomes 

even clearer if we turn on extra tracing in per-group 

protocol stack components. This tracing is lightweight 

and has no effect on CPU, but increases memory usage, 

which burdens the GC. As expected, now throughput 

degrades even more (Figure 28, “profiling on”). 

A closer look at this scenario provides an even 

deeper insight. Note how at 6000 groups throughput 

degrades sharply (Figure 28) due to the increased token 

RTT and control latency (Figure 29). The growth of 

overhead suddenly becomes super-linear, and event at 

4000 groups we are actually starting to see spikes of 

occasional packet loss, clear signs of slight instability. 

Detailed analysis again points to sender overhead as 

the culprit. Most delays come from 40% of tokens 

(Figure 30), since it is caused by disruption in their 

flow, not system-wide increase of overhead. This dis-

ruption is caused by the sender, which is busy and de-

lays about 10% of the tokens (Figure 31), causing irre-

gularities in their flow. The magnitude of this delay 

increases with the number of groups. 

6. Discussion 

Our experiments clearly show that memory is a 

performance-limiting factor in QSM, and that its cost is 

tried to latency by a positive feedback loop. Our results 

aren’t specific to QSM and .NET; while managed envi-

ronments do have overheads, we believe the phenome-

na we’re observing are universal. Application with 

large amounts of buffered data may incur high context 

switching and paging delays, and even minor tasks get 

costly as data structures get large. Memory-related 

overheads can be amplified in distributed protocols, 

manifesting as high latency when nodes interact. Tradi-

tional protocol suites buffer messages aggressively, so 

existing multicast systems certainly exhibit such prob-

lems no matter what language they’re coded in or what 

platform they use. The mechanisms QSM uses to re-

duce memory use, such as event prioritization, pull 

protocol stack or cooperative caching, should therefore 

be broadly useful. Below, we list our design insights.  

1. Exploit structural regularity. We’ve recognized 

that even in irregular overlap scenarios one can re-

structure the problem to arrange for regularities, 

which can then be exploited by the protocol. This 

justified focus on optimizing performance in the 

scenario with a single heavily loaded set of regu-

larly overlapping groups. 

2. Minimize memory footprint. This applies espe-

cially to messages cached for recovery purposes. 

a. Pull data. Most protocols accept data when-

ever the application or a protocol layer pro-
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Figure 26. Delays in firing of 

timer events as a function of 

the sending rate, demonstrat-

ing “starvation through I/O”. 

Figure 27. Memory use grows 

with the # of groups. Beyond 

a threshold, the system be-

comes increasingly unstable. 

Figure 28. Throughput de-

creases with the # of groups 

(1 sender, 110 receivers, all 

groups perfectly overlap). 
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duces it. In contrast, by using an upcall driven 

“pull” architecture, QSM can delay generating 

messages until the very last moment and thus 

prevents data from piling up in the buffers. 

b. Limit buffering and caching. Most protocols 

buffer and cache data rather casually for re-

covery purposes. QSM avoids buffering and 

uses distributed, cooperative caching. Para-

doxically, by reducing memory overheads, the 

reduction in cached data allows for a much 

higher performance. 

c. Clear messages out of the system quickly. 

Data paths should have rapid data movement 

as a key goal, to limit the amount of time 

packets spend in the send or receive buffers. 

d. Message flow isn’t the whole story. Most pro-

tocols are optimized for steady low-latency 

data flow. To minimize memory usage, QSM 

sometimes tolerates an increased end-to-end 

latency for data, so as to allow for a faster 

flow of the control traffic; this allows faster 

cleanup and recovery. 

3. Minimize delays. Most situations in which we 

observed convoys and oscillatory throughputs can 

be traced to design decisions that permitted sche-

duling jitter or some form of priority inversion, de-

laying crucial messages behind less important 

ones. Implications included the following. 

a. Event handlers should be short, predictable 

and terminating. Using the event-driven 

model consistently allowed us to eliminate the 

need for locking or preemption; we obtained a 

more predictable system, and got rid of mul-

tithreading, with its associated context switch-

ing overheads. 

b. Drain input queues. From a memory footprint 

perspective, one might prefer not to pull in a 

message until QSM can process it. In data 

centers and clusters, though, most losses occur 

in the OS, not in the network, and loss rates 

soar if packets are left in the system buffers 

for too long. 

c. Control the event processing order. In QSM, 

this involved single-threading, batched asyn-

chronous I/O, and internal event prioritization. 

Small delays add up in large systems: tight 

control over event processing largely elimi-

nated convoy effects and the oscillatory 

throughput problems. 

d. Act upon fresh state. Our pull architecture has 

the added benefit of letting us delay the prepa-

ration of status packets until they are about to 

be transmitted, thus minimizing the risk that 

nodes act on stale information and trigger re-

transmissions that aren’t longer needed, or 

other overheads. 

4. Handle disruptions gracefully. Broadcast storms 

are triggered when recovery itself becomes disrup-

tive, causing convoy effects or triggering bursts of 

even more loss. In addition to the above, QSM 

employs the following techniques to keep balance. 

a. Limit resources used for recovery. QSM lim-

its the maximum rate of the recovery traffic 

and delays the creation of recovery packets to 

prevent such traffic from overwhelming the 

system. 

b. Act proactively on reconfiguration. Reconfi-

guration after joins or failures can destabilize 

the system: changes reach different nodes at 

different times and structures such as trees and 

rings can take time to form. To address this, 

senders in QSM briefly suspend multicast on 

reconfiguration and receivers buffer unknown 

packets for a while in case a join is underway. 

c. Balance recovery overhead. In some proto-

cols, bursty loss triggers a form of thrashing. 

QSM delays recovery until a message is stable 

on its caching replicas; then it coordinates a 
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Figure 29. # messages pend-

ing ACK and a token RTT as 

a function of the # of perfect-

ly overlapping groups. 

Figure 30. Cumulative distri-

bution of the token RTT with 

4096 and 7168 groups.  
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parallel recovery in which separate point-to-

point retransmissions can be sent concurrently 

by tens of nodes. 

7.  Conclusions 

The premise of our work is that new options are 

needed for performing multicast in modern platforms, 

specifically in support of a new drag-and-drop style of 

distributed programming inspired by web mash-ups, 

and for use in enterprise desktop computing environ-

ments, or in datacenters where multi-component appli-

cations may be heavily replicated. Using multicast in 

such settings requires a new flavor of scalability - to 

large numbers of multicast groups - largely ignored in 

previous work. QSM achieves this by exploiting regu-

larities and commonality of interest. 

Our performance evaluations led to a recognition 

that memory can be surprisingly costly. The techniques 

that QSM uses to reduce such costs and maintain high 

stable throughput despite perturbations should be use-

ful even in systems that do not run in managed runtime 

environments. 
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