
Quicksilver Scalable Multicast (QSM)

Krzysztof Ostrowski
†
, Ken Birman

†
, and Danny Dolev

§

†
Cornell University and

§
The Hebrew University of Jerusalem

{krzys,ken}@cs.cornell.edu, dolev@cs.huji.ac.il

Abstract

QSM is a multicast engine designed to support a

style of distributed programming in which application

objects are replicated among clients and updated via

multicast. The model requires platforms that scale in

dimensions previously unexplored; in particular, to

large numbers of multicast groups. Prior systems we-

ren’t optimized for such scenarios and can’t take ad-

vantage of regular group overlap patterns, a key fea-

ture of our application domain. Furthermore, little is

known about performance and scalability of such sys-

tems in modern managed environments. We shed light

on these issues and offer architectural insights based

on our experience building QSM.

1. Introduction

Web applications are becoming increasingly dy-

namic: users expect live content powered by real time

data that can be modified, and demand a high-quality

multimedia experience. To a degree these are opposing

goals: peer-to-peer streaming systems are optimized to

move data one-way; interactive client-server systems

don’t scale as well. Reliable multicast is a useful third

option: instead of storing content on servers, we repli-

cate it across clients and multicast updates between

them in a peer-to-peer manner. Not every application

can be built this way, but the model is broadly applica-

ble; in particular, it is a good fit for interactive “ma-

shups” of the sort shown on Figure 1. Each application

object, such as a shared desktop or a text on the desk-

top, has its data replicated among all of its clients (the

processes displaying it), which form a multicast group.

In [22], we described a general programming

model based on this approach. Here, we focus on how

to implement such systems. The key element of the

platform is a multicast engine: most objects either have

replicated state, or are driven by a stream of updates.

Reliability is important, but weak guarantees are often

sufficient: one rarely needs atomic transactions or con-

sensus. Total ordering can be avoided: often updates

originate at one or a few sources, and portions of ob-

jects can be locked prior to updating via separate lock-

ing facilities. More importantly, one needs high stream-

ing bandwidth, low CPU footprint, and the ability to

support large numbers of users, and large numbers of

multicast instances. The last factor is important: each

object could be accessed by a different group of

clients, and so it needs its “own” separate instance of a

multicast protocol.

Multicast groups corresponding to different ob-

jects often overlap in regular ways. To see this, con-

sider airplane A, on a spatial desktop X of the sort

shown on Figure 1. When the user opens X, the user

can also see A. The group of X’s clients is thus a subset

of A’s clients. Overlap occurs also if objects related to

common topics are used by people with common inter-

est. Furthermore, in [28] we show that even if objects

are used at random, we can often partition them into a

small number of subsets such that groups in each set

overlap hierarchically. Regularities in group overlap

occur naturally in our application domain. As we shall

demonstrate, they could be leveraged to amortize over-

head across protocol instances.

In the work reported here, we focus on enterprise

computing environments: centers with thousands of

commodity PCs running Microsoft Windows and

communicating on a shared high-speed LAN. While

our broader vision can be applied in WAN scenarios,

the path to broad adoption of the paradigm leads

through successful use in corporate settings and on

campus networks, in context of applications such as

collaborative editing, interactive gaming, online

courses and videoconferencing, or distributed event

processing. Accordingly, we assume an environment

with system-wide support for IP multicast, in which

packet loss is relatively uncommon and bursty (mostly

triggered by overloaded recipients).

QSM is a system designed with precisely the ob-

jectives articulated above: it offers a simple, but useful

reliability guarantee despite bursty loss. It streams at

close to network speeds, at rates up to 9500 packets/s

in a cluster of 1.3GHz/512MB nodes on a 100Mbps

LAN. It has a low CPU footprint: 50% CPU usage on

receivers at the highest data rates. Throughput falls by

5% as group size increases to 200 nodes and degrades

gracefully with loss. QSM exploits regularities in group

overlap, and amortizes protocol overheads across sets

of nodes with a similar group membership.

In summary, this paper makes the following con-

tributions:

 We propose a novel approach to scaling reliable

multicast with the number of groups by leveraging

regularity in the group overlap patterns to amortize

overhead across protocol instances.

 We discover a previously unnoticed connection

between memory usage and local scheduling poli-

cy in managed runtime environment (.NET), and

multicast performance in a large system.

 We describe several techniques, such as priority

I/O scheduling or pull protocol stack architecture,

developed based upon these observations, which

increase performance via reducing instabilities

causing broadcast storms, unnecessary recovery

and other disruptive phenomena.

2. Prior Work

Reliable multicast is a mature area [13] [16] [19]

[23] [24], but existing systems were not optimized for

our scenario. Most systems were designed for use with

one group at a time. Some don’t support multiple

groups at all, others run separate protocol instances per

group and incur overhead linear in the number of

groups. Popular toolkits such as JGroups [2] perform

best at small scale [3] and aren’t optimized for network

speeds. Systems that use IP multicast and run a proto-

col per group also suffer from state explosion: large

numbers of IP multicast addresses in use require hard-

ware to maintain a lot of state; this caused many data

centers to abandon IP multicast based products. Also,

the ability of NICs at client nodes to filter IP multicast

is limited. With 1000s of addresses in active use local

CPU is involved even on nodes that didn’t subscribe to

any of these addresses.

Systems like Isis and Spread can support lots of

groups [1] [12] [26], but these groups are an applica-

tion-level illusion; physically, there is just one group.

In Isis, it consists of the members of all application

groups. Spread uses a smaller set of servers to which

client systems connect: each application-level message

is sent to a server, multicast among servers and filtered

depending on whether a server has clients in the desti-

nation group or not, and finally, relayed by servers to

their clients. Support for large numbers of groups in

such systems comes at a high cost: unwanted traffic

and filtering in software, extra hops and higher latency,

and bottlenecks created by the servers.

Application-level multicast systems such as

OverCast, NARADA, NICE or SplitStream have been

proposed [4] [6] [8] [14] that do not use IP multicast.

These are very scalable, but messages follow circuitous

routes, incurring high latency. In enterprise LANs,

where IP multicast is available, such solutions simply

don’t fully utilize existing hardware support. Moreo-

ver, nodes are asked to forward messages that don’t

interest them at very high rates. This imposes addition-

al overheads.

SpiderCast [7] and the techniques proposed in [27]

have addressed the issue of scaling with the number of

groups, but only in the context of unreliable multicast.

Their overall approaches differ significantly from ours.

3. Protocol

QSM’s approach to scalability is based on the

concept of a region. A region is a set of nodes that are

members of the same multicast groups. The system is

partitioned into regions (Figure 2) by a global

airplane

object

space

object

building

object

map

object

text note

object

image

object

desktop

object

Figure 1. Example mashups enabled by our live objects platform and targeted by QSM. Each ob-

ject shown here is replicated among its clients and backed by a multicast protocol. Other exam-

ples and videos of the platform in use can be found at http://liveobjects.cs.cornell.edu.

membership service (GMS [15]). Nodes contact the

GMS to join groups, and it monitors their health. As

the system changes, the GMS maintains a sequence of

group and region views (sets of nodes that were

members of given groups and regions at given points in

time) and a mapping from one to the other (Figure 3).

Each group view in this mapping is mapped to all

region views that contain members of this group. The

relevant parts of it are distributed to nodes, and are

used to construct distributed structures, such as token

rings, in a consistent manner. The GMS also assigns an

individual IP address to each region. Multicasting to a

group is then done by transmitting the message to each

region the group spans over, using a single per-region

IP multicast (Figure 4).

This scheme is less bandwidth-efficient than mul-

ticasting to a per-group IP multicast address, but it

avoids the address explosion problem mentioned earli-

er: there are fewer regions than groups, and each node

only needs to subscribe to a single IP multicast address

at a time. The technique is most efficient when overlap

is regular enough, so that regions consist of at least a

few nodes, and each group maps to at most a few re-

gions. As mentioned earlier, by using a technique de-

scribed in [28], this can be achieved even in scenarios

with irregular overlap, by partitioning groups into sub-

sets. In a nutshell, we start by choosing the largest

group, and then look for another group that is either

contained in it, or overlaps with it in a way that doesn’t

produce small regions. We keep adding groups to the

set as long as maintaining regular overlap is possible,

and then simply start a new set of groups: pick the

largest, and proceed as before. In the end, this greedy

scheme yields a partitioning of groups such that in each

partition, groups overlap regularly. The GMS can then

simply run multiple instances of itself, each instance

maintaining a mapping of the sort described before.

Each node may now be a member of a few regions: at

most one region for each subset of groups.

Only practice can tell how well this scheme works

in real usage scenarios, but simulation results are prom-

ising. Figure 5 shows an experiment, in which a vary-

ing number of nodes (250 to 2000) subscribed to some

10% of a varying number of groups (1000 to 10000),

using Zipf popularity with parameter α=1.5. Several

studies suggest that this scenario is realistic [11] [17]

[25]. After partitioning, an average node belongs to

between 4 and 14 regions. Additionally, 95% of the

packets a node will receive is concentrated in only 2 of

these (Figure 6; here 2000 processes each join some

3

6

9

12

15

1 2 3 4 5 6 7 8 9 10

re
g

io
n

s
/

n
o

d
e

number of groups (thousands)

250 500 750 1000 2000

0

500

1000

1500

2000

1 4 7 10 13 16 19 22 25 28

n
o

d
e

s
th

a
t

a
re

 in

th
is

 m
a

n
y

 r
e

g
io

n
s

regions / node

all regions 95% most loaded regions

recover in Y

recover in X

X

Y

noderegion

inter-region

protocol

intra-region

protocol

Figure 5. A set of irregularly

overlapped groups is parti-

tioned into a small number of

regularly overlapped subsets.

Figure 6. Most of the traffic a

node sees is concentrated in

just 2 of the regions of over-

lap to which it was assigned.

Figure 7. Recovery is done in

a hierarchical manner, first

locally, and then globally, via

a hierarchy of token rings.

ABC

Group

“B”

A

AB

AC C

B

BC

Group

“A”
Group

“C”

Region

“BC”

(nodes that

are in both

B and C,

but not in A)

A

A1

RQP

Q1 Q2P1 R1

A2 B2B1

B
group group

view

region region view

node

Send

to A

A

B

C

A

AB

AC

ABC

B

C

BC

Apps

Group

Senders

Region

Senders

Send

to B

Figure 2. Groups overlap to

form regions. Nodes belong

to the same region if they

joined the same groups.

Figure 3. GMS keeps a map-

ping from groups to regions.

Nodes use it to reliably con-

struct distributed structures.

Figure 4. To multicast to a

group, QSM sends the mes-

sage to each of the regions

that the group spans over.

10% of a set of 10000 groups). In these experiments,

no group is ever fragmented into more than ~5 regions.

Regions generally contained 5-10 members, and the

most heavily loaded ones often reflected the intersec-

tion of ~10 or more groups. This result suggests that in

our design and analysis we can henceforth focus on just

a single subset of regularly overlapping groups.

Recovery in QSM is hierarchical; the basic idea is

to recover as locally as possible (Figure 7). To achieve

this, groups are subdivided into smaller and smaller

entities. First, a group is divided into regions it spans

across. Each region is then subdivided into partitions

of a fixed size. Each partition runs a local recovery

protocol to ensure that its members received the same

messages. Each region runs a higher-level protocol to

ensure that all of its partitions received the same mes-

sages. Finally, a protocol run at an inter-regional level

ensures that if the entire region lost a message, it is

recovered from the source.

At each level, recovery is performed by a token

ring (Figure 8, Figure 9). At the lowest level the ring is

run by nodes in a partition. The token is carrying ACKs

and NAKs, which neighbors on the ring compare, and

use to initiate push or pull recovery from each other.

The token is also used to calculate collective ACK and

NAK data, describing the status of the entire partition

(messages lost or received by all). The aggregate is

intercepted by a designated partition leader, which

participates in a higher-level ring. Again, neighbors

compare ACKs and NAKs collected from partitions

they represent, and use these to initiate recovery across

partitions and calculate aggregate ACKs/NAKs for the

entire region. These are collected by the region leader.

In QSM, this recursive scheme is only 3 levels

deep, but it could be generalized [20] [21]. The over-

head is extremely low: in our experiments, tokens cir-

culate only 1 to 5 times/s. This is a key factor enabling

high performance. Despite the low overhead, recovery

in QSM is efficient, in part thanks to QSM’s coopera-

tive caching similar to [5], and massively parallel re-

covery. In each region only one partition, selected in a

round-robin fashion, keeps a copy of each message.

When a long burst of messages is lost by a node, often

every partition is involved in recovery, and since nodes

to recover from are picked at random among those in a

partition, often the entire region is helping to repair the

loss. The efficiency of this technique is especially high

in very large regions.

The key to QSM’s scalability edge is the observa-

tion that, since nodes in the region are all members of

the same groups, they receive exactly the same mes-

sages. Thanks to this, QSM can run a single token ring

in each region and partition, and use it to perform re-

covery simultaneously for all groups.

The benefits are two-fold. First, each node in a re-

gion has at most four neighbors, and receives a fixed

small number of control packets/s. This is in contrast to

systems that run a separate protocol per group, where

nodes may have unbounded in-degrees and experience

arbitrary rates of control traffic. Furthermore, recovery

overhead in each region depends only on the number of

currently active senders, not on the number of groups

or the total number of senders in the system. This is

because when sending to a region, senders can index

messages on a per-region basis, across groups.

The token carries a separate recovery record on a

per-sender basis. When a sender ceases to actively mul-

ticast, in 2-3 token rounds QSM removes its record

from the token, to reintroduce it again next time a mes-

sage from this sender is seen in the region.

4. Architecture

We implemented QSM as a .NET library (mostly

in C#). In the course of doing so, we found landmark

features of managed environments, such as garbage

collection and multithreading, to have surprisingly

strong performance implications.

region

leader
partition

leader

intra-partition token

inter-partition

token

partition partition

sender
region

data

ACK

NAKs
intra-partition

push and pull

inter-partition

push and pull

application

thread

OS

kernel

socket

core

thread

alarm

queue

request

queue

I/O

queue

QSM

Figure 8. Token rings at the

higher levels in the hierarchy

are run by designated parti-

tion and regions leaders.

Figure 9. Per-partition rings

enable recovery within parti-

tions. Regional rings enable

recovery across partitions.

Figure 10. A single thread in

QSM processes I/O, timer and

application events based on

its internal scheduling policy.

QSM is single-threaded and event-driven: a dedi-

cated core thread processes events from three queues.

An I/O queue, based on a Windows I/O completion

port, collects asynchronous I/O completion notifica-

tions for all network sockets or files used by QSM. An

internal alarm queue based on a splay tree stores timer

events. Finally, a lock-free request queue implemented

on CAS-style operations allows the core thread to inte-

ract with other threads (Figure 10). The core thread

polls its queues in a round-robin fashion and processes

events of the same type in batches (Figure 11), up to

the limit determined by its quantum (50ms for I/O, 5ms

for timer events; no limit for application requests), ex-

cept that if an incoming packet is found on a socket,

the socket is drained of I/O to reduce the risk of packet

loss. For I/O events, QSM further prioritizes their

processing, in a manner reminiscent of interrupt han-

dling. First, events are read off the I/O queue, and scat-

tered across 6 priority queues. Then, they are handled

in priority order. Inbound I/O is prioritized over out-

bound I/O to reduce packet loss and avoid contention.

Control or recovery packets are prioritized over regular

multicast, to reduce delays in reacting to packet loss

(Figure 12). The pros and cons of using threads in

event-oriented systems are hotly debated. In our case,

multithreading was not only a source of overhead due

to context switches, but more importantly, a cause of

instabilities, oscillatory behaviors, and priority inver-

sions due to the random processing order. Eliminating

threads and introducing custom scheduling let us take

control of this order, which greatly improved perfor-

mance. In Section 5 we will see that the latency of con-

trol traffic is the key to minimizing memory overheads,

and as a result, it has a serious impact on the overall

system performance.

Control latencies and memory overheads motivate

another design feature: a pull protocol stack architec-

ture (Figure 13). QSM avoids buffering data, control,

or recovery messages, and delays their creation until

the moment they’re about to be transmitted. The proto-

col stack is organized into a set of trees rooted at indi-

vidual sockets, and consisting of feeds that can produce

data and sinks that can accept it. Feeds register with

sinks. Sinks pull data from registered feeds according

to their local rate, concurrency, windows size, or other

control policy. Using this scheme yields two advantag-

es. First, bulky data doesn’t linger in memory and

stress a garbage collector. Second, information created

just in time for transmission is fresher. ACKs and

NAKs become stale rather quickly: if sent after a delay,

they often trigger unnecessary recovery or fail to report

that data was received. Likewise, recovery packets

created upon the receipt of a NAK and stored in buf-

fers are often redundant after a short period: mean-

while, the data may be recovered via other channels.

Postponing their creation prevents QSM from doing

useless work.

5. Evaluation

In our evaluation of QSM, we focus on scalability

and on the interactions of the protocol with the runtime

environment that have driven our architectural deci-

sions. The experiments we report reveal a pattern: in

each scenario, performance is limited by overheads

related to memory management in .NET, which grow

linearly with the amount of memory in use, causing the

.NET CLR to steal CPU cycles from QSM. Managing

the use of memory within QSM turned out to be the

key to achieving stable, high performance.

In Section 5.1 and Section 5.2 we show that memory

overhead at senders and receivers is linked to latency,

and that latency is affected by the overhead it causes.

In Sections 5.3 and Section 5.4, we show that this is

also true also if the system is perturbed or if it is not

saturated. In Section 5.5 we show how the number of

groups can cause such effects.

Our results are abbreviated for lack of space (de-

tails can be found in our technical report). All results

were obtained on a 200-node Pentium III 1.3 GHz, 512

pre-process

I/O events

handle

I/O events

according

to priorities

process

scheduled

timer events

process

requests

incoming

control

outgoing

control

incoming

data

outgoing

data
disk I/O

other

handling I/O

events

according to

priorities

app

sock

f/s
app

f/s
app

f/s

elements of the protocol stack

act as feeds and sinks

at the same time

network sockets act

as sinks, and control

the way data is pulled

applications

act as feeds
Figure 11. QSM uses custom

time-sharing scheme, with a

quantum per event type. I/O

is handled like interrupts.

Figure 12. QSM prioritizes I/O

events: control packets and

inbound I/O are handled

ahead of everything else.

Figure 13. Elements of QSM

protocol stack form trees

rooted at sockets. Sockets

pull data from “their” trees.

MB cluster, on a 100 Mbps LAN, running Windows

Server 2003, .NET 2.0. Our benchmark is an ordinary

.NET executable, using QSM as a library. We send

1000-byte arrays without pre-allocating them, with no

batching, at the maximum rate. Our 95% confidence

intervals were not always large enough to be visible.

5.1 Memory Overheads on the Sender

Figure 14 shows throughput in messages/s as a

function of the number of receivers (all in a single

group). Why does performance decrease with the num-

ber of receivers? Figure 15 shows that receivers are not

CPU-bound, but the sender is. Profiling reveals that the

CLR at the sender is taking over the CPU; specifically,

memory allocation and garbage collection costs are

growing by as much as 10-15% (Figure 16). Inspecting

the managed heap shows that memory is used mostly

by the multicast messages pending ACK on the sender:

these have to be buffered for the purpose of loss recov-

ery. Memory usage is actually 3 times larger than what

the number of pending messages would suggest: at

these high data rates, the CLR can’t garbage collect

fast enough, hence old data is still lagging in memory.

Acknowledgement latency is caused by the increase in

the time to circulate a token around the region for the

purpose of state aggregation (token “roundtrip time”).

Hence, our throughput degradation is ultimately caused

by the latency to collect control information by the

protocol. Just a 500ms increase in token RTT resulted

in 10MB extra memory usage, inflated overhead by 10-

15%, and degraded throughput by 5%. The need to

reduce this latency to ensure a smooth token flow was

among the key reasons for the architectural decisions

outlined in the preceding section. Using a deeper hie-

rarchy of token rings would also help to alleviate this

problem (and indeed, this idea led us to the design pro-

posed in [20]). On the other hand, simply increasing

the token rates helps only up to a point (Figure 17), and

causing tokens to carry larger amounts of feedback per

round by making this amount proportional to the region

size increases processing complexity, and despite

memory saving, it is counterproductive (Figure 18).

5.2 Memory Overheads on the Receiver

The growth in cached data at the receivers repeats

the pattern of performance linked to memory. The in-

crease in the amount of such data slows us down, de-

spite the fact that receiver CPUs are half-idle (Figure

15). How can memory overhead affect a half-idle

node? Figure 19 shows results of an experiment where

we varied replication factor, the number of receivers

caching a copy of each message, causing a linear in-

crease of memory usage. We see a super-linear in-

crease of the token roundtrip time and a slow increase

of the number of messages pending ACK on the send-

er, causing a sharp decrease in throughput (Figure 20).

The underlying mechanism is as follows. The increased

garbage collector activity and allocation overheads

slow nodes down, and processing of the incoming

packets and tokens takes more time. Although this is

not significant on just a single node, it accumulates,

since a token must visit all nodes to aggregate state.

Increasing the number of caching replicas from 5 to all

200 nodes in the region, increases token RTT 3-fold!

5.3 Overheads in a Perturbed System

Another question to ask is whether our results

would be different if the system experienced high loss

rates or was otherwise perturbed. To find out, we per-

formed two experiments. In the “sleep” scenario, one

of the receivers experiences a periodic, programmed

perturbation: every 5s, QSM instance on the receiver

suspends all activity for 0.5s. This simulates the effect

of an OS overloaded by disruptive applications. In the

“loss” scenario, every 1s the node drops all incoming

packets for 10ms, thus simulating 1% bursty packet

loss. In practice, the resulting loss rate is up to 2-5%,

7500

8000

8500

9000

9500

10000

0 50 100 150 200

m
e

ss
ag

e
s

/
s

number of nodes
1 sender 2 senders

0

20

40

60

80

100

0 2500 5000 7500 10000

%
 C

P
U

 u
se

d

messages /s
sender receiver

28

31

34

37

0 50 100 150 200

%
 t

im
e

 (
in

cl
u

si
v

e
)

number of nodes
allocation garbage collection

Figure 14. Max throughput in

messages/s as a function of

the number of receivers with

1 group and 1KB messages.

Figure 15. % CPU utilized as

a function of multicast rate

(single group, 100 receivers).

Figure 16. % of time spent on

memory-related tasks on the

sender: allocation and gar-

bage collection in CLR code.

because recovery traffic interferes with regular multi-

cast, causing further losses. In both scenarios, CPU

usage at the receivers is in the 50-60% range and

doesn’t grow with system size, but the throughput de-

creases (Figure 21). In neither case does this decrease

in throughput seem to be correlated to the loss rate. It

does, however, correlate perfectly to the token RTT

and memory utilization on the sender (Figure 22, Fig-

ure 23), repeating again the by now familiar pattern.

A closer look at this experiment reveals that while

the increased ACK latency and resulting memory usage

can be explained by the extra token rounds needed to

perform recovery, the 2-fold overall increase in token

RTT in these scenarios, as compared to undisturbed

experiments, can’t be as easily explained. The problem

can be traced to a priority inversion. Because of re-

peated losses, the system maintains a high volume of

forwarding traffic. Forwarded data tends to get ahead

of tokens both on a sending and on a receiving path. As

a result, tokens are slowed down.

5.4 Overheads in a Lightly-Loaded System

We’ve just discussed a perturbed system, now

what if it’s lightly loaded? We’ll see that load has a

super-linear impact on overheads. As we increase the

multicast rate, the linear growth of traffic, combined

with our fixed rate of state aggregation, linearly in-

creases the amount of unacknowledged data and mem-

ory usage on the sender (Figure 24). This triggers high-

er overheads. For example, the time spent in the GC

grows from 50% to 60%. Combined with the linearly

growing demand for CPU due to the increasing volume

of traffic, these effects together cause the super-linear

growth of CPU overhead on the sender (Figure 15).

The overhead skyrockets at the highest rates because

the increasing amount of I/O slows down processing of

control messages; much as in Section 5.2. We can con-

firm this by looking at the end-to-end latency (Figure

25), or at the delay in firing timer events (Figure 26),

which at the highest rates get starved by the I/O.

5.5 Per-Group Memory Consumption

In this set of experiments, we explore scalability in

the number of groups. One sender multicasts to a vary-

ing number of groups, in a round-robin fashion. Each

receiver joins the same groups; the system contains just

one region. QSM’s regional recovery protocol is obli-

vious to the groups, but the system maintains a number

of per-group data structures, which affects the memory

footprint (Figure 27). Memory being involved, we ex-

pect the familiar pattern, where an increased memory

usage triggers GC and decreases the throughput, and

7500

7600

7700

7800

7900

5000

10000

15000

20000

25000

0 1 2 3 4 5

m
e

ss
ag

e
s

/
s

m
e

ss
ag

e
s

number of nodes
pending ack throughput

7600
7700
7800
7900
8000
8100
8200

0 50 100 150 200

m
e

ss
ag

e
s

/s

number of nodes
regular O(n) feedback

0.3

0.9

1.5

2.1

2.7

0

60

120

180

0 10 20 30 40 50 60 70

to
ke

n
 r

tt
 (s

)

m
e

m
o

ry
 u

se
d

 (M
B

)

replication factor
receiver memory use token rtt

Figure 17. Throughput and

the # of messages pending

ACK as a function of token

circulation rates.

Figure 18. With O(n) feedback

performance is worse due to

higher overhead, despite the

savings on memory usage.

Figure 19. Results of varying

the number of caching repli-

cas per message in a 192-

node region.

0

20000

40000

60000

6700

7000

7300

7600

7900

5 20 35 50 65

p
e

n
d

in
g

ac
k

m
e

ss
ag

e
s

/s

replication factor
throughput pending ack

5500

6500

7500

8500

0 50 100 150 200

m
e

ss
ag

e
s

/
s

number of nodes
sleep loss

0

1

2

3

4

0 50 100 150 200

ti
m

e
 (

s)

number of nodes
token rtt time to repair

Figure 20. As a # of caching

replicas increases, through-

put decreases despite CPUs

on receivers being 50% idle.

Figure 21. Throughput in the

experiments with a perturbed

node (1 sender, 1 group).

Figure 22. Token roundtrip

time and the time to recover

in the "sleep" scenario.

this is indeed the case (Figure 28). The effect becomes

even clearer if we turn on extra tracing in per-group

protocol stack components. This tracing is lightweight

and has no effect on CPU, but increases memory usage,

which burdens the GC. As expected, now throughput

degrades even more (Figure 28, “profiling on”).

A closer look at this scenario provides an even

deeper insight. Note how at 6000 groups throughput

degrades sharply (Figure 28) due to the increased token

RTT and control latency (Figure 29). The growth of

overhead suddenly becomes super-linear, and event at

4000 groups we are actually starting to see spikes of

occasional packet loss, clear signs of slight instability.

Detailed analysis again points to sender overhead as

the culprit. Most delays come from 40% of tokens

(Figure 30), since it is caused by disruption in their

flow, not system-wide increase of overhead. This dis-

ruption is caused by the sender, which is busy and de-

lays about 10% of the tokens (Figure 31), causing irre-

gularities in their flow. The magnitude of this delay

increases with the number of groups.

6. Discussion

Our experiments clearly show that memory is a

performance-limiting factor in QSM, and that its cost is

tried to latency by a positive feedback loop. Our results

aren’t specific to QSM and .NET; while managed envi-

ronments do have overheads, we believe the phenome-

na we’re observing are universal. Application with

large amounts of buffered data may incur high context

switching and paging delays, and even minor tasks get

costly as data structures get large. Memory-related

overheads can be amplified in distributed protocols,

manifesting as high latency when nodes interact. Tradi-

tional protocol suites buffer messages aggressively, so

existing multicast systems certainly exhibit such prob-

lems no matter what language they’re coded in or what

platform they use. The mechanisms QSM uses to re-

duce memory use, such as event prioritization, pull

protocol stack or cooperative caching, should therefore

be broadly useful. Below, we list our design insights.

1. Exploit structural regularity. We’ve recognized

that even in irregular overlap scenarios one can re-

structure the problem to arrange for regularities,

which can then be exploited by the protocol. This

justified focus on optimizing performance in the

scenario with a single heavily loaded set of regu-

larly overlapping groups.

2. Minimize memory footprint. This applies espe-

cially to messages cached for recovery purposes.

a. Pull data. Most protocols accept data when-

ever the application or a protocol layer pro-

0

1

2

3

4

5

0

10

20

30

40

50

1000 4500 8000

re
ce

iv
e

r
d

e
la

y
 (

m
s)

se
n

d
e

r
d

e
la

y
 (

m
s)

sending rate
sender receiver

15

35

55

75

95

40

85

130

175

220

0 2000 4000 6000 8000

re
ce

iv
e

r
m

e
m

o
ry

 (
M

B
)

se
n

d
e

r
m

e
m

o
ry

 (
M

B
)

number of topics
sender receiver

6500

7000

7500

8000

0 2000 4000 6000 8000

m
e

ss
a

g
e

s
/

s

number of topics
normal "heavyweight" (profiling on)

Figure 26. Delays in firing of

timer events as a function of

the sending rate, demonstrat-

ing “starvation through I/O”.

Figure 27. Memory use grows

with the # of groups. Beyond

a threshold, the system be-

comes increasingly unstable.

Figure 28. Throughput de-

creases with the # of groups

(1 sender, 110 receivers, all

groups perfectly overlap).

0

1.5

3

4.5

6

0 50 100 150 200

ti
m

e
 (

s)

number of nodes
token rtt time to repair

0

10

20

30

40

50

1000 4500 8000m
e

m
o

ry
 in

 u
se

 (
M

B
)

sending rate
sender receiver

0

10

20

30

40

50

1000 4000 7000 10000

la
te

n
cy

 (
m

s)

sending rate
1000-byte 16-byte

Figure 23. Token roundtrip

time and the time to recover

in the "loss" scenario.

Figure 24. Linearly growing

memory use on a sender and

flat usage on receivers as a

function of the sending rate.

Figure 25. Latency measured

from sending to receiving for

varying sending rate and with

various message sizes.

duces it. In contrast, by using an upcall driven

“pull” architecture, QSM can delay generating

messages until the very last moment and thus

prevents data from piling up in the buffers.

b. Limit buffering and caching. Most protocols

buffer and cache data rather casually for re-

covery purposes. QSM avoids buffering and

uses distributed, cooperative caching. Para-

doxically, by reducing memory overheads, the

reduction in cached data allows for a much

higher performance.

c. Clear messages out of the system quickly.

Data paths should have rapid data movement

as a key goal, to limit the amount of time

packets spend in the send or receive buffers.

d. Message flow isn’t the whole story. Most pro-

tocols are optimized for steady low-latency

data flow. To minimize memory usage, QSM

sometimes tolerates an increased end-to-end

latency for data, so as to allow for a faster

flow of the control traffic; this allows faster

cleanup and recovery.

3. Minimize delays. Most situations in which we

observed convoys and oscillatory throughputs can

be traced to design decisions that permitted sche-

duling jitter or some form of priority inversion, de-

laying crucial messages behind less important

ones. Implications included the following.

a. Event handlers should be short, predictable

and terminating. Using the event-driven

model consistently allowed us to eliminate the

need for locking or preemption; we obtained a

more predictable system, and got rid of mul-

tithreading, with its associated context switch-

ing overheads.

b. Drain input queues. From a memory footprint

perspective, one might prefer not to pull in a

message until QSM can process it. In data

centers and clusters, though, most losses occur

in the OS, not in the network, and loss rates

soar if packets are left in the system buffers

for too long.

c. Control the event processing order. In QSM,

this involved single-threading, batched asyn-

chronous I/O, and internal event prioritization.

Small delays add up in large systems: tight

control over event processing largely elimi-

nated convoy effects and the oscillatory

throughput problems.

d. Act upon fresh state. Our pull architecture has

the added benefit of letting us delay the prepa-

ration of status packets until they are about to

be transmitted, thus minimizing the risk that

nodes act on stale information and trigger re-

transmissions that aren’t longer needed, or

other overheads.

4. Handle disruptions gracefully. Broadcast storms

are triggered when recovery itself becomes disrup-

tive, causing convoy effects or triggering bursts of

even more loss. In addition to the above, QSM

employs the following techniques to keep balance.

a. Limit resources used for recovery. QSM lim-

its the maximum rate of the recovery traffic

and delays the creation of recovery packets to

prevent such traffic from overwhelming the

system.

b. Act proactively on reconfiguration. Reconfi-

guration after joins or failures can destabilize

the system: changes reach different nodes at

different times and structures such as trees and

rings can take time to form. To address this,

senders in QSM briefly suspend multicast on

reconfiguration and receivers buffer unknown

packets for a while in case a join is underway.

c. Balance recovery overhead. In some proto-

cols, bursty loss triggers a form of thrashing.

QSM delays recovery until a message is stable

on its caching replicas; then it coordinates a

0

0.2

0.4

0.6

0.8

1

0

10000

20000

30000

40000

0 4000 8000

to
ke

n
 r

tt
 (s

)

p
e

n
d

in
g

 a
ck

number of topics
pending ack token rtt

20%

40%

60%

80%

100%

0.4 0.9 1.4 1.9 2.4

%
 s

m
a

ll
e

r
th

a
n

 t
h

is

token roundtrip time (s)

4096 topics 7168 topics

70%

80%

90%

100%

1 1.5 2

%
 s

m
a

ll
e

r
th

a
n

 t
h

is

time between tokens (s)

4096 topics 7168 topics
Figure 29. # messages pend-

ing ACK and a token RTT as

a function of the # of perfect-

ly overlapping groups.

Figure 30. Cumulative distri-

bution of the token RTT with

4096 and 7168 groups.

Figure 31. Cumulative distri-

bution of the intervals be-

tween the subsequent tokens

with 4096 and 7192 groups.

parallel recovery in which separate point-to-

point retransmissions can be sent concurrently

by tens of nodes.

7. Conclusions

The premise of our work is that new options are

needed for performing multicast in modern platforms,

specifically in support of a new drag-and-drop style of

distributed programming inspired by web mash-ups,

and for use in enterprise desktop computing environ-

ments, or in datacenters where multi-component appli-

cations may be heavily replicated. Using multicast in

such settings requires a new flavor of scalability - to

large numbers of multicast groups - largely ignored in

previous work. QSM achieves this by exploiting regu-

larities and commonality of interest.

Our performance evaluations led to a recognition

that memory can be surprisingly costly. The techniques

that QSM uses to reduce such costs and maintain high

stable throughput despite perturbations should be use-

ful even in systems that do not run in managed runtime

environments.

8. Acknowledgements

Our work was funded by AFRL/IF, with additional

funds from AFOSR, NSF, I3P, and Intel. We want to

thank Jong Hoon Ahnn, Mahesh Balakrishnan, Lars

Brenna, Lakshmi Ganesh, Maya Haridasan, Chi Ho,

Ingrid Jansch-Porto, Tudor Marian, Amar Phanishayee,

Stefan Pleisch, Robbert van Renesse, Yee Jiun Song,

Einar Vollset, and Hakim Weatherspoon for feedback.

9. References

[1] Y. Amir, C. Danilov, M. Miskin-Amir, J. Schultz, and J.

Stanton. The Spread toolkit: Architecture and Perfor-

mance. 2004.

[2] B. Ban. Design and Implementation of a Reliable Group

Communication Toolkit for Java. 1998.

[3] B. Ban. Performance Tests JGroups 2.5.

http:// jgroups.org/javagroupsnew/perfnew/Report.html

[4] S. Banerjee, B. Bhattacharjee, and C. Kommareddy.

Scalable Application Layer Multicast. SIGCOMM’02.

[5] K. Birman, M. Hayden, O. Ozkasap, Z. Xiao, M. Budiu,

and Y. Minsky. Bimodal Multicast. TOCS 17(2), 1999.

[6] M. Castro, P. Druschel, A-M. Kermarrec, A. Nandi, A.

Rowstron, and A. Singh. SplitStream: High-Bandwidth

Multicast in a Cooperative Environment. SOSP’03.

[7] G. Chockler, E. Melamed, Y. Tock, and R. Vitenberg.

SpiderCast: a Scalable Interest-Aware Overlay for Top-

ic-Based Pub/Sub Communication. ACM DEBS 2007.

[8] Y. Chu, S. G. Rao, S. Seshan, and H. Zhang. A Case for

End System Multicast. IEEE JSAC 20(8), 2002.

[9] E. Decker. http://researchweb.watson.ibm.com/compsci/

project_spotlight/distributed/dsc/.

[10] D Dolev, and D Malki. The Transis Approach to High

Availability Cluster Communication. CACM 39(4),

1996.

[11] X. Gabaix, P. Gopikrishnan, V. Plerou, H. E. Stanley. A

Theory of Power-Law Distributions in Financial Market

Fluctuations. Nature 423, p. 267-270, 2003.

[12] B. Glade, K. Birman, R. Cooper, and R. van Renesse.

Light-Weight Process Groups in the ISIS System. Dis-

tributed Systems Engineering. Mar 1994. 1:29-36.

[13] M. Handley, S. Floyd, B. Whetten, R. Kermode, L.

Vicisano, and M. Luby. The Reliable Multicast Design

Space for Bulk Data Transfer, RFC 2887, August 2000.

[14] J. Jannotti, D. K. Gifford, K. L. Johnson, M. F. Kaa-

shoek, and J. W. O’Toole. Overcast: Reliable Multicast-

ing with an Overlay Network. OSDI’00.

[15] I. Keidar, J. Sussman, K. Marzullo, and D. Dolev.

Moshe: A Group Membership Service for WANs. ACM

TOCS 20(3), p. 191-238, August 2002.

[16] B. N. Levine, and J. J. Garcia-Luna-Aceves. A Compar-

ison of Reliable Multicast Protocols. Multimedia Sys-

tems 6: 334-348, 1998.

[17] H. Liu, V. Ramasubramanian, and E.G. Sirer. Client

Behavior and Feed Characteristics of RSS, A Publish-

Subscribe System for Web Micronews. IMC 2005.

[18] S. Maffeis, and D. Schmidt. Constructing Reliable Dis-

tributed Communication Systems with CORBA. IEEE

Communication Magazine, Vol. 14, No. 2, Feb. 1997.

[19] L. E. Moser, P. M. Melliar-Smith, D. A. Agarwal, R. K.

Budhia, C. A. Lingley-Papadopoulos, and T. P. Arc-

hambault. The Totem System. FTCS 25 (1995).

[20] K. Ostrowski, K. Birman, and D. Dolev. Extensible

Architecture for High-Performance, Scalable, Reliable

Publish-Subscribe Eventing and Notification. JWSR

4(4), 2007.

[21] K. Ostrowski, K. Birman, and D. Dolev. Declarative

Reliable Multi-Party Protocols. Cornell University

Technical Report, TR2007-2088. March, 2007.

[22] K. Ostrowski, K. Birman, D. Dolev, and J. Ahnn. Pro-

gramming with Live Distributed Objects. ECOOP’08.

[23] C. Papadopoulos, and G. Parulkar. Implosion Control

For Multipoint Applications. 10th Annual IEEE Work-

shop on Computer Communications, Sept. 1995.

[24] S. Pingali, D. Towsley, and J. F. Kurose. A Comparison

of Sender-Initiated and Receiver-Initiated Reliable Mul-

ticast Protocols. SIGMETRICS’94, pp. 221-230.

[25] B. M. Roehner. Patterns of Speculation: A Study in

Observational Econophysics. Cambridge University

Press (ISBN 0521802636). May 2002.

[26] L. Rodrigues, K. Guo, P. Verissimo, and K. Birman. A

Dynamic Light-Weight Group Service. Journal of Paral-

lel and Distributed Computing 60:12. 2000.

[27] Y. Tock, N. Naaman, A. Harpaz, and G. Gershinsky.

Hierarchical Clustering of Message Flows in a Multicast

Data Dissemination System. IASTED PDCS 2005.

[28] Y. Vifgusson, K. Ostrowski, K. Birman, and D. Dolev.

Tiling a Distributed System for Efficient Multicast. Un-

published manuscript.

