
ar
X

iv
:0

80
5.

12
57

v1
 [

cs
.D

C
]

 9
 M

ay
 2

00
8

Randomized Work-Competitive Scheduling for Cooperative

Computing on k-partite Task Graphs

Chadi Kari

chadi@engr.uconn.edu

Alexander Russell

acr@cse.uconn.edu

Narasimha Shashidhar

karpoor@cse.uconn.edu

Department of Computer Science and Engineering

University of Connecticut, Storrs, CT

Abstract

A fundamental problem in distributed computing is the task of cooperatively executing a given set
of t tasks by p processors where the communication medium is dynamic and subject to failures. The
dynamics of the communication medium lead to groups of processors being disconnected and possibly
reconnected during the entire course of the computation. The primary objective in this scenario is for
the group of p processors to compute all the t tasks while minimizing the total work done [4]. In the
partitionable network paradigm, work is defined as the total number of tasks performed (counting multi-
plicities) by all the processors during the course of the computation. In [5], the authors consider such a
partitionable network scenario and analyze a simple randomized scheduling algorithm for the case where
the tasks to be completed are independent of each other. In this paper, we study a natural generalization
of this problem where the tasks have dependencies among them defined by a task dependency graph. In
particular, we consider task dependency graphs that are k-partite task graphs. Such task dependency
graphs have been studied extensively in performing dependency analysis of PRAM algorithms. Specifi-
cally, we present a simple randomized algorithm for p processors cooperating to perform t known tasks
where the dependencies between them are defined by a k-partite task dependency graph and additionally
these processors are subject to a dynamic communication medium. By virtue of the problem setting,
we pursue competitive analysis where the performance of our algorithm is measured against that of
the omniscient offline algorithm which has complete knowledge of the dynamics of the communication
medium. We present a randomized algorithm whose competitive ratio is dependent on the dynamics of
the communication medium viz. the computational width defined by [5] and also on the nature of the
dependencies among the t tasks characterized by the task graph.

Key words: On-line algorithms, distributed computing, randomized algorithms, competitive analysis,
partitionable networks

1 Introduction

A fundamental problem in distributed computing is the problem of cooperatively executing a given set of tasks
in a dynamic setting. This problem has been studied in different settings, for instance, in message-passing
models [1, 2, 4] and in partitionable network models [3, 7]. The challenge is to minimize the total work done
and to maintain efficiency in the face of dynamically changing processor connectivity. In the partitionable
network paradigm, work is defined as the total number of tasks performed (counting multiplicities) by all
the processors during the course of the computation [4].

In this scenario, we are given a set of t tasks that must be completed in a distributed setting by a set of p
processors where the communication medium is subject to failures. We assume that the t tasks are similar,
in that they require the same number of computation steps to finish execution. We further assume that the

1

http://arxiv.org/abs/0805.1257v1

tasks are idempotent - executing a task multiple times has the same effect as a single execution of the task.
The tasks have a dependency relationship defined among them captured by a task dependency graph. If
task B depends on task A, B cannot be performed before A.

The dynamics of the communication medium determine a processor’s ability to communicate with other
processors. Effectively, this partitions the processors into groups. Processors that can communicate with
each other are said to belong to the same group. No communication is possible between processors in different
groups. Each processor of a group is aware of all the tasks completed by the members of the group. The
dynamic changes in the communication medium leads to a reconfiguration, i.e. a new partition of processors
into groups. This new group of processors share knowledge of all the tasks that have been completed among
them so far and then proceed to continue executing the remaining tasks from their pool of incomplete tasks
until the next reconfiguration.

This processor group reconfiguration and task execution may be treated as if they were determined by
an adversary. Thus, the adversary in our model performs two basic operations: reconfigures the processors
into groups and also allocates the work quota for each group of processors before the next reconfiguration.
The work quota is the number of tasks that can be completed by the group before the next reconfiguration
takes place. While the adversary controls the number of tasks that a group can perform, he does not dictate
which tasks (the identity of the tasks) the group can perform.

In this setting, the tasks have dependencies defined among them captured by a directed acyclic task graph
(t-DAG) which is a k-partite task graph. Given a group of processors and the tasks known to be completed
by them, an algorithm in this setting decides on the next incomplete task to be completed by this group.
Each processor continues to execute tasks from the given set of t tasks until it is aware that all tasks have
been completed or runs out of it’s allocated work limit. Hence, given p processors and t tasks, any algorithm
must execute at least Ω (t · p) tasks in the scenario where all the processors are disconnected for the entire
computation while any reasonable algorithm would only incur O(t) work in the completely connected case.
Hence, we treat this problem in an on-line setting and pursue competitive analysis where the performance
of our algorithm is compared against that of the omniscient offline algorithm which has complete knowledge
of all the future changes to the communication medium. Our setting is a generalization of the problem in
[6, 5] since the tasks are no longer independent but have dependencies defined among them. We show that
for this setting more pessimistic bounds hold.

2 Prior Work

Dwork, Halpern, and Waarts [4] introduced the problem of distributed cooperation for message-passing
models who also defined task-oriented work. Malewicz, Russell and Shvartsman [7] introduced the notion of
h-waste that measures the worst-case redundant work performed by h groups (or processors) when started
in isolation and merged into a single group at some later time. However, all the known solutions were
limited in the reconfiguration pattern of the dynamic communication medium and only addressed narrow
special cases. Georgiou, Russell, and Shvartsman [5] performed competitive analysis and showed a simple
randomized scheduling algorithm RS (Random Select) whose competitive ratio is tight. Their work also
introduced a notion of computation width, which associates a natural number with a history of changes
in the communication medium, and shows both upper and lower bounds on competitiveness in terms of
this quantity. Specifically, they showed that their simple randomized scheduling algorithm obtains the
competitive ratio (1 + cw/e), where cw is the computation width of the computation pattern determined
by the dynamics of the communication medium.

3 Our Results

We follow on the work done in [5]. We study a natural generalization of the problem where the tasks
to be completed are not independent of each other but have a k-partite dependency relationship defined

2

among them. Each partition of the vertices (tasks) of the k-partite task graph is said to belong to a level.
Independent tasks belong to the first level, tasks dependent on the first level tasks are at the second level
and so on. The k-partite task graphs that we consider in our problem are a special kind of task graphs
where every task at level li+1 is dependent on every task at level li, i = 1, . . . , k − 1 (i.e, complete set of
directed edges from level li to level li+1, i = 1, . . . , k − 1). We present a simple randomized algorithm for
p processors cooperating to perform t known tasks where the dependencies between them are defined by a
k-partite task dependency graph with processors subject to a dynamic communication medium. We pursue
competitive analysis and show that pessimistic bounds hold in this case.

Our algorithm Modified-RS extends the algorithm Random Select(RS) presented in [5]. Modified-RS is a
simple randomized scheduling algorithm whose competitive ratio depends on the computation width [5] and
the nature of dependencies among the tasks captured by the task graph. Since one can treat the dynamics
of the communication medium (the computation pattern) as being adversarially determined, we begin by
presenting an instance of a computation pattern which lower bounds the expected number of computation
steps (work) done by any algorithm to perform t tasks on a 2-level bipartite task graph with every task
at level 2 dependent on every task at level 1. We then show in section 5.3 that algorithm Modified-RS

is
(

1 + cw
(

1− α+ α

e
1−α
α

c+1

))

-competitive for any computational (p, t)-DAG and for a 2-level task t-DAG

where, cw is the computation width of the computational pattern (p, t)-DAG, α ∈ (0, 1] denotes the
fraction of tasks in the first level l1 and c = 1

1
e
+o(1)

. This competitive ratio matches the lower bound we

show in section 5.1 and therefore is tight. We then extend our analysis to any k-level task t-DAG. In section

5.5 we show that Modified-RS is

(

1 + cw

(

(1− α1) +
α1

e

αk
α1

c
ak+ak

))

-competitive for any computational (p, t)-

DAG and for any k-level task t-DAG where, αi ∈ (0, 1] and c = 1
1
e
+1

and where ai, i = 1..k is a sequence

defined as follows, a1 = 1, ai+1 = αi

α1
cai + ai. Here, αi ∈ (0, 1] is the fraction of tasks at level li, i = 1, . . . , k.

cw stands for the computation width of the computational (p, t)-DAG and ci > 0. We also show that this
result is tight as it matches the lowerbound we show in section 5.4.

When all the tasks given are independent i.e. the task t-DAG has only one level (α = 1) the competitive
ratio collapses to (1 + cw/e), the bound offered by [5]. Hence, our results subsume the results of [5].

4 Model and Definitions

The problem is defined in terms of p asynchronous processors and t tasks with unique identifiers, initially
known to all processors. For our purposes the tasks are idempotent and similar, i.e., each task requires the
same number of computation steps.

Definition 1. A t-DAG is a directed acyclic k-partite graph G = (V,E), where V = ˙⋃k

l=1Vl = [t] = {1 . . . t}.
Edge e = (tli, t

l+1
j) ∈ E, l = 1, . . . , k− 1, i 6= j if and only if task tl+1

j depends on task tli. We write tli < tl+1
j

if task tl+1
j depends on task tli. Here, ˙⋃ stands for disjoint union.

We only consider task graphs where a task on level li+1 depends on all tasks of level li. The computa-
tion pattern i.e., the computational (p, t)-DAG defined below captures the behavior of the adversary that
determines both the partitioning and the number of tasks allocated to each group of the partition.

Definition 2. A computational (p, t)-DAG is a directed acyclic graph C = (V,E) augmented with a weight
function h : V → [t] ∪ {0} and a labeling g : V → 2[p] \ {∅} so that:

• For any maximal path P = (v1, v2, . . . , vk) in C,
∑k

i=1 h(vi) ≥ t. (This guarantees that any algorithm
terminates during the computation described by the DAG.)

3

• g possesses the following “initial conditions”:

[p] =

.
⋃

v: in(v)=0

g(v).

• g respects the following “conservation law”:
There is a function φ : E → 2[p]\{∅} so that for each v ∈ V with in(v) > 0,

g(v) =

.
⋃

(u,v)∈E

φ((u, v)),

and for each v ∈ V with out(v) > 0,

g(v) =

.
⋃

(v,u)∈E

φ((v, u)).

In the above definition, in(v) and out(v) denote the in-degree and out-degree of v respectively. Finally,
for the two vertices u, v ∈ V , we write u ≤ v if there is a directed path from u to v; we then write u < v if
u ≤ v and u and v are distinct.

Figure 1: Right: An example of a computational (15, t)-DAG, Left: task t-DAG, α1,2,...,k ∈ (0, 1].

Example. As an example, consider the computational (15, t)-DAG shown on Figure 1. Here we have
g1 = {p1, p2, p3}, g2 = {p4, p5}, g3 = {p6, p7}, g4 = {p8, p9}, g5 = {p10, p11}, g6 = {p12, p13, p14, p15},
g7 = {p1, p2, p3, p4, p5}, g8 = {p7, p10, p11}, g9 = {p1, p2, p3, p4, p5, p6}, g10 = {p10, p11}, g11 = {p7},
g12 = {p1, p2, p3, p4, p5, p6, p11}, g13 = {p10} and g14 = {p7, p12, p13, p14, p15}.

Brief Description of the example: This computation pattern models a dynamic communication medium
with the following characteristics.

4

• The first reconfiguration occurs when groups g1 and g2 merge to form group g7. The members of group
g7 is the union of the processors in groups g1 and g2. Prior to this reconfiguration groups g1 and g2
performed exactly 6 and 4 units of work respectively.

• Group g4 = {p8, p9} runs in isolation for the entire computation and hence does t units of work.

• Group g3 = {p6, p7} splits into groups g8 and g9 and performs 7 units of work before the reconfiguration.
Group g9 is a result of a merge by groups g7 and processor p6 of group g3. Similarly, Group g8 is the
result of a merge by groups g5 and processor p5 of group g3.

• Group g8 performs 5 units of work before splitting into two groups, g10 and g11 which proceed to
perform 2 and 9 units of work respectively before the next reconfiguration (assuming that there are at
least 2 or 9 tasks remaining respectively, otherwise they would have performed the remaining tasks)

• Finally, Group g12 is a result of a merge by groups g9 and processor p11 of group g10. Similarly, Group
g13 contains the processor p10 of group g10. Group g14 is the result of a merge by groups g11 and g6.

• The processors in g12, g13 and g14 run until completion with no further reconfigurations.

Definition 3. Given a computational DAG C = (V,E) and a vertex v ∈ V , we define the predecessor

graph at v, denoted PC(v), to be the subgraph of C that is formed by the union of all paths in C terminating
at v. Likewise, the successor graph at v, denoted SC(v), is the subgraph of C that is formed by the union
of all the paths in C originating at v.

Associated with any directed acyclic graph (DAG) C = (V,E) is the natural vertex poset (V,≤) where
u ≤ v if and only if there is a directed path from u to v. Then the width of C, denoted w(C), is the width
of the poset (V,≤).

Definition 4. The computation width of a computational DAG C = (V,E), denoted cw(C), is defined as
cw(C) = maxv∈V w(S(v)).

Let OPT denote the optimal (off-line) algorithm. WOPT(C) and WR(C) is the work done by the optimal
algorithm and a randomized algorithm R.

We treat randomized algorithms as distributions over deterministic algorithms; for a set Ω and a family of
deterministic algorithms {Dr | r ∈ Ω} we let R = R({Dr | r ∈ Ω}) denote the randomized algorithm where
r is selected uniformly at random from Ω and scheduling is done according to Dr. For a real-valued random
variable X , we let E[X] denote its expected value. We let OPT denote the optimal (off-line) algorithm.
Specifically, for each C we define WOPT(C) = minD WD(C).

Definition 5. [9, 10] Let γ be a real valued function defined on the set of all (p, t)-DAGs (for all p and t).
A randomized algorithm R is γ-competitive if for all computation patterns C,

E[WDr
(C)] ≤ γ(C)WOPT(C),

this expectation being taken over uniform choice of r ∈ Ω.

5 Lower bounds and Algorithm Modified-RS

In this section we give a lower bound on our problem for 2-level task graphs and we present the algorithm
Modified-RS. We then show that for 2-level task graphs the competitive ratio of Modified-RS is tight.

5

Figure 2: Left: computational (p, t)-DAG, Right: task t-DAG, α ∈ (0, 1].

5.1 A lower bound for 2-level task graphs

Theorem 1. Let A be a scheduling algorithm for 2-level task graphs, α be the fraction of tasks at level l1.
Then,

WA ≥
(

1 + cw

(

(1− α) +
α

e
1−α
α

e+1

))

WOPT

Proof. Consider the computation pattern given by the computational (p, t)-DAG and the task t-DAG in
Figure 2. Initially, the computation pattern has w groups each consisting of a single processor. Let t >> w
and t mod w = 0. Each processor completes αt

w
tasks before they are merged and allowed to exchange

information about completed tasks before being split again into w processors where each processor is allowed

to complete (1−α)t
w

tasks, at this point they are merged again and then split into w processors. For this
computation pattern the optimal off-line algorithm completes all the t tasks at the formation of the group
g(U) and accrues exactly t work. Let Pi ⊂ G1 denote the set of αt

w
tasks for processor i. We analyze A when

the tuple P = (P1, . . . , Pw) is selected uniformly at random among all such tuples. We will show that for
any algorithm A there is a configuration of the Pi such that

WA ≥
(

1 + (1− o(1))cw

(

(1− α) +
α

e
1−α
α

e+1

))

t

For a fixed τ ∈ G1, let pτ = Pr[τ /∈ P1] then Pr[τ /∈ ⋃i Pi] = pwτ . Let LS be the random variable whose
value is the number of tasks of G1 left undone at the formation of group g(S).

E[|LS |] = E[|[t]−
⋃

i

Pi|] =
∑

τ

pwτ

The function x → xk is convex on the interval [0,∞), so,
∑

τ p
k
τ is minimized when the pτ are equal.

Now,
αt

w
= E[|P1|] =

∑

τ

Pr[τ ∈ P1] =
∑

τ∈G1

(1− pτ)

6

So,
∑

τ∈G1
pτ = αt− αt

w
= αt

(

1− 1
w

)

and hence,

E[|LS |] ≥ αt

(

1− 1

w

)w

Let T be the actual number of tasks left undone at the formation of g(S). In lemma 2, we show that with a
high probability T ≥ αt

(

1− 1
w

)w
(1− o(1)).

Clearly, at the formation of group g(U), OPT , the optimal off-line algorithm would have finished executing

all the t tasks. Let α0 be such that (1−α0)t
w

= T , by choosing α > α0 we have that after the first merge and

reconfiguration the number of tasks not completed from G1 is greater that (1−α)t
w

and thus the sets of tasks
that algorithm A chooses for the w processors after g(S) have to be picked from G1.
For a specific task τ in G1 not completed at g(S) (i.e. τ ∈ [T]), let pτ = Pr[τ /∈ P1] then Pr[τ /∈ ⋃i Pi] = pwτ .
Let LU be the random variable whose value is the number of tasks of G1 left undone at the formation of
group g(U).

E[|LU |] = E[|[T]−
⋃

i

Pi|] =
∑

τ∈[T]

pwτ

As before, the function x → xk is convex on the interval [0,∞), so
∑

τ p
k
τ is minimized when the pτ are

equal. Now,
(1− α) t

w
= E[|P1|] =

∑

τ∈[T]

Pr[τ ∈ P1] =
∑

τ∈[T]

(1− pτ)

So,
∑

τ∈[T] pτ = T − (1−α)t
w

= T
(

1− (1−α)t
wT

)

and hence,

E[|LU |] ≥ T

(

1− (1− α)t

wT

)w

≥ αt

(

1− 1

w

)w

(1 − o(1))

(

1− (1− α)t

αt
(

1− 1
w

)w
(1− o(1))

)w

As limw→∞

(

1− 1
w

)w
= 1

e
and choosing α > α0 = e

w+e
we get,

E[|LU |] ≥ (1− o(1))
αt

e

1

e
1−α
α

e(1−o(1))

(1)

In particular there must exist selection of the Pi which achieves this bound. Note that after g(U) the
processors are split again into w processors where they will complete the remaining (1− o(1))αt

e
1

e
1−α
α

e(1−o(1))

tasks of G1 and the (1− α)t tasks of G2.
So finally the total work of A is at least:

(

1 + (1− o(1))cw

(

(1 − α) +
α

e
1−α
α

e+1

))

t

Note that when the tasks are independent (α = 1) the lower bound is 1 + (1 − o(1)) cw
e

which matches
the result of [5] but the lower bound gets more pessimistic as the fraction of independent tasks gets smaller.

Lemma 2. Pr[|T − E[LS]| ≥ 4log(t)
√
αt] ≤ 1

O(t2)

7

Proof. Let S be the set of tasks randomly picked by the processors in figure 2 at the formation of the
group g(S). For 1 ≤ i ≤ αt and 1 ≤ j ≤ αt

w
we define the random variable Y i

j that takes the value

of the jth task picked by the processor ⌈ i
αt
w

⌉. Note that in figure 2 each processor picks αt
w

tasks. Let

the function f be the cardinality of the set S and let X0, . . . , Xαt be the sequence of random variables
such that Xi = E[f(S)|Y 1

1 , . . . , Y
l
i] with l = ⌈ i

αt
w

⌉, X0 = E[f(S)] and Xαt = f(S). This sequence of

random variables is a martingale and we can use Azuma’s inequality to derive the error probability bound.

Pr[|Xαt −X0| ≥ λ
√
αt] ≤ 2e

−λ2

2 . LS is the random variable whose value is the number of tasks of G1 left
undone at the formation of group g(S), so E[LS] = αt−X0 and T = αt−Xαt. Thus for λ = 4 log(t)

Pr[|T − E[LS]| ≥ 4log(t)
√
αt] ≤ 1

O(t2)

5.2 Description of Modified-RS

We pre-process our task graph to label its nodes with the labeling procedure below. This labeling procedure
assigns every task at level li, the label i. Tasks with no dependencies at level l1 get label 0. A secondary
result of this labeling procedure is that it transforms any arbitrary task graph into a k-level task graph
suitable for our analysis. Modified-RS and its analysis are described formally in the following section.

Given a task t-DAG G = (V,E) we describe the labeling procedure l : V → N that assigns a label to
every vertex in the following manner:

• ∀v ∈ V s.t. in(v) = 0, l(v) = 0 , i.e., the independent tasks have label 0.

• Starting with u s.t. l(u) = 0, recursively label the remaining tasks in G in the following manner: if
(u, v) ∈ E, l(v) = l(u) + 1. If v has already a label i, overwrite i with the new label j only if j > i.

Modified-RS

We are now ready to define Modified-RS (m-RS) where a processor with knowledge that tasks in a set
K ⊂ V have been completed chooses the next task τ to be completed at random from V \K if and only if
∀t ∈ V \K, l(τ) ≤ l(t).

5.3 Analysis of Modified-RS

In this section, we analyze the competitive ratio of Modified-RS and we show it’s tight by obtaining the
upper bound of the work performed by our algorithm on any computation pattern (p, t)-DAG and a 2-level
task t-DAG which matches the lower bound of the previous section.

5.3.1 Upper Bound for m-RS on a 2-level task DAG

We start by defining saturated and unsaturated vertices.

Definition 6. Let C be a computational (p, t)-DAG. Associated with C are the two functions h : V → [t]∪{0}
and g : V → 2[p] \ {∅}. For a subgraph C′ = (V ′, E′) of C, let H(C′) =

∑

v∈V ′ h(v). Then, we say that a
vertex v ∈ V is saturated if H(PC(v)) ≤ t; otherwise, v is unsaturated. Let S denote the set of saturated
vertices and U the set of unsaturated vertices . Note that if v is saturated, then the group g(v) must complete
h(v) tasks regardless of the scheduling algorithm used. Along these same lines, if v is an unsaturated vertex
for which t >

∑

u<v h(u), the group g(v) must complete at least max(h(v), t −∑u<v h(u)) tasks under any

8

scheduling algorithm. A saturated vertex s is l1-unsaturated if H(PC(s)) ≥ αt. If v is an unsaturated vertex
for which

∑

u<v h(u) < t we replace v by a pair of vertices vs and vu and an edge (vs, vu) such that all edges
directed into v get directed into vs and all edges directed out of v get directed out vu and h is redefined so
that h(vs) = t−∑u<v h(u) and h(vu) = h(v)− h(vs). Doing this will allow us to have

v unsaturated ⇒
∑

u<v

h(u) ≥ t

In the same way we can have

v l1 − unsaturated ⇒
∑

u<v

h(u) ≥ αt

We will also use a generalized degree-counting argument shown is [5]

Lemma 3. Let G = (U, V,E) be an undirected bipartite graph. for a vertex v, let Γ(v) be the set of vertices
adjacent to v. Suppose for some A > 0 and for each u ∈ U we have

∑

v∈Γ(u) h(v) ≤ A and that for some

B > 0 each vertex v ∈ V we have
∑

u∈Γ(v) h(u) ≥ B then
∑

u∈U h(u)
∑

v∈V h(v)
≥ B

A

Theorem 4. Algorithm Modified-RS is
(

1 + cw
(

1− α+ α

e
1−α
α

c+1

))

-competitive for any computational

(p, t)-DAG and for a 2-level task t-DAG. Here, cw stands for the computation width of the computa-
tional (p, t)-DAG, α ∈ (0, 1] (α is the fraction of tasks at level l1) and c = 1

1
e
+o(1)

.

Proof. By the definition of an unsaturated/saturated vertex we have WOPT ≥∑s∈S
h(s) and

∑

u<v

h(u) ≥ t (2)

We define Tv as the random variable denoting the number of tasks that m-RS completes at vertex v (if v is
saturated then Tv = h(v)).
Given the (p, t)-DAG C = (V,E) construct the following bipartite graph G = (S,U, E(G)) s.t E(G) =
{(s, u)|s < u}. Assign the weight E[Tv] to vertex v. By equation 2

∀u ∈ U

∑

s∈Γ(u)

E[Ts] =
∑

s∈Γ(u)

h(s) ≥ t (3)

We show that ∀s ∈ S,

∀u ∈ U

∑

u∈Γ(s)

E[Tu] ≤ cw

(

1− α+
α

e
1−α
α

c+1

)

t (4)

Wm−RS = E

[

∑

v

Tv

]

= E

[

∑

s∈S

Ts

]

+ E

[

∑

u∈U

Tu

]

By linearity of expectation

Wm−RS =
∑

s∈S

E[Ts] +
∑

u∈U

E[Tu]

Note that equations 4 and 3 together with lemma 3 gives

Wm−RS ≤
(

1 + cw

(

1− α+
α

e
1−α
α

c+1

))

∑

s∈S

E[Ts]

=

(

1 + cw

(

1− α+
α

e
1−α
α

c+1

))

∑

s∈S

h(s)

≤
(

1 + cw

(

1− α+
α

e
1−α
α

c+1

))

WOPT

9

as desired.
Now we show equation 4. Consider s ∈ S a saturated vertex and it’s successor graph S(s). S(s) is covered

by w paths Pi, i = 1 . . . w where w is at most cw. For each path Pi let u0
i be the first unsaturated vertex

and s1i be the first l1-unsaturated vertex. Let Ls1
i
be the random variable whose value is the set of tasks left

incomplete by m-RS at the formation of the group g(s1i). For a fixed τ ∈ G1 conditioned upon the event
that τ is not yet complete, the probability that τ is not chosen by m-RS at a selection point in PC(s

1
i) is no

more than
(

1− 1
αt

)

. As s1i is l1-unsaturated
∑

v<s1
i
h(v) ≥ αt then for each i,

Pr[τ ∈ Ls1
i
] ≤

(

1− 1

αt

)αt

≤ 1

e

As there are αt tasks in G1, E[|Ls0
i
|] ≤ αt

e
. As before, we let T be the actual number of tasks left undone at

vertex S. By the same reasoning as in lemma 2, we see that,

Pr[|T − E[Ls1
i
]| ≥ 4log(t)

√
αt] ≤ 1

O(t2)

Then T ≤ αt
(

1
e
+ o(1)

)

= αt
c

with high probability. Now for each u0
i consider the subgraph Hi of the

computational (p, t)-DAG defined as Hi =

(

w
⋃

j=1

SC(s
1
j)

)

⋂

PC(u
0
i). Given a task τ ∈ G1 conditioned upon

the event that τ is not yet complete, the probability that τ is not chosen by m-RS at a selection point in
Hi

1 is no more than (1− c
αt
). As

∑

{s1
i
<v}∩{v<u0

i
} h(v) ≥ (1− α)t, for each i

Pr[τ ∈ Lu0
i
] ≤

(

1− c

αt

)(1−α)t

≤ 1

e
1−α
α

c
.

So the E[|Lu0
i
|] ≤ (1 − α)t + αt

e
1−α
α

c+1
Let Xi be the random variable whose value is the number of tasks

done by m-RS on the portion of Pi consisting of unsaturated vertices. Xi ≤ |Lu0
i
| so E[Xi] ≤ E[|Lu0

i
|]. By

linearity of expectation

E[
∑

i

Xi] ≤ cw((1 − α)t+
αt

e
1−α
α

c+1
)

Now every unsaturated vertex appears in some Pi in SC(s) hence,

∑

u∈Γ(s)

E[Tu] ≤ E[
∑

i

Xi] ≤ cw(1 − α+
α

e
1−α
α

c+1
)t

In the next section we extend the lower bound and upper bound results to any k-level task t-DAG.

1If ∃s1
i
s.t.

P

s1
i
<v<u0

i

h(v) < αt
c
), the competitive ratio is no worse than 1 + cw(1− α).

10

Figure 3: Right: task t-DAG, α1,2,...,k ∈ (0, 1], Left: An instance of a k-level computational (p, t)-DAG

5.4 A Lower bound for k-level task graphs

Theorem 5. Let A be a scheduling algorithm for k-level task graphs. Then,

WA ≥
(

1 + cw

(

(1− α1) +
α1

e(1−o(1))
αk
α1

eak+ak

))

WOPT

where ai, i = 1..k − 1 is a sequence defined as follows,
a1 = 1
ai+1 = (1 − o(1))αi

α1
eai + ai

Proof. Consider the computation pattern given by the computational (p, t)-DAG and the task t-DAG in
Figure 1. Let t >> w and t mod w = 0. Initially, the computation pattern has w processors. For this
computation pattern the optimal off-line algorithm completes all the t tasks at the formation of the group
g(Sk) and accrues exactly t work. Let Pj ⊂ G1 denote the set of αit

w
tasks for processor j at level li of the

computation pattern (i.e. the w processors resulting from the split of group g(Si−1)) . We analyze A when
the tuple P = (P1, . . . , Pw) is selected uniformly at random among all such tuples. We will show that for
any algorithm A there is a configuration of the Pi such that

WA ≥
(

1 + cw

(

(1− α1) +
α1

e(1−o(1))
αk
α1

eak+ak

))

t

We first show by induction that the expected number of tasks left undone by A at the formation of group
g(Sk) is

E[|LSk
|] ≥ α1t

e
(1−o(1))

αk
α1

eak+ak

when limw→∞

(

1− 1
w

)w
= 1

e
. This will give us the bound on WA.

11

The base case is shown in theorem 1. So we assume the result for i− 1, namely

E[|LSi−1 |] ≥
α1t

e(1−o(1))
αi−1
α1

e
ai−1+ai−1

Let Ti−1 be the actual number of tasks left undone at the formation of g(Si−1). In lemma 6, we show that
with a high probability Ti−1 ≥ E[|LSi−1 |](1− o(1)). As in the proof of theorem 1, for some αii = 1, . . . i− 1
the number of tasks left undone from G1 at g(Si−1) can exceed the αit

w
tasks that the w processors at level

li can complete.

For a specific task τ in G1 not completed at g(Si) (i.e. τ ∈ [TSi−1]), let pτ = Pr[τ /∈ P1] then Pr[τ /∈
⋃

i Pi] = pwτ . Let LSi
be the random variable whose value is the number of tasks of G1 left undone at the

formation of group g(Si).

E[|LSi
|] = E[|TSi−1 |]−

⋃

i

Pi|] =
∑

τ∈[TSi−1
]

pwτ

As before, the function x → xk is convex on the interval [0,∞), so
∑

τ p
k
τ is minimized when the pτ are

equal. Now,
αit

w
= E[|P1|] =

∑

τ∈[TSi−1
]

Pr[τ ∈ P1] =
∑

τ∈[TSi−1
]

(1− pτ)

So,
∑

τ∈[TSi−1
] pτ = TSi−1 − (1−αi)t

w
= TSi−1

(

1− (1−αi)t
wTSi−1

)

and hence,

E[|LSi
|] ≥ T

(

1− (1 − αi)t

wTSi−1

)w

As limw→∞

(

1− 1
w

)w
= 1

e
, we have

E[|LSi
|] ≥ α1t

e(1−o(1))
αi
α1

eai+ai

and our induction is complete.

Lemma 6. Pr[|T − E[Lg(Si)]| ≥ 4log(t)
√
αit] ≤ 1

O(t2) , for i = 1 . . . k

Proof. The proof follows exactly the proof of lemma 2 by replacing S by Si and α by αi

5.5 Upper Bound for m-RS on a k-level task DAG

Theorem 7. Algorithm Modified-RS is

(

1 + cw

(

(1− α1) +
α1

e

αk
α1

cak+ak

))

-competitive for any computa-

tional (p, t)-DAG and for any k-level task t-DAG where, αi ∈ (0, 1] and c = 1
1
e
+1

and where ai, i = 1..k is a

sequence defined as follows,
a1 = 1
ai+1 = αi

α1
cai + ai

Proof. A vertex v is li-unsaturated if
∑

u<v h(v) ≥ αit. We will proceed as in the proof of theorem 4, since

the reasoning is the same we only need to show that
∑

u∈Γ(s) E[Tu] ≤ cw

(

(1− α1) +
α1

e

αk
α1

c
ak+ak

)

t. Let sji

be the first lj-unsaturated vertex on Path Pi, We will proceed by showing the theorem by induction on the

tasks left undone at the formation of the group g(sji). For j = 1 the result is show in theorem 4. Assume

12

at the formation of group g(sj−1
i), Tj−1 ≤ α1t

c

αj−1
α1

c
aj−1+aj−1

we will show that at sj our induction hypothesis

holds. Now as in Section 5.2 consider for each unsaturated vertex u0
i the subgraph

Hij =

(

⋃

k

SC(s
j
k)

)

⋂

PC

(

sj+1
i

)

,

Given a task τ ∈ G1 not yet complete at the formation of the group g(sji) the probability that τ is not

chosen by Modified-RS at the formation of group g(sji) is
2 As

∑

s
j
i
<v<u0

i
h(v) ≥ αj)t, for each i

Pr[τ ∈ L
s
j
i
] ≤

(

1− αj

αjTj−1

)(αj)t

≤ 1

e
αj

Tj−1

.

and the expected value of tasks left undone at sji is less than ≤ α1t

c

αj
α1

c
aj +aj

and thus result follows.

6 Conclusions

We studied the problem of cooperatively performing a set of t-tasks with dependencies in a decentralized
setting where the communication medium is subject to dynamic changes. We pursued competitive analysis
and presented a tight upper bound on the competitive ratio of our randomized algorithm Modified-RS on
k-level task t-DAG. When the tasks are independent our results subsume the results of [5] and this bound
is tight for the case of independent tasks. We show that the performance of any scheduling algorithm for
leveled task graphs depends the computational width that captures the dynamics of the communication
medium and on the nature of dependencies among the tasks. In particular we show that performance of any
algorithm in this model can deteriorate as the size of the set of independent tasks reduces.

References

[1] B. Chlebus, R. De Prisco, and A.A. Shvartsman. Performing tasks on restartable message-passing
processors. Distributed Computing, 14(1):49–64, 2001.

[2] R. De Prisco, A. Mayer, and M. Yung. Time-optimal message-efficient work performance in the
presence of faults. In Proceedings of the 13th ACM Symposium on Principles of Distributed Computing
(PODC 1994), pages 161–172, 1994.

[3] S. Dolev, R. Segala, and A.A. Shvartsman. Dynamic load balancing with group communica-
tion. In Proceedings of the 6th International Colloquium on Structural Information and Communication
Complexity (SIROCCO 1999), pages 111–125, 1999.

[4] C. Dwork, J. Halpern, and O. Waarts. Performing work efficiently in the presence of faults. SIAM
Journal on Computing, 27(5):1457–1491, 1998. A preliminary version appears as “Accomplishing work
in the presence of failures” in the Proceedings of the 11th ACM Symposium on Principles of Distributed
Computing (PODC 1992), pages 91–102, 1992.

2If the condition ∀s
j

i
, ∀v : sj

i
< v < s

j+1

i
,

P

s
j
i
<v<s

j+1
i

h(v) <
αjt

cj
at level lj then the competitive ratio will be no worse than

1 + cw

“

1−
Pi=j

i=1
αi

”

.

13

[5] Ch. Georgiou, A. Russell, and A.A. Shvartsman. Work-competitive scheduling for cooperative
computing with dynamic groups. In SIAM Journal on Computing: Volume 34, Issue 4, pages 848–862,
2005.

[6] Ch. Georgiou, A. Russell, and A.A. Shvartsman. Work-competitive scheduling for cooperative
computing with dynamic groups. In Proceedings of the 35th Annual ACM Symposium on Theory of
Computing (STOC 2003), pages 251–258, 2003.

[7] G. Malewicz, A. Russell, and A. A. Shvartsman. Distributed cooperation during the absence of
communication. In Proceedings of the 14th International Symposium on Distributed Computing (DISC
2000), pages 119–133, 2000.

[8] D. Powell, editor. Special Issue on Group Communication Services, volume 39(4) of Communications
of the ACM. ACM Press, 1996.

[9] D. Sleator and R. Tarjan. Amortized efficiency of list update and paging rules. Communications
of the ACM, 28(2):202–208, 1985.

[10] A. Fiat, R.M. Karp, M. Luby, L.A. McGeoch, D.D. Sleator, and N.E. Young. Competitive
paging algorithms. Journal of Algorithms, 12(4):685–699, 1991.

14

	Introduction
	Prior Work
	Our Results
	Model and Definitions
	Lower bounds and Algorithm Modified-RS
	A lower bound for 2-level task graphs
	Description of Modified-RS
	Analysis of Modified-RS
	Upper Bound for m-RS on a 2-level task DAG

	A Lower bound for k-level task graphs
	Upper Bound for m-RS on a k-level task DAG

	Conclusions

