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Abstract—This paper presents QuoCast, a resource-aware
protocol for reliable stream diffusion in unreliable environments,
where processes may crash and communication links may lose
messages. QuoCast is resource-aware in the sense that it takes
into account memory, CPU, and bandwidth constraints. Memory
constraints are captured by the limited knowledge each process
has of its neighborhood. CPU and bandwidth constraints are
captured by a fixed quota on the number of messages that
a process can use for streaming. Both incoming and outgoing
traffic are accounted for. QuoCast maximizes the probability that
each streamed packet reaches all consumers while respecting
their incoming and outgoing quotas. The algorithm is based
on a tree-construction technique that dynamically distributes
the forwarding load among processes and links, based on their
reliabilities and on their available quotas. The evaluation results
show that the adaptiveness of QuoCast to several contraints
provides better reliability when compared to other adaptive
approaches.

Index Terms—large-scale systems; reliable streaming; resource
awareness;

I. INTRODUCTION

Many internet services, such as audio and video streaming,
and peer-to-peer file exchange systems, rely on multicast.
Consequently, their performance depends on the performance
of the underlying multicast mechanism. Since IP multicast is
facing several technical and commercial deployment issues,
these internet services are increasingly relying on application-
level multicast solutions [1], [3], [5], [6], [7], [8], [10], [11],
[13], [14], [17] as an alternative to IP multicast. In this paper,
we are interested in application-level multicast in peer-to-
peer (P2P) cooperative environments. In such contexts, peers
contribute resources in exchange for their ability to use the
multicast service. Peers may want to have control over the
percentage of resources (i.e., CPU, memory and bandwidth)
they dedicate to that service, which is especially true when
the user has limited resources or has to pay for them—in
some Internet subscriptions, clients pay only for what they
consume or have access to a bounded bandwidth. For the peers,
defining a percentage of the resources dedicated to multicast
gives them more freedom to control their resources. For the
multicast service, however, it represents an additional difficulty
in terms of resource constraints. A further complication for the
multicast service is that the environment might be unreliable,
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that is, nodes and communication links may fail, unexpectedly
ceasing their operation or dropping messages. Given these
constraints, an effective solution should use the available
resources sparingly and account for node crashes and message
losses.

In this paper, we introduce QuoCast, a resource-aware
solution to the reliable multicast problem. QuoCast accounts
for CPU, memory, and communication constraints. CPU and
bandwidth resources constraints at each peer are modeled
as a bounded capacity of receiving and sending data; the
memory resource limit of each peer implies that each one
has a partial view of the system, including a set of peers in
its neighborhood. Each process has two quotas representing
its reception and sending capabilities. The main goal of our
approach is to maximize the probability that each packet
reaches all consumers, given these quotas. Our multicast algo-
rithm is based on a tree overlay that dynamically distributes
the propagation load among processes and links, based on
their reliabilities and available quotas. Our tree construction
technique builds a routing overlay covering the whole system,
but based only on the partial view each process has about
its neighborhood. This tree construction technique is inspired
from the one described in [1] taking into account components
reliability and only resources-limitations related to sending
messages. Thus, QuoCast can be seen as a generalization
of the solution proposed in [1] in the sense that it adds
the adaptiveness to the limitation a process may have to
receive messages. As we will see from our evaluation, this
generalization brings some interesting gain in reliability.

We quantify the advantages of QuoCast by comparing
its performance with other adaptive approaches taking into
account a subset of the constraints considered by QuoCast. We
also show that QuoCast is not very sensitive to the scope of the
partial view used by processes to build the global distribution
tree, attesting the scalability of the approach.

This paper is organized as follows. Section II describes our
model and the problem we aim to solve. Section III presents
a preliminary version of QuoCast in a context where each
node has global knowledge about the system; this allows us
to focus on our tree construction technique. Section IV extends
this result to environments where each node has only a partial
view of the system. The results of our performance evaluation
are presented in Section V while Section VI describes related
work. Section VII concludes the paper.



II. SYSTEM MODEL AND PROBLEM STATEMENT

We consider an asynchronous distributed system composed
of processes (nodes) that communicate by message passing.
Our model is probabilistic in the sense that processes can
crash and links can lose messages with a certain probability.
More formally, we model the system’s topology as a connected
graph G = (Π, Λ), where Π = {p1, p2, ..., pn} is a set
of n processes and Λ = {l1, l2, ...} ⊆ Π × Π is a set of
bidirectional communication links. Process crash probabilities
and message loss probabilities are modeled as failure config-
uration C = (P1, P2, ..., Pn, L1, L2, ..., L|Λ|), where Pi is the
probability that process pi crashes during one computation step
and Lj as the probability that link lj loses a message during
one communication step.

Furthermore, we consider a set of physical constraints
related to the limited hardware resources or to the dedicated
percentage arbitrary fixed by the peer itself.1 To capture these
limitations, we define for each process pi a fixed number
of messages it can receive, its in-quota, and a fixed number
of messages it can send, its out-quota, denoted respectively
inqi and outqi. These quotas are a translation of both the
percentage of CPU and memory a peer is willing to dedicate
to forward a message and the download/upload limit of the
ISP of the peer, which might be further limited by the
percentage of that bandwidth the peer is willing to dedicate
to the multicast. While outqi captures the percentage of
CPU, memory and the upload bandwidth pi dedicates to the
multicast, the in-quota inqi represents the dedicated CPU,
memory and download bandwidth at process pi. Associated
to processes pi ∈ Π, we then define InQ = (inq1, inq2, ...,
inqn) as the set of individual in-quotas inqi and OutQ =
(outq1, outq2, ..., outqn) as the set of individual out-quotas
outqi. Based on these definitions, we then can say that the
tuple S = (Π, Λ, C, OutQ, InQ) completely defines the
system considered in this paper.

In order to take into account the limited memory constraints,
we further assume that each process has only a partial view
of the system, meaning that its routing decisions can only
be based on incomplete knowledge. Formally, the limited
knowledge of process pi is modeled as distance Di, which
defines the maximum number of links separating pi from
any other node in its known subgraph. That is, distance Di

implicitly defines the partial knowledge of pi as si =
(Πi, Λi, Ci, OutQi, InQi), with Πi ⊆ Π, Λi ⊆ Λ,
Ci ⊆ C, InQi ⊆ InQ, and OutQi ⊆ OutQ. In the
remainder of this paper, any graph comprised of processes
and links includes the corresponding configuration and quotas
information.

Intuitively, the main question addressed in this paper is
the following: how to ensure a message multicast with the
maximum of reliability, in spite of unreliable processes and
links, and of the limited hardware resources and memory
available at each process?

1This captures the fact that the user behind a peer can voluntary limit the
resources dedicated to the multicast.

III. GLOBAL QUOCAST

For the sake of simplicity, we first describe the Global
QuoCast algorithm, a variant of QuoCast relying on the
assumption that each process knows the whole system S. This
simplification allows us to focus, in this section, on our tree
construction technique ensuring the maximum probability to
reach all nodes. As we will detail later, such a probability is
named the reachability probability. We assume that a view of
S is given by an underlaying Environment Modeling Layer
(EML) permitting to get an up-to-date view of the system
as defined by our model. Explaining how the environment
modeling actually works goes beyond the scope of this paper
and can be found in [10]. Of course, assuming that each
process has a global knowledge about the system does not
ensure scalability, so we present a scalable version of QuoCast
in Section IV.

A. Overview

QuoCast is defined by the primitives multicast(m) and
deliver(m). To be adaptive to the environment changes, for
each multicast QuoCast gets an up-to-date view of S by calling
the EML primitive getView(). To diffuse a message m, by
calling multicast(m) primitive, a source process pi first builds
a data delivery tree covering an up-to-date of view of the
system S. Such a tree ensures the maximum success rate de-
fined as the probability to reach all nodes, given in/out-quotas
of messages at the disposal of each node. This is achieved
by having pi compute a Maximum Probability Tree (MPT)
covering the system by calling the mpt() primitive (line 5).
The MPT construction technique is presented in Section III-B.
As we will see, MPT is at the heart of our approach as it
ensures the reliability and the resources-awareness aspects of
our solution.

1: uses: EML
initialization:

2: S ← ∅
3: procedure multicast(m)
4: S ← EML.getV iew()
5: T ← mpt(S, ({pi}, ∅, {Pi}, {outqi}, {inqi}) )
6: −→m ← optimize(T )
7: propagate(m, T,−→m)
8: deliver m to pi

9: upon receive (m, T , −→m) for the first time do
10: propagate(m, T,−→m)
11: deliver m to pi

12: procedure propagate(m, T,−→m)
13: for all pj such that link (pi, pj) ∈ E(T ) do
14: repeat −→m[j] times : send(m, Ti, −→m) to pj

Algorithm 1. Global QuoCast

Since pi is the source, the initial propagation tree passed
as argument is simply composed of pi and its associated
information (failure probability Pi, its out-quota outqi and
its in-quota inqi). As discussed in Section III-B, the returned
tree T maximizes the probability to reach everybody in S,



based on the available in/out-quotas. Process pi then calls the
optimize() primitive, passing it T (line 6). This primitive
is discussed in details in Section III-B. At this point, all
we need to know is that it returns a propagation vector −→m
indicating, for each link in T , the number of m retransmissions
that should be sent through that link in order to maximize
the probability to reach everybody in S. Finally, pi calls
the propagate() primitive (line 7), which simply follows the
forwarding instructions computed by optimize(). That is, it
sends message m, together with the routing tree T and the
propagation vector −→m, to the pi’s children in T .

B. Maximum Probability Tree

The concept of Maximum Probability Tree (MPT) is at the
heart of our approach, as it materializes the resource-awareness
and the reliability aspect of our approach. Intuitively, an
MPT maximizes the probability to reach all processes within
a given scope by optimizing the in/out-quota use of these
processes. Before describing how the mpt() function given
in Algorithm 2 builds up an MPT, we first need to introduce the
notions of reachability probability and reachability function.

Reachability probability.: The reachability function, de-
noted by R(), computes the probability to reach all processes
in some propagation tree T with configuration C(T ), given a
vector −→m defining the number of retransmissions of a message
that should transit through each link of T . We then define
the probability returned by R() as T ’s reachability probability
given a vector −→m. Equation 1 below proposes a reachability
function that assumes that only links can fail by losing mes-
sages with a given probability, whereas processes are assumed
to be reliable. Extending this function to process failures is
straightforward [10].

R(T,−→m) =
|−→m|∏
j=1

1− L
m[j]
j with Lj ∈ C(T ) (1)

Using R(), we then define the maxR() function presented
in Algorithm 2 (lines 8 to 10), which returns the maximum
reachability probability for T . To achieve this, maxR() first
calls the optimize() function in order to obtain a vector −→m
that optimally uses the in/out-quotas available to processes
in T . It then passes this vector, together with T , to R() and
returns the corresponding reachability probability.

The optimize() function iterates through each process ps

in T and divides its out-quota outqs in a way that maximizes
the probability to reach direct children of ps (line 14 to 18).
This function materializes the resource-awareness aspect as it
sparingly divides the out-quota of each process ps by taking
into account the in-quotas of its children in T . For this, it
allots messages of outqs one by one (line 16 to 18). That is, in
each iteration step it chooses the outgoing link lu from ps that
maximizes the gain in probability to reach all ps’s children in
T , when sending one more message through lu if the children
pu’s in-quota inqu permits it, i.e., −→m[u] < inqu (line 17).
Thus, the maximum number of messages assigned to a link lu
is the minimum of the outqs, the out-quota of its start process
ps and the inqu, the in-quota of its end process pu. When all

1: function mpt(S, T )
2: while V (S)− V (T ) 6= ∅ do
3: O ← {lj,k | lj,k ∈ E(S) ∧ pj ∈ V (T ) ∧ pk ∈ V (S)−

V (T )}
4: let lu,v ∈ O such that ∀lr,s ∈ O :
5: maxR( T ∪ pv ) ≥ maxR( T ∪ ps )
6: T ← T ∪ pv

7: return T

8: function maxR(T )
9: −→m ← optimize(T )

10: return R(T,−→m)

11: function optimize(T )
12: let −→m : ∀lj ∈ E(T ), −→m[j] is the number of messages to be

sent through link lj
13: −→m ← (0, 0, · · · , 0)
14: for all ps ∈ V (T ) do
15: let Λs ⊂ E(T ) : lk ∈ Λs ⇒ (ps, pk) ∈ E(T )
16: while (

P
lk∈Λs

−→m[k] < outqs) ∧ (∃ lv ∈ Λs | −→m[v] <
inqv) do

17: let −→mu : lu ∈ Λs ∧ ∀t6=u
−→mu[t] = −→m[t] ∧−→m[u]+1 ≤ inqu ∧ −→mu[u] = −→m[u]+1 ∧ R(T,−→mu)−

R(T,−→m) is max
18: −→m ← −→mu

19: return −→m

Algorithm 2. Maximum Propagation Tree

individual quotas have been allocated or all children in-quotas
are exhausted, optimize() returns a vector −→m that provides the
maximum reachability probability when associated with T .

MPT building process.: We now have all the elements
needed to present the MPT building technique carried out
by the mpt() function, given the system S and an initial
propagation tree T . This function simply iterates until all
processes in S but not in T have been linked to T , i.e., it
only stops when T covers the whole system S (line 2 to 6).
In each iteration step, the mpt() function then adds the link
that produces a new tree exhibiting the maximum reachability
probability (line 5).

While being resource-aware by taking into account various
resources limits captured into in/out-quotas, Global QuoCast
does not take into account one of the main resources: memory.
Thus, assuming that each process has a global knowledge
about the system prevents our solution from being scalable.
In addition, imposing to only one process the computation of
the MPT covering the whole system represents a significant
overhead. The next section precisely proposes a scalable vari-
ant of the QuoCast in which the MPT computation overhead is
shared by nodes considering only a limited scope when calling
the mpt() primitive. Such an overhead is further reduced by
a parameter marking nodes within a scope that will have to
contribute to the tree computation. This parameter allows us to
control the MPT computation overhead with respect to nodes
available CPU resource.

IV. SCALABLE QUOCAST

In this section, we assume that each process has a limited
memory used to capture a partial knowledge about the system.
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Fig. 1. Propagation tree incrementing.

The known view of each process pi covers a certain width of
its neighborhood. Such width is defined by a scope Di, which
defines the maximum number of links separating pi from any
other node in its known subgraph. To simplify the description,
we assume that the scope D is the same for all processes, i.e.,
∀pi, Di = D.

In the following we describe a solution, borrowed from [1],
to make QuoCast scalable based on limited views about the
system. To obtain these partial views, QuoCast relies also
on EML. This layer defines the getScope() primitive, which
returns to each process pi an up-to-date view of its subgraph
si defined by scope D. It also defines the distance() primitive
returning the distance between any two nodes in si when called
by pi. By distance between two nodes, we mean the number
of links in the shortest path separating these two nodes.

Contrary to global QuoCast our scalable solution consists
in disseminating messages through a propagation graph gen-
erated in a decentralized manner by several processes rather
than by only the source process. The idea is to define the
propagation graph as a result of the spontaneous aggregation
of several scope limited propagation trees. Each propagation
tree is in turn the result of an incremental building carried
out along the paths from the producer to the consumers. It is
important to note that the resulting propagation graph itself
might well not be a tree. This incremental building follows
the MPT computation technique aiming to get a propagation
graph close to the global MPT that we could build, if we
had a global knowledge about the system. That is, processes
contribute to the MPT computation based on their partial
knowledge about the system. Those processes are defined by
an incrementing rate parameter, noted r and representing a
scope within D, i.e., r ≤ D. When a source process pi

initiates a multicast, it builds the first propagation tree as the
local MPT covering its known subgraph si defined by its scope
D. This MPT is then incremented by each interior node pr

at a distance r from the source using the MPT construction
technique. The incrementing node pr is in charge to add to
the just received propagation tree nodes in its view sr that
are not in the tree it received. This treatment is repeated by
each interior node at a distance r from the last incrementing
node ancestor in the received propagation tree.

Intuitively, r defines how often a propagation tree should

be incremented as it travels through the propagation graph.
The latter then spontaneously results from the concurrent and
uncoordinated increments of propagation trees finding their
ways to the consumers. While the scope D allows us to
control the amount of memory at each process, r allows us to
control the CPU resources. Indeed r defines the propagation
graph computation overhead distribution. When r equals D
such an overhead is carried by the minimum number of
incrementing nodes. As r gets lower than D, the number of
incrementing nodes becomes higher. This permits to distribute
the computation load of the propagation graph among more
processes. Such a ratio may reflect the available CPU at the
incrementing nodes.

Figure 1 illustrates the propagation tree incrementing al-
gorithm in a simple example. In this scenario, the distance
defining the scope and the incrementing rate r are the same
for all processes and equal to 2. Process p1, the producer,
builds a first propagation tree pt1 covering its scope s1; this
tree is pictured in Figure 1 (a) using bold links. All nodes
in pt1 that are at a distance r = 2 from p1 are incrementing
nodes, which means they have to increment pt1 when they
receive it. Process p3 being such a node, calls the mpt()
function, passing it pt1 and its scope s3. This function adds
the dashed links pictured in Figure 1 (a) to pt1 and returns
the resulting Maximum Probability Tree (MPT); this MPT
contains the local propagation tree rooted at p3, i.e., lpt3. This
subtree routed at p3 is then extracted from the MPT, merged
with the initial propagation tree pt1 and returned. Figure 1 (b)
pictures the new propagation tree resulting from the above
incrementing technique.

V. PERFORMANCE EVALUATION

The performance of QuoCast was evaluated through a
simulation model. In the evaluation that follows, each reported
value reflects the success rate of the protocol after 1000
distinct executions. At each execution, a multicast of a stream
packet is simulated. An execution is successful if a multicast
packet reaches all nodes in the system. Note that a missed
execution, i.e., where the stream packet does not reach all
nodes, could be due either to the probabilistic behavior of links
losing messages or due to our propagation graph not covering
the whole system. As discussed in [1], this type of misses



can be repaired with a countermeasure inducing a negligible
overflow of quotas. In this evaluation, we focus on misses due
the probabilistic behavior of the links.

A. Evaluation setup

For simplicity, we consider link failures only, and assume
that processes are reliable. We distinguish two types of pro-
cesses in the experiments: regular processes and hubs. Hubs
have twice the in-quota and the out-quota of regular processes
and are connected to their neighbors through highly reliable
links. Table 1 summarizes the range of values used in the
experiments.

param process type description
regular hub

– 80 20 number of processes
Pi 0 0 probability to crash
Li 0.05..0.55 0.0001 probability to lose msg
Di D D scope
inqi inq 2× inq in-quota
outi out 2× out out-quota

TABLE I
SYSTEM PARAMETERS

Processes were organized in regular topologies of varying
connectivity. We executed experiments starting with a ring
(i.e., connectivity of 2, Figure 2(a)) and then incrementally
augmented the connectivity, as shown in Figure 2, until we
reached 20 neighbors per process. Notice that a ring provides
a worst case analysis since messages have to traverse in the
average half of the processes in the system to be delivered.
In this topology, our tree construction technique provides its
minimum advantage as the number of links in the system is
the lowest making the choice of links to include in the tree
limited.

....

(a) Connectivity=2 (b) Connectivity=4 (c) Connectivity=6

Fig. 2. Different topologies.

To facilitate the evaluation, we set the scope to be the same
for all processes during an execution, i.e., ∀pi : Di = D.
To avoid regular network configurations, we then defined
20% of processes to be hubs with the configuration described
in Table 1.

B. Adaptiveness benefit

This section discusses the advantage of combining both re-
source and unreliability awareness when building the propaga-
tion tree, that is, it shows the benefit of our MPT construction
technique. We compare our MPT to three relevant solutions.
The first is inspired by the tree defined in Overcast [11].
Overcast is targeted at bandwidth-intensive applications. It
defines a tree overlay that aims at maximizing the outgoing

bandwidth by placing nodes as far as possible from the root
(the source) without sacrificing bandwidth. The available band-
width resource in Overcast is modeled as weights assigned
to links. In order to adapt the Overcast tree construction
technique to our model, we consider the link weight as
the number of messages assigned to the link, calculated by
dividing the node out-quota by the number of its outgoing
links in the tree. Thus, when building the Overcast tree in
our model, at each iteration we add the link through which
we can assign the maximum number of outgoing messages
without considering the in-quota of that link end-node.

The second protocol is part of our previous work defined
in [10] defining a reliable broadcast taking into account nodes
failures probabilities (Pi) and links message loss probabilities
(Li). This broadcast solution is also based on a tree overlay
named the Maximum Reliability Tree (MRT). This tree defines
the most reliable tree of a known subgraph through which
a message will be propagated. For fair comparison, we also
apply our Optimize() function after defining this tree overlay.
Thus, once the MRT is built all nodes out-quotas are dis-
tributed in way to maximize the advantage of this resource
with respect to the reliability of components included in MRT.

The third one is the tree defined by the multicast protocol
proposed in our previous work [1]. This protocol, which
hereafter we refer to as OQStream, is also resource-aware but
does not take into account the in-quota of processes, that is,
when laying off a multicast tree, no limits are considered for
the in-quota of processes; messages exceeding the in-quota
of a process are simply lost. OQStream is a good baseline
as experiments have shown that by itself it is better than
traditional gossip techniques.

In what follows, we show the results provided by our
solution when using these three tree structures: the Overcast
tree, the MRT and the OQStream tree. When it comes to the
limited knowledge each node has about the system, we assume
that, in our strategy and the compared protocols, nodes has
only a partial view. Based on this knowledge, we use our
Gambling increment strategy in order to build a propagation
graph covering the whole system while using the different tree
build criteria.

In this comparison, we vary the network connectivity c,
while fixing the incrementing rate r to 2 and the scope D
defining the known subgraph of each process to 5. Figure 3
shows the benefit of QuoCast over the compared protocols
when facing the same constraints for different Li ranges
with the outq = 10 and inq = 2 messages. Hereafter, we
interpret the most interesting observations we detected by
comparing QuoCast based on MPT and QuoCast with each
of its comparison tree.

QuoCast vs. Overcast: QuoCast provides a higher re-
liability when using MPT than when using the Overcast
tree. Also, our approach has a different behavior when using
the Overcast tree while varying the network connectivity.
Indeed, as the connectivity increases more links in the system
are created offering a larger choice of links to the MPT
construction technique. While the MPT takes advantage to
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Fig. 3. QuoCast vs. compared protocol reliability with outq = 10 and inq = 2

include a more reliable links, the Overcast tree moves away
from the line structure which imposes more leaves and thus
more lost out-quotas. These out-quotas would contribute to
hide the environment unreliability if used. In addition, we
noticed that varying the out-quota with the same in-quota
(inq = 2) using Overcast tree does not improve the reliability.
Indeed, aiming to use the maximum of outgoing bandwidth
Overcast will try to assign the whole out-quota of one node
to only one outgoing link. This allocation is however wasteful
since the end-node of that link will not be able to deliver
more than its defined in-quota, which lower than the sender
out-quota. Thus the number of messages resulting from the
difference between the sender out-quota and the receiver in-
quota are simple lost.

QuoCast vs. MRT: As shown in Figures 3 and 4, the
success rate of our approach is globally higher when using
MPT than when using the MRT. In Figure 3, results using
MPT (QuoCast) and using MRT are too close. Indeed, having
the resulting MPT with an in-quota of 2 is too close to the
tree built if we had to send only one message per link. Such a
tree is the MRT. Thus, in case of limited resources, our MPT
construction technique focusses on the components reliability
as the MRT do. However, as shown in Figure 4, with a low
connectivity (except the connectivity of 2 where the system is
a ring) the difference between MPT and MRT is bigger when
more in-quota are available at each node. For example, when
the Li ∈ [0.05, 0.55], with the same out-quota outq = 10,
the connectivity of 4 and the in-quota inq = 4, using MPT
provides a success rate 40% better than when using MRT.
Here, our MPT construction technique increases the overall
reliability by taking advantage of available in/out resources
and adapting the system reliability.

QuoCast vs. OQStream: In this section, we discuss the
success rate of QuoCast and OQStream while varying the
network connectivity and the reliability of links. For both
algorithms, as the connectivity increases the success rate
increases—as links are added to the network, the construction
tree algorithm has more choices to select reliable paths.
QuoCast has better success rate than OQStream, and its
advantage increases as the range of Li increases. Indeed,
the improvement of QuoCast over OQStream relies on the
profit gained by taking into account the in-quota, which avoids
losing messages exceeding it by distributing the out-quota
towards processes able to deliver the sent messages. The

improvement of sending more messages through more links
depends on those links reliability. That is, the higher the
unreliability of one link, the higher the improvement when
sending one more message through it. In terms of reacha-
bility probability computed using our reachability function,
sending two messages instead of one through a link with
0.55 of unreliability, improves its reachability probability by
approximately 25% ((1− 0.552)− (1− 0.55) = 24.75%). On
the other hand, sending two messages instead of one through
a link with 15% of unreliability improves its reachability
probability by 9% ((1 − 0.12) − (1 − 0.1) = 9%). Thus, the
improvement percentage of QuoCast on the final reachability
probability depends on the links reliability. This improvement
is approximately of 10% when Li ∈ [0.05 − 0.1] and
approximately 30% when Li ∈ [0.05− 0.55].

Figure 5, shows the same measurements comparing Quo-
Cast and OQStream with outq = 4 and inq = 2 messages.
Globally, QuoCast offers a higher success rate than OQStream.
Note also that the difference between outq and inq has a
different impact on QuoCast and OQStream.

As shown in Figures 3 and 5, while QuoCast remains stable
as the outq increases, OQStream reacts negatively to large
offer of this resource. In this case, QuoCast did all possible
improvements starting from outq = 4 with respect to the in-
quota constraint. Offering more outgoing messages, does not
improve the global reliability as we remain limited by inq.
OQStream, however, follows a different strategy when facing
a large outq. Indeed, when building the tree in OQStream,
the links reliability has no more impact when selecting a link
to add to the tree being constructed. This impact is hidden
by the big number of messages associated with any selected
link. That is, whatever the link reliability, the reachability
probability tends towards 1 from the first selected link thanks
to the big number of messages associated to it. Thus, the
reachability probability comparison that should exist between
links candidate to increment the tree has no utility and stops
at the first selected link. When facing the in-quota limit,
the resulting tree reachability probability becomes a function
of the reliability of the links included to the tree arbitrary.
Obviously, this probability is improved as the reception quota
inq gets bigger. When fixing the reception limit inq, as the
available out-quota decreases, the selected links have more
effect on the reachability probability when building the tree.
Thus, the resulting tree includes the most reliable links, which
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Fig. 4. QuoCast vs. MRT protocol reliability with outq = 10 and inq = 4
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Fig. 5. QuoCast vs. OQStream reliability with outq = 4 and inq = 2

consequently increases the success rate.

C. QuoCast scalability

In this section, we discuss the impact of the partial knowl-
edge each process has about the system, defined by the scope
D. As shown in Figure 6, the scope has no relevant impact on
the success rate of the protocol. This confirms the scalability
aspect of our solution ensuring the same success rate even
based on limited view of the system. This is guaranteed
by the incrementing process of scalable QuoCast building a
propagation graph covering the whole system that is very close
to the tree built if we had a global knowledge at each process.

VI. RELATED WORK

Several application-level multicast systems based on a tree
have been proposed in the literature [5], [7], [11], [13]. Some
of them define a multicast tree that balances the propagation
load by optimizing the resources using, notably Narada [7] and
Overcast [11]. Others, also deal with scalability by limiting
the knowledge each process has about the system [5], [13].
Yet, other systems aim at increasing reliability with respect to
packet loss [2], [18]. Our approach differs from these systems
in that it targets the three goals simultaneously. Our propaga-
tion structure is built collaboratively by distributed processes
using their respective partial views of system. Reliability is
accounted for by each process when building its local tree.
Finally, resources constraints are considered when defining
how to forward packets along the propagation graph.

Narada [7] builds an adaptive mesh that includes group
members with low degrees and with the shortest path delay
between any pair of members. A standard routing protocol then

is run on the overlay mesh. This work differs from ours by
considering latency as the main cost related to links. While
using the probing to change links in order to optimize the
mesh, Narada does not take into account the loss probability of
added or retrieved links. Furthermore, Narada nodes maintain a
global knowledge about all group participants. In comparison,
we take process and link failure probabilities into account and
maintain local information only.

In [9] and [12] the authors show how to implement a gossip-
based reliable broadcast protocol in an environment in which
processes have a partial view of the system membership. Our
protocols as well do not require processes to know all the
system members or the topology connecting them. In addition
to [9] and [12], our approach takes reliability properties of
processes and links into account in order to ensure reliable
multicast. Reducing the number of gossip messages exchanged
between processes by taking the network topology into ac-
count is discussed in [15] and [16]. Processes communicate
according to a pre-determined graph with minimal connectivity
to attain a desired level of reliability. Similarly to our approach,
the idea is to define a directed spanning tree on the processes.
Differently from ours, process and link reliabilities are not
taken into account to build such trees.

As already mentioned, this paper extends an initial contribu-
tion [1] sharing with this paper some awareness about a subset
of constraints. In [1], we focus on the sending capacity of a
process as the main treatment consuming available resources.
In this paper, we argue that both the reception and sending are
resources consumers in a streaming service. Both this paper
and the initial contribution ensure scalability by assuming that
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Fig. 6. Varying scope D with outq = 10 and inq = 2

each process has a limited view about the system.
Finally, our strategy shares some design goals with broad-

cast protocols such as [10]. Both rely on the definition of
a criteria for selecting the message diffusion graph. In our
strategy, however, we strive to both decrease packet loss
and balance the forwarding load. The notion of reachability
probability of a tree is presented in [10] to define the Maximum
Reliability Tree (MRT). This tree defines the most reliable
tree of a known subgraph through which a message will be
propagated. In this work, we define the reachabiliy probability
of the streaming differently, by considering local knowledge
only. The approaches illustrate a tradeoff in streaming algo-
rithms: while the protocol in [10] can lead to the optimum
propagation tree, it requires global topology knowledge. Our
current algorithm relies on local knowledge but may result in
the sub-optimum propagation tree.

VII. CONCLUSION
In this paper, we proposed resource-aware streaming solu-

tion to support multicast in a reliable and scalable way. Our
contributions includes: (1) A tree construction technique to
define a multicast tree overlay with the maximum reliability:
the Maximum Probability Tree (MPT). We, formally, defined
such a reliability as a function of the overlay included com-
ponents reliability and the available resources to use. (2) To
ensure scalability, we proposed an incrementing algorithm to
built a propagation graph trying to cover the whole system
while based on partial view about the system at each process.
Such a graph is very close to the global MPT built if we
had global knowledge about the system. This graph ensures
the same streaming reliability whatever is the width of the
partial knowledge about the system each process has. (3)
By performance evaluation, we show that the reliability of
our approach is very promising and out-performs an initial
contribution [1] proved to outperforms gossip-based algorithm
[4] when subject to similar environment constraints. The
current variant of QuoCast is clearly less adequate to real-
time applications. As an improvement, we aim to include to
our performance goals the low-latency property so that to adapt
QuoCast to applications where very low latency is important,
e.g., video conferencing.
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