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Abstract—We propose Streamline, a two-layered architecture
designed for media streaming in overlay networks. The first layer
is a generic, customizable and lightweight protocol which is able
to construct and maintain different types of meshes, exhibiting
different properties. We discuss two types of overlay networks
and explain how the first layer protocol builds these networks
in a distributed manner. The second layer is responsible for
data propagation to the nodes in the mesh by constructing an
optimized diffusion tree. In order to cover the vulnerabilities
of the diffusion tree, we propose a masking mechanism which
enables the nodes to instantly switch to alternative data paths
when necessary. Our simulations reveal that, the structure and
properties of the underlying mesh are key to the performance of
the system and Streamline can tolerate high node churn without
degrading delivery rate.

Index Terms—Peer to peer; overlay multicast; application level
multicast.

I. INTRODUCTION

Many peer-to-peer applications (e.g., audio and video

streaming, multi-party games) rely on some support for data

multicast, where peers interested in a given data stream can

join a corresponding multicast group. These networks are

typically composed of one or more propagation trees or a

single mesh. In these structures, nodes are computers and

edges are overlay links formed by the establishment of peering

relationships between the nodes. Despite the large research

focus of the peer-to-peer community on these systems and

a plethora of proposed solutions, many important questions

remain unanswered. For example, little is known about the

structural properties of existing overlay networks (e.g., BitTor-

rent, commercial overlay multicast solutions) and their causes

and impacts on the application.

Overlay multicast networks can be characterized by a set

of measures and properties, an important element of which is

the diffusion pattern. In tree-based systems, nodes diffuse the

content to their children in a single or in multiple diffusion

trees. Peer selection in these systems is based on classic

measures like end-to-end delay and outgoing bandwidth. In

mesh-based systems, where nodes pull (swarm) the data from

their neighbors, peer selection is primarily based on the

availability of content on nodes.

In this work we propose to combine the two mechanisms

by deploying a protocol stack. The first layer protocol (at

the bottom) forms a sub-optimal mesh of nodes. The pur-

pose of this layer is to maintain a connected structure as a
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basic building block on top of which different data-streaming

protocols can be deployed. The second layer builds optimized

propagation structures embedded in the mesh and takes care of

transmission rate allocations and failures. Generally, such an

architecture is suited for push-based diffusion patterns where

a single or multiple propagation trees channel the data flow

from the source to the set of receivers. In this work we mostly

focus on the construction of the mesh structure; for brevity,

data diffusion is based on a simple single propagation tree.

The goal of our modular approach is to address some

inherent problems in tree-based overlay streaming solutions,

in particular the vulnerability of the diffusion tree against

failures and its poor resource utilization. Moreover, our mesh

construction protocol is a generic framework, decoupled from

the diffusion mechanism, leaving our hands open to create

different mesh types and probe the overall performance of the

system with different structures.

Using our mesh construction algorithm, we produce two

types of meshes. While one network strives to arrange the

nodes in a semi-regular graph (i.e., node connectivity is

defined by a degree range), the other adapts the graph con-

nectivity to the outgoing bandwidth of the nodes. We show in

the paper that these two graph structures have distinguished

characteristics and result in different tradeoffs. Our experi-

mental evaluation of Streamline has revealed that the structure

and properties of the underlying mesh have substantial effects

on the performance of the system. This result suggests that

the data dissemination problem can be “decomposed” and

studied in parts, for example, one part focusing on distributed

techniques to build meshes efficiently, and the other part

focusing on sophisticated propagation structures.

With respect to the mesh-construction algorithms we con-

sidered in this paper, our evaluation showed that while the

overhead introduced by the first layer is negligible in both

meshes, in the second layer the semi-regular mesh is more

economical than the adaptive mesh. This reduced overhead

comes with a cost however: the adaptive mesh has faster setup

time (i.e., the time needed for a joining node to start receiving

data) and higher reliability.

The rest of the paper is structured as follows. Section II

gives a bird’s-eye view of Streamline’s architecture. Section III

and IV present the first and the second layers of the system.

Section V describes our prototype and analyzes its perfor-

mance. Section VI overviews related work and Section VII

concludes the paper.



II. SYSTEM MODEL AND ARCHITECTURE

A. Model and assumptions

We model the overlay network as a graph G = (V,E) in

which V = {n1,n2, ...} is the set of nodes and V = {l1, l2, ...}⊆
V×V is the set of links between them. Links are bidirectional

and imply a flow of data between the two ends. Nodes may

crash and recover and links can lose messages. We assume that

nodes do not behave maliciously (i.e., no Byzantine failures)

and links do not corrupt messages.

The system is partially synchronous, that is, there are known

bounds on the time it takes for nodes to execute and on

the time it takes for messages to be transmitted, but these

bounds are only guaranteed to hold starting at some unknown

time, called Global Stabilization Time (or GST) [5]. Streamline

guarantees that the system will converge after GST (e.g., after

timeout values can be set accurately).

B. System architecture

Streamline’s architecture breaks down the peer-to-peer pro-

tocol stack into two layers, one responsible for the formation

of an overlay network and the other responsible for efficient

data streaming on the overlay.

The first layer, the Mesh Maintenance Layer, executes a

simple lightweight protocol, intended for the construction and

maintenance of the mesh; it is the protocol executed by nodes

in order to join the overlay network and maintain their number

of peers within a certain range. The protocol is based on

the localized knowledge of the system at each node, a set

of measurements, and a peer selection algorithm. It provides

a basic service to the second layer, informing it about the

establishment and termination of peering relations.

The second layer, the Data Streaming Layer, is built on

top of the Mesh Maintenance Layer and is responsible for

information diffusion. To do so, this layer builds another

structure, embedded in the underlying mesh without creating

additional overlay links: links of the upper structure are a

subset of the links of the underlying mesh. The protocol works

in two phases: In the first phase nodes try to approximate

the underlying mesh structure by continuously gossiping their

current knowledge about the system. When a peer receives a

new message, it updates its local knowledge of the network.

Eventually the local information built by peers evolves into a

global knowledge. In the second phase, the data source (i.e.,

the node willing to stream data) builds a propagation structure

based on the mesh it has currently assessed.

The Mesh Maintenance Layer uses two primitives to inform

the upper layer about changes in the peering relationships:

PeeringEstablished(n) is used by the first layer protocol to

inform the second layer about establishment of a peering

relationship with node n; PeeringTerminated(n) is called by

layer one upon termination of a peering relationship with n.

In summary, the Mesh Maintenance Layer deals with the

question of which nodes should be chosen for peering while

the Data Streaming Layer answers the question of which peers

should be selected to stream data and how. In Sections III and

IV we detail the two layers.

III. MESH MAINTENANCE LAYER

The Mesh Maintenance Protocol is a gossip-based protocol

executed by all nodes. Nodes have a partial knowledge (local

view) of the network. Periodically, each node selects a subset

of its view and exchanges this set with other nodes in rounds

of gossiping as detailed later. Nodes then start peering with

some of the nodes in their local view. This process leads to the

formation of a mesh. At the heart of this protocol is a function

Select and two parameters assigned to each node: a minimum

and a maximum degree for a node ni, denoted by mini and

maxi, respectively. Depending on the target mesh structure,

these limits might vary for each node relative to its outgoing

bandwidth, or be the same for all of them, irrespective of their

bandwidth.

In order to understand the effects of the mesh structure

on the performance of the system, we chose to study two

types of graphs: Semi-Regular Mesh and Adaptive Mesh, both

produced by the first layer protocol as detailed later. In the

Semi-Regular Mesh, nodes have similar connectivity, falling

within a predefined range. In such a graph the forwarding load

is more evenly distributed among the nodes. In the Adaptive

Mesh the degree distribution follows the outgoing bandwidth

distribution of nodes. Such a network makes a better utilization

of the available outgoing bandwidth of each node. We describe

next Streamline’s generic bootstrapping and mesh maintenance

protocol and in the following subsections we detail how we

tune the protocol to construct each type of mesh.

A. Mesh Maintenance Protocol

We denote the set of active peers a node ni is directly

connected to by Pi and the size of this set, the degree of ni,

by δi. Ideally we would like ni to have a degree between mini
and maxi (i.e., mini ≤ δi ≤ maxi). Upon arrival of a node or

due to departure of a large number of its peers, however, ni’s

connectivity may fall below mini, although it never exceeds

maxi because when ni is at its maximum allowed degree, it

does not accept any new peer.

The partial knowledge or view node ni has about the

network is denoted by Vi and modelled as a list of tuples of the

form 〈n j,φ j,τ j,Q j〉, where n j is some node ni knows about,

φ j is the number of peers n j is willing to accept, calculated as

φ j = min j− δ j, τ j is the local time at ni when the entry was

added to Vi or updated, used to facilitate garbage collection of

old entries, and Q j is a set containing identifiers of nodes who

gave the information about n j to ni. Q j is used by ni to inform

concerned nodes about changes in the state of n j. Every node

maintains a small list of such tuples with a limited number of

entries meaning that the node has a partial knowledge about

a subset of active nodes.

Node ni uses a Select(φ) function in order to pick a number

of nodes from its partial view. The output of this function is a

list of tuples of size k≤ φ. The definition of this function varies
based on the target mesh structure and is further discussed in

the following sections.

Algorithm 1 shows Streamline’s mesh maintenance proto-

col. In order to join the network a node executes the Bootstrap



1: procedure Bootstrap

2: φi← mini
3: Vi← /0
4: Pi← /0
5: N← QueryOracle() {query bootstrapping oracle}
6: MergeView(N, Oracle)

7: periodically do

8: for all p ∈ Pi do
9: send heartbeat message to p

10: for all p ∈ Pi do

11: if no heartbeat received f rom p in the last period then

12: Pi← Pi \{p}
13: call PeeringTerminated(p) {inform the second layer}
14: if δi < mini then {δi is defined as the size of Pi}
15: φi← mini−δi
16: Si = Select(φi)
17: for all si ∈ Si do

18: send BeginPeering(φi ) to si

19: upon receive BeginPeering(φ j ) from n j do

20: if δi < maxi then

21: Pi← Pi∪{n j} {update the list of peers}
22: send PeeringAccepted to n j

23: call PeeringEstablished(n j ) {inform the second layer}
24: else

25: S j ← Select(φ j)
26: send PeeringRejected to n j {reject peering request}
27: send ReceiveView(S j ) to n j {send a subset of the view}

28: upon receive PeeringAccepted from n j do

29: Pi← Pi ∪{n j} {update the list of peers}
30: call PeeringEstablished(n j ) {inform the second layer}
31: for all nk ∈Vi(n j).Q do
32: send PeeringSuccessful(n j ) {inform others who know about n j}

33: upon receive PeeringRejected from n j do

34: Vi←Vi \{n j} {remove the node from the view}

35: upon receive ReceiveView(S j ) from n j do

36: MergeView(S j , n j)

37: upon receive PeeringSuccessful(nk ) from n j do

38: Vi(n j).φ←Vi(n j).φ−1
39: Vi(n j).τ← LocalTimei {update the timestamp of the entry}
40: Vi(nk).φ←Vi(nk).φ−1
41: Vi(nk).τ← LocalTimei

42: procedure MergeView(S,n)
43: S← S\{members o f S with large RTT}
44: for all 〈sk,φk,τk ,Qk〉 ∈ S do

45: Qk← Qk ∪{n} {learnt about sk through n}
46: τk← LocalTimei {update the timestamp of the entry}
47: Vi←Vi∪{〈sk,φk ,τk ,Qk〉} {add sk to the view}

48: function Select(φ j)
49: for all nk ∈Vi do
50: if nk.τ+T > LocalTimei ∨nk .φ = 0 then

51: Vi←Vi \{nk} {Garbage collect the view}
52: S j ←{a subset o f local view selected based on mesh type}
53: return S j

Algorithm 1. Streamline’s first layer protocol executed by each node ni

procedure. We assume the existence of a DNS or a bootstrap

oracle (named Oracle in Algorithm 1) that in response to

a query request (QueryOracle in Algorithm 1), provides the

addresses of a small set of existing nodes to the joining node.

The joining node filters out those nodes that exhibit large

round trip time (RTT) and adds the rest to its view, which

initially is an empty set. Next, it calls its Select function and

sends peering requests to the set of nodes returned by this

function.

The recipient of a peering request accepts the peering

provided that it is below its connectivity limit (δi < maxi),

otherwise it rejects the request and sends a subset of its

partial view to the asking peer, using its Select function. This

mechanism enables the requesting peer to choose its next

candidates from a wider range of nodes.

Periodically, nodes exchange heartbeat messages with their

peers, enabling them to evaluate their connectivity. If no

heartbeat message has been received from a peer during the

last period, it will be removed from the list of peers as shown

by lines 8 to 13 of Algorithm 1. Moreover, if the connectivity

is below the desired figure, similarly to the bootstrapping

process, function Select is called and peering requests are sent

to the set of nodes returned by this function.

Every time a node ni establishes an overlay link with another

node n j, it informs all of the nodes through which ni learnt

about n j (lines 37 to 41). This enables those nodes to update

their local view and perform garbage collection which we will

describe next. Also, upon establishment or termination of a

peering relationship the callback methods PeeringEstablished

and PeeringTerminated are called to inform the second layer

protocol about the changes in the peer set.

As nodes exchange query and peering request and reply

messages, their partial view of the network grows. We use a

simple garbage collection scheme to prevent node views from

getting too large. As shown by lines 49 to 51 of Algorithm 1,

garbage collection is performed at the beginning of the func-

tion Select. Nodes that are not interested in obtaining more

peers (φi = 0) and entries that have been in the list for a long

time (i.e., longer than a configurable threshold T ) are removed

from the view.

We enforce the desired mesh construction policy by ad-

justing the way function Select chooses candidates from Vi
(Line 52 of the Algorithm 1). This general approach is flexible

enough and can be easily extended to construct different types

of mesh. In the following section, we discuss two different

mesh structures and explain how Select is tuned for obtaining

them.

B. Semi-Regular Mesh

Our interest in studying semi-regular meshes1 comes from

existing overlay architectures that enforce a regular structure

on the network (e.g., Splitstream [4]). Such networks usually

have a large geodetic distance (i.e., graph diameter) relative to

their number of nodes, leading to a high average number of

hops between the source and the recipients. The most visible

benefit of regular networks is that constructing multiple inner-

node disjoint propagation trees on top of such a mesh is easy.

Moreover, in a regular mesh all nodes contribute equitably in

1In graph theory, a graph is regular if each vertex has the same degree. We
do not try to impose the same degree on every node, but the same degree

range. We refer to this structure as a semi-regular graph.



the aggregation and propagation of control messages and the

load is evenly distributed among all of the participants.

When forming a regular graph using a decentralized proto-

col based on the partial knowledge of nodes, a subtle hazard

is the likelihood of creating disconnected meshes. There can

be circumstances in which nodes already in the network are at

their target connectivity and it is impossible for a new node to

join the system without a global reconfiguration. In particular,

when the target degree is small, the likelihood of reaching this

state is higher. To avoid such situations, we create a semi-

regular structure in which the connectivity of all of the nodes

varies between a minimum and a maximum and these two

limits are constant for all of the nodes, where the maximum

is determined by the minimum outgoing bandwidth expected

from the participating nodes. This implies that nodes stop

searching for new peers once they reach their minimum desired

connectivity but they are allowed to accept incoming peering

requests as long as they do not exceed their maximum allowed

connectivity. In order to emphasize regularity of the mesh,

function Select returns nodes with the largest φ, prioritizing
nodes which are below their minimum desired connectivity.

Moreover, a node is usually included in the partial view of

multiple nodes, which cooperatively help poorly connected

nodes quickly reach their minimum required degree.

C. Adaptive Mesh

Due to the heterogeneity of the system, nodes are expected

to have varying outgoing bandwidth. Therefore, imposing a

constant degree on all of them is likely to leave a considerable

amount of outgoing bandwidth unutilized. Theoretically, in

an ideal mesh the distribution of node degrees should follow

the distribution of outgoing bandwidth. Intuitively, this means

that nodes with higher capacity must have higher connectivity

compared to low bandwidth nodes. We call such a network

an Adaptive Mesh. With regard to our Mesh Maintenance

Protocol, the parameters mini and maxi are equal for each

node (mini = maxi) but vary from one node to another based

on its outgoing bandwidth.

In our context, the most important property of an adaptive

mesh is its capability of taking advantage of nodes with

high bandwidth. Such highly connected nodes act as hubs,

reducing network diameter which leads to rapid propagation of

topology updates and reduction in the average stream reception

delay. However, loss of a hub may disconnect the tree and

cause a large number of descendants not to receive data.

Moreover, a hub receives control data from a larger number of

peers and has to dedicate more processing power for treating,

aggregating, and propagating updates.

A naive approach to constructing an adaptive mesh would

be to assign static priorities to nodes. In such an approach

Select would always return a list of nodes with the highest φ.
The result is that nodes with high bandwidth would reach their

maximum limit of peers very fast. However, if nodes with high

values of φ keep getting added to Vi, nodes with low values

of φ will never be selected. Therefore a random selection of

nodes brings load balancing and resilience to node churn [9]

while a deterministic selection does not have this benefit. As

such, before the selection, we assign weights to the nodes in

the partial view based on φ, the number of peers they are

willing to accept. Intuitively, the weight of a node determines

the probability of its selection by the Select function and is

proportional to φk, the number of peers it is willing to accept,

calculated by
φk

∑N
i=1 φi

, where N is the number of nodes ni has

in its partial view.

This way of selection gives a chance to all of the nodes

to be selected and prevents high bandwidth nodes from being

saturated rapidly. Note that according to Algorithm 1, upon

establishment of a peering relation, nodes send updates back to

the other nodes that suggested candidate peers, enabling them

to update their partial view. Thus probabilities are recalculated

every time a node receives an update about a member of its

partial view.

IV. DATA STREAMING LAYER

Although the Data Streaming Layer can choose any type of

mechanism for data diffusion, embedding the multicast data

path in the first layer’s mesh is Streamline’s recommended

approach. In our current design we deploy a global knowledge

algorithm borrowed from [6] in which every node has a view

of the whole network topology. Having a global view of the

network at every peer implies that topology changes must be

broadcast to all of the nodes. Instead, we chose a gossip-like

protocol in which nodes gossip topology changes in order to

reach a state where all of the nodes are aware of the change.

As a bandwidth usage optimization, these updates can be

piggybacked on heartbeat messages.

A. Building Global Knowledge

The global view node ni has of the network is modelled

as a list of tuples in the form 〈n j,Pj,β j,δ j〉, where Pj is the

peer set of n j, β j is its outgoing bandwidth, and δ j is the

distortion factor, which determines the relative freshness of the

information. For a node n j at distance d from ni in the mesh

we have δ j ≥ d. Upon receipt of an update from a neighbor,

its distortion factor is increased by one and then stored in

the global view list. In addition, in order to indirectly reflect

changing network conditions with the passage of time, the

distortion factor of all nodes in Vi are increased after each

configurable short period of time. Using this factor, a node can

determine how much it can trust received update information.

Moreover, gossiping of updates leads to nodes receiving the

same update from multiple peers. If the received update has

a smaller distortion factor than the one the recipient currently

has, the updates are accepted and otherwise ignored to ensure

that a newer piece of information is not replaced by an older

one.

The changes in the set of direct neighbors of a node are

taken care of by the first layer and information about these

changes are pushed to the second layer using the simple

interface we described in Section II. Every often, nodes

aggregate topology changes received from the first layer with

those received from peers and gossip the aggregate data
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Fig. 1. n1 and n2 mask departure of n3

piggybacked on the next heartbeat message which is sent

directly to neighbors. Upon receipt of this heartbeat message,

neighbor nodes update their views and send the updates to

their peers (except the peer from which they have received the

update). Moreover upon establishment of a peering relation,

two sides exchange their complete view of the network with

each other, ensuring that both sides have a consistent view in

the beginning of the peering process.

B. Optimum Multicast Tree

Having a global view enables the source of the multicast to

build an optimized propagation tree which we call Optimum

Multicast Tree (OMT). In this propagation tree nodes with

higher forwarding capacity will be placed in higher levels of

the tree, close to the source, and low capacity nodes will be

placed closer to the bottom of the tree as leaves. Before starting

the data flow, the source node constructs the OMT, attaches

it to a message along with a tree version number and sends

the message to its children according to the multicast tree the

message is carrying. Then the actual data streaming can begin.

Each multicast message has a tree version attached to it,

enabling the recipients to associate the received message with

an already received and cached OMT. The intermediate nodes

then deliver the message to the application and forward it to

their children according to the proper multicast tree. Upon

receipt of an update, the source of the multicast rebuilds the

propagation tree to reflect changes in the network topology

and multicasts the newly-built tree along with its new version

number. Following data segments will carry the new version

of the propagation tree, enabling forwarding nodes to associate

them with the right version of the tree.

C. Masking Churn

Under constant churn, typical of existing overlay networks,

the system might never converge to a state in which all of

the nodes have a unified view. Since nodes gossip updates,

departure of a node takes some time to be observed by the

source and descendants of the departed node in the tree stop

receiving data for some time. For the same reason, an arriving

node does not receive data until the source is informed of its

arrival. To tackle these problems, we use a simple masking

mechanism, which quickly addresses topology changes until

the source becomes aware of them and optimally reconstructs

the tree.

The global knowledge at the second layer enables a node

to infer the available forwarding capacity of other nodes (e.g.,

by simply subtracting the number of a node’s children in the

tree from the number of its peers). When a node detects the

departure of its parent in the multicast tree, it looks for a

temporary parent. Towards this end, it selects the closest node,

in terms of network hops, which has idle forwarding capacity

and sends a request for temporarily adoption as data child.

If the recipient of this request has idle forwarding capacity,

it replies to the request with a positive answer and starts to

push data to its adopted child. In case it is not able to satisfy

the request it suggests another node to the requesting node

based on its knowledge. This iteration continues until the

orphan node finds a temporary parent. When the temporary

parent receives the new version of the OMT, reflecting the

last changes, it stops sending data to the previously orphan

node that now has a new parent in the OMT.

We use a similar technique to cover the arrival of a node

until the multicast source learns about the new node. As stated

in Section IV-A, upon joining the network, nodes receive a

global view of the network from their peers. This enables

a new peer to find a temporary data parent in the above

mentioned way. Therefore a new node is able to receive data

soon after its arrival, even if it takes some time for the source

to become aware of its existence.

The departure of a highly connected node (i.e., a node with

a large number of peers) may cause a major collapse in the

propagation tree because such nodes are placed at high levels

of the propagation tree and have a considerable number of sub-

trees below them. In such cases even the masking mechanism

might not compensate such losses and the new propagation

tree must be shaped as soon as possible. As such, when the

parent of a highly connected node discovers the departure of

its child, it directly informs the source about the event. This

enables the source to update its knowledge and build the new

propagation tree to accommodate this major change.

Figure 1 depicts a scenario where the intermediate node n2
detects the departure of its peer n3, which happens to be its

immediate child in the OMT. Upon this observation n2 updates

the source with information about the departure of n3 (shown

with a dotted line in Figure 1). At the same time the children

of n3 observe the departure of their parent in the OMT. In this

case the orphan nodes will try to find temporary data parents
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Fig. 4. Experienced bandwidth overhead for cumulative percentage of nodes

(i.e., n1 and n2 in the example).

V. PERFORMANCE EVALUATION

We examined the performance of our protocol in a simulated

environment using a discrete event simulator we have written

in Java. We present the results of performance and cost

evaluation of the two layers of Streamline in two separate

subsections.

A. Evaluation Setup

The physical network topology has 100 routers generated

using the Brite topology generator [13] in a flat router level

model. We selected those routers with connectivity of two to

be access routers, each one connected to 50 nodes, summing

an approximate total of 1670 nodes. The routing tables are

populated using Dijkstra algorithm, and routers and links at

different levels have delays randomly chosen from a range

corresponding to that specific level.

We distributed nodes in five categories in terms of out-

going bandwidth, following an exponential distribution with

λ = 1.5 to emphasize the dominance of the population of low-

bandwidth nodes. Figure 2(a) shows the population of nodes

in five different categories.

The inter arrival time and session length of nodes is obtained

from a Weibull distribution with shape and scale parameters

observed in a Bittorrent network [19]. We adjusted the min-

imum session length to be 100 seconds which leads to an

average session length of 156 seconds. Figure 2(b) shows the

cumulative distribution function (CDF) of session length of

the nodes.

A random node was chosen to be the source of the multicast,

multicasting a data stream at a rate of 64 kbps, during a

simulated time of 900 seconds. Heartbeat messages were sent

every 5 seconds with topology updates piggybacked on them.

The simulation starts with two nodes: the source and a single

node as the bootstrap oracle, known by all nodes. Nodes

start to join at time t = 1 second and at t = 102, some of

the nodes start to leave. After 176 seconds the network size

reaches 253 nodes. From this point on, the network size varies

between 200 and 270 nodes, due to the continuous arrivals

and departures. All of the nodes depart abruptly, i.e. without

informing their peers about their intention to leave. This means

that the departure of a node takes up to 5 seconds to be

detected by its peers.

B. Mesh Maintenance Layer

1) Mesh Structure: To examine the network structure we

took snapshots of the degree distribution at two instances in

time, t = 400 and t = 700 seconds. Figure 3 shows the results

for both mesh structures.

In the adaptive mesh (Figures 3(a) and 3(b)), based on

the outgoing bandwidth distribution and the data rate, we

expected to observe degrees of 5, 9, 18, 46, and 78 with similar

populations to what is seen in Figure 2(a). Due to continuous

arrivals and departures there are always nodes below their

desired connectivity: those who have recently arrived and those

who have recently lost their peers. However a closer look at

the two figures reveals that these nodes are usually close to

their desired connectivity, seeking for new peers.

In the semi-regular mesh (Figures 3(c) and 3(d)) we set

the minimum and maximum connectivity to 4 and 5, where

the maximum was determined by the minimum outgoing

bandwidth of participating nodes divided by the data stream

rate (64 kbps). Although not as strong as the adaptive mesh,

here also the dominance of nodes with the desired degree is

observable. Finally, although not shown in the diagrams, we

observed that in the absence of churn both structures quickly

reach their optimum configurations.
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2) Bandwidth Overhead: Figures 4(a) and 4(b) depict the

CDF of the bandwidth overhead, caused by the first layer

control data. These figures show the low overhead of the Mesh

Maintenance Protocol which equals 1 kbps for 98% of the

nodes. This is mainly a result of a smooth bootstrapping of

nodes. Furthermore the messages of the first layer protocol

carry small data objects; the only large data objects exchanged

in this layer are the suggestion lists, though these messages are

rare due to the small likelihood of rejected peering requests.

C. Data Streaming Layer

1) Setup Time: We now consider the setup time, that is, the

time it takes for a node to start receiving data after its arrival.

Due to Streamline’s gossiping approach for propagation of

updates, the arrival of nodes might take a long time to reach

the source. Figure 5 depicts the setup time for the cumulative

percentage of nodes. In the adaptive mesh when masking is

enabled 90% of nodes start receiving data within less than 5

seconds after their arrival while without masking only 5% of

nodes have such a short setup time. Also masking reduces the

worst case from 34 seconds to 12 seconds.

In the regular mesh, without masking, setup time is larger

compared to the adaptive mesh due to large network diameter:

topology updates take a longer time to reach the source. With

masking enabled, the setup time is less than 5 seconds for

almost 50% of nodes and the worst case is 57 seconds. The

improvement due to masking is substantial as well, reducing

the 80 percentile from 40 seconds to 10 seconds.

2) Bandwidth Overhead: Figures 4(c) and 4(d) show the

CDF of the bandwidth overhead caused by the second layer

with control messages, for the two types of mesh. The results

show that the overhead in the semi-regular mesh is almost
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half of the overhead in the adaptive mesh. The reason is that

in the adaptive mesh the average connectivity is larger than the

semi-regular mesh. As a result, gossiping updates causes the

nodes to receive control data from a larger number of peers

and hence experience a larger bandwidth overhead. The long

tail in both diagrams is due to the bandwidth overhead of the

source, because of the direct updates it receives from other

nodes in the context of the masking mechanism.

3) Effectiveness of Masking Mechanism: Figure 6 depicts

the average reception rate during streaming, with and with-

out masking. In both networks at some points the average

reception rate collapses due to the departure of some nodes.

However, the vulnerability of the semi-regular mesh to de-

partures is more pronounced. In fact, the higher resiliency

of the adaptive mesh is due to the heterogeneity of node

degree. In the adaptive mesh the population of low degree

nodes is considerably larger than those with high connectivity

and hence most of the nodes that depart are low bandwidth

nodes located at lower levels of the OMT. Also the smaller

network diameter helps the updates reach the source faster and

the network to converge earlier. Masking manages to cover the

collapses in both networks specially in the semi-regular mesh.

In the adaptive mesh when masking is in place, except for a

few short periods, an average reception rate between 60 to 64

kbps is maintained.

Figure 7 shows, for the two types of mesh, the complemen-

tary cumulative distribution function (CCDF) of the reception

percentage, that is, the ratio of the number of messages a

node received to the number of messages multicast by the

source during that node’s session. In both meshes, the masking

mechanism manages to compensate for the vulnerability of

the single propagation tree to a large degree; in particular, the

inherent resilience of the adaptive mesh coupled with masking

results in the reception of 90% of messages by almost 80%

of the nodes.

VI. RELATED WORK

There is a large body of work on gossip based data propa-

gation (e.g. [11]). Generally, these schemes are more resilient

to changing network topology, compared to deterministic

propagation trees. On the other hand, they have larger message

complexity and are not suitable for live media streaming which

is the focus of this work. Allani et al. [1] take a probabilistic

approach by considering the probability of node failure and



message loss and using retransmission to compensate for

the failures. On the contrary, in Streamline nodes switch to

alternative data paths to handle failures and churn.

In the realm of tree-based systems, Overcast [8], NICE [2]

and ESM [7], mostly target multimedia streaming. Similarly

to Streamline, they are push-based systems where parents in

the propagation tree push content to their descendants. NICE

addresses the vulnerabilities of a single tree by proposing a

repair algorithm along with a hierarchical structure to keep

control overhead at a low level.

Some systems have also proposed building multiple trees.

Some examples are CoopNet [15], Splitstream [4] and

ChunkySpread [20]. Generally, these systems use Multiple

Description Coding (MDC) at the source to break down each

data segment into multiple blocks, a subset of which suffices

to re-conciliate the original data segment. Each one of these

blocks is diffused on a separate propagation tree. Based on

their bandwidth, different nodes can join different trees.

In some protocols nodes form an overlay mesh in which

they exchange blocks of encoded data produced by a MDC

algorithm. Nodes usually swarm data segments from multiple

peers, which in principle means that all of the peers can

actively contribute their outgoing bandwidth to the stream-

ing process, leading to better bandwidth utilization. Bullet

[10], CoolStreaming [21], Chainsaw [16], Outreach [18] and

PRIME [12] are examples of such an approach.

SAAR [14] seeks separation between control and data by

forming a control plane, shared among multiple peer-to-peer

applications or streaming data channels. This is similar to

Streamline, although SAAR is built upon Scribe [3] which

in turn stands on top of Pastry [17]. In contrast, Streamline

is self-contained, making it less complex and more flexible

for, Streamline’s mesh is not bounded to a specific structure,

leaving space for optimizations. Moreoever, implementation of

a distributed hash table is more cumbersome compared to our

proposed first layer gossiping protocol.

VII. CONCLUSION

In this paper we introduced Streamline, a two-layered

generic architecture for multimedia streaming. The first layer

of Streamline builds a mesh while the second layer builds a

structure embedded in the first layer mesh for data propagation.

We suggested simple distributed algorithms for construction

of two types of mesh and discussed the pros and cons of

each type. Our experiments showed that Streamline’s mesh

maintenance protocol is lightweight in terms of bandwidth

usage and its masking mechanism is able to maintain an

acceptable average reception rate in presence of churn. Also,

our empirical comparison revealed that semi-regular mesh

imposes smaller bandwidth and processing overhead on nodes

while it is not very resilient to node churn. On the other hand

the adaptive mesh is more resilient to churn at the cost of

higher resource usage.
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