
Introducing Virtual Execution Environments for
Application Lifecycle Management and SLA-Driven

Resource Distribution within Service Providers
Íñigo Goiri, Ferran Julià, Jorge Ejarque, Marc de Palol, Rosa M. Badia, Jordi Guitart, and Jordi Torres

Barcelona Supercomputing Center, Jordi Girona 31, 08034 Barcelona, Spain
Email: {inigo.goiri, ferran.julia, jorge.ejarque, marc.depalol, rosa.m.badia, jordi.guitart, jordi.torres}@bsc.es

Abstract—Resource management is a key challenge that ser-
vice providers must adequately face in order to ensure their
profitability. This paper describes a proof-of-concept framework
for facilitating resource management in service providers, which
allows reducing costs and at the same time fulfilling the quality of
service agreed with the customers. This is accomplished by means
of virtualization. Our approach provides application-specific
virtual environments and consolidates them in order to achieve
a better utilization of the providers resources. In addition, it
implements self-adaptive capabilities for dynamically distributing
the providers resources among these virtual environments based
on Service Level Agreements. The proposed solution has been
implemented as a part of the Semantically-Enhanced Resource
Allocator prototype developed within the BREIN European
project. The evaluation shows that our prototype is able to react
in very short time under changing conditions and avoid SLA
violations by rescheduling efficiently the resources.

I. INTRODUCTION

The emergence of Cloud computing solutions has attracted
many potential consumers, such as enterprises, looking for
a financially attractive way to host their services. Service
providers rent their resources to the enterprises on demand,
which pay for the actual use of provider’s resources. In
return, the customers are provided with guarantees on resource
availability and Quality of Service (QoS), which are typically
expressed in the form of a Service Level Agreement (SLA).

In order to be profitable, service providers tend to share their
resources among multiple concurrent applications owned by
different customers, but at the same time they must guarantee
that each application has always enough resources to meet
the agreed performance goals. According to this, it would
be desirable for the provider to implement a self-adaptive
resource management mechanism, which could dynamically
manage the provider’s resources in the most cost-effective way
(e.g. maximizing their utilization), while satisfying the QoS
agreed with the customers.

One of the key technologies in the Cloud is virtualiza-
tion, which has enabled cost reduction and easier resource
management in service providers. Virtualization allows the
consolidation of applications, multiplexing them onto physical
resources while supporting isolation from other applications
sharing the same physical resource. Virtualization has other
valuable features for service providers. It offers the image of
a dedicated and customized machine to each user, decoupling
them from the system software of the underlying resource.

In addition, virtualization allows agile and fine-grain dynamic
resource provisioning by providing a mechanism for care-
fully controlling how and when the resources are used, and
primitives for migrating a running machine from resource to
resource if needed.

In this paper, we exploit the features of virtualization in a
new approach for facilitating resource management in service
providers, which allows reducing costs and at the same time
fulfilling the QoS agreed with the customers. Our solution
supports the execution of medium and long running tasks in
a service provider by providing an application-specific virtual
machine (VM) for each of them, granting full control to the
application of its execution environment without any risks
to the underlying system or the other applications. These
VMs are created on demand, according to the application
requirements, and then, they are consolidated in the provider’s
physical resources in order to optimize their utilization.

In addition, our approach supports fine-grain dynamic re-
source distribution among these VMs based on SLAs. Our
system guarantees to each application enough resources to
meet the agreed performance goals, and furthermore, it can
provide the applications with supplementary resources, since
free resources are also distributed among them depending on
their priority and resource demand. The system continuously
monitors if the SLAs of the applications running in the
provider are being fulfilled. If any SLA violation is detected,
an adaptation process for requesting more resources to the
provider is started.

With our solution, service providers in the Cloud can take
advantage of all their resources by consolidating services. In
addition, they can benefit from easier resource management,
usage monitoring and fine-grain SLA enforcement, since these
tasks are implemented by means of adaptive behaviors (using
agents). This enables autonomic service providers that can
adapt to changes in the environment conditions without any
additional effort to the system administrator.

The components described in this paper are part of the
Semantically-Enhanced Resource Allocator (SERA) prototype
[1] developed within the BREIN European IST Project [2].
The SERA prototype enables resource allocation depending on
the information given by service providers regarding the level
of preference (according to business goals) of their customers
and on the requirements of their tasks. The allocation process

2009 Eighth IEEE International Symposium on Network Computing and Applications

978-0-7695-3698-9/09 $25.00 © 2009 IEEE

DOI 10.1109/NCA.2009.9

211

is enhanced by using agents, semantics and virtualization.
The paper is organized as follows: Section 2 presents an

overview of the SERA. Section 3 introduces our proposal
for managing VMs and dynamically provisioning resources.
Section 4 presents our SLA management strategy, including
SLA monitoring and SLA enforcement. Sections 5 and 6
describe the experimental environment and the evaluation.
Section 7 presents the related work. Finally, Section 8 presents
the conclusions of the paper and the future work.

II. SERA OVERALL ARCHITECTURE

This section gives an overview of the architecture of the
SERA, describing the main components and their interactions.
Each component contains an agent and a core. The agent
wraps the core functionalities by means of a set of behaviors,
which basically call methods from this core. The agents are
in charge of the communication between components. In
addition, their implicit reactiveness is used to implement the
self-adaptive behavior of the system, that is being aware of the
system performance and status variations, and coordinating the
reaction to these variations (e.g. reaction to an SLA violation).

Fig. 1. Architecture of SERA prototype

Figure 1 shows the main components of the SERA, whose
functionality is herewith described. The Client Manager (CM)
manages the client’s task execution by requesting the required
resources and by running jobs. In addition, it makes decisions
about what must be done when unexpected events such as
SLA violations happen.

The Semantic Scheduler (SeS) allocates resources to each
task according to its requirements, its priority and the system
status, in such a way that the clients with more priority are
favored. Allocation decisions are derived with a rule engine
using semantic descriptions of tasks and physical resources.

The Resource Manager (RM) creates VMs to execute
clients’ tasks according to the minimum resource allocation
(CPU, memory, disk space...) given by the SeS and the task re-
quirements (e.g. needed software). Once the VM is created, the
RM dynamically redistributes the remaining resources among
the different tasks depending on the resource usage of each
task, its priority and its SLA status (i.e. is it being violated?).
This resource redistribution mechanism allows increasing the
allocated resources to a task by reducing the assignment to
other tasks that are not using them.

Finally, the Application Manager (AM) monitors the re-
source usage of the task and checks its SLA metrics in order
to evaluate if the SLA is being violated. If this occurs, it tries
to solve the SLA violation locally to the node by requesting
more resources to the RM. If the RM cannot provide more
resources, the AM will forward the request to the CM.

An interaction starts when a task arrives at the system and
a CM is created in order to manage its execution. The CM
registers the task description and requests a time slot to the SeS
for executing the task. In this stage, the SeS uses the semantic
metadata of the system to infer in which node the task will
be executed. When the time to execute the task arrives, the
SeS contacts with the RM in charge of the node where the
task has been allocated and requests the creation of a VM for
executing the task.

When the RM receives the SeS’s request, it creates a VM
and an AM. Once the VM is created, the SeS is informed
and it forwards the message to the CM indicating the access
information to that VM. At this point, the CM can submit
the task to the newly created VM. From this moment, the
task is executed in this VM, which is being monitored by
the AM in order to detect SLA violations. If this occurs,
the AM requests more resources to the RM, trying to solve
the SLA violation locally to the node. This request for more
resources is performed as many times as needed until the SLA
is not violated any more or the RM informs the AM that
the requested resource increment is not possible. In the latter
case, since the SLA violation cannot be solved locally, the AM
informs the CM about this situation, and then, the CM asks
the SeS to attempt a global solution for the SLA violation.
This can include the modification of the minimum allocated
resources of tasks running in the node where the SLA is being
violated, or the migration of one of these tasks to another node.

This paper focuses mainly in the functionality and imple-
mentation of the RM and the AM components, which are
described in the following sections. Additional description of
the other components can be found in [1].

III. RESOURCE MANAGER

The Resource Manager (RM) is composed by its corre-
sponding agent and core. There is one RM instance per
physical machine in the service provider. Once the RM is
created and fully started, it waits for requests from the SeS.
When a new request arrives, the RM checks if it is possible to
create a new VM with the specified features and it informs the
SeS about the success/failure of this operation. Virtualization
is our system is supported by using Xen [3].

A. Management of VMs lifecycle

In our system, each application is executed within a dedi-
cated VM. Any kind of application can be executed, though
the system is intended for medium and long running tasks. An
application can be composed of a single task or a collection
of tasks which are subject to the same SLA. For creating
a new VM, the following steps are required on each node:
downloading the guest operating system in packaged form

212

(a Debian Lenny through debootstrap for this prototype),
creating an image with this base system installed, copying
extra software needed by the client in an image that will be
automatically mounted in the VM, creating home directories
and swap space, setting up the whole environment, packing
it in an image, and starting the VM. Once the VM has
completely started, the guest operating system is booted. After
this, the additional software needed by the client needs to
be instantiated (if applicable). These phases can be clearly
appreciated in Figure 4, which is presented in Section VI.

From this description, one can derive that this process can
have two bottlenecks: the network (for downloading the guest
system; around 100MB of data) and the disk (for copying
extra software needed by the client and creating all the needed
images, namely base system, software, home, and swap; nearly
1.6GB of data). The network bottleneck has been solved using
a caching system per node that creates a default image of
the guest system with no settings when it is downloaded for
the first time. Then, this image is copied for each new VM
created in that node. This almost eliminates the downloading
time (base system is only downloaded once per node and can
be reused for each new VM in that node), but contributes to
the disk bottleneck. The disk bottleneck has been solved by
adding a second caching system per node that periodically
copies the default base system image and the images with the
most commonly used software to a cache space. When a new
VM is created, the RM just needs to move these images (just
an i-node change) to the final location. Using both caching
systems, the complete creation of a VM has been reduced to
an average time of 7 seconds. More details about the VM
creation times will be shown in Section VI.

Additionally, our proposal includes a data repository that
allows storing the VM images used by each customer. These
images can be later reused for creating new VMs. See [4] for
more details on this.

Furthermore, when a task finishes or the SeS decides that
this task should be rescheduled or canceled, the VM must be
destroyed. This includes killing the associated AM, and the
redistribution of the resources freed by this VM among the
other VMs (see Section III-B).

B. Resource distribution among VMs

The RM is also responsible of distributing the providers
physical resources among the VMs. The goal is to maximize
physical resources utilization, while fulfilling the SLAs. In
order to accomplish this, the SeS provides the RM with
two parameters for each VM, namely the minimum resource
requirements of the VM and the initial priority of this VM,
which corresponds to the priority for the service provider of
the customer executing in this VM (e.g. Gold, Silver, etc.).

For each VM, the RM guarantees that its minimum resource
requirements are met during the whole VM lifetime. Surplus
resources that are not allocated to any VM are dynamically
redistributed among VMs according to their resource usage
and the fulfillment status of the SLAs (as shown in Figure

VM 1 VM 2

VM 1
+

VM 2
Usage

Surplus

Reallocation

VM 1 VM 2

100

0

100

0

VM 1
+

VM 2
Usage

Fig. 2. Surplus resource distribution

2). In this way, the applications can be provided with better
service and the provider’s resources are fully exploited.

The surplus resources are redistributed among the VMs
according to their dynamic priority. This priority initially cor-
responds to the priority set by the SeS and can be dynamically
increased by the AM to apply for more resources if the SLA is
being violated. Any dynamic priority change induces the RM
to recalculate the resource assignment of the VMs according
to the following formula (where pi is the priority of client i)
and bind the resources to the VMs.

Rassigned(i) = Rrequested(i) +
pi∑N

j=0 pj

·Rsurplus

Current implementation is able to manage CPU and memory
resources. CPU management is straightforward by using the
Xen Scheduler credit policy. This policy allows specifying
the maximum amount of CPU assigned to a VM by defining
scheduling priorities. For example, in a platform with 4 CPUs
(i.e. 400% of CPU capacity) and two VMs, one with a priority
of 6 and the other with a priority of 4, the first could take at
most the 240% of CPU, while the other could take at most
the rest 160% of CPU. The scheduling priorities can be set
using the XenStat API.

On the other side, there are some limitations for dynamic
memory management using VMs. In Linux systems, the
mapping of physical memory is done at boot time. Once the
guest system has booted, if the amount of memory allocated to
the VM is reduced, the guest system adapts to this reduction
automatically. Nevertheless, when assigning to the VM more
memory than the initially detected by the guest system, Linux
does not make it available to the user. It would be necessary
to restart the guest system to make all this memory available.
In order to overcome this limitation, the RM creates all the
VMs with the maximum amount of memory possible and then
it immediately reduces the amount of allocated memory to the
value indicated by the SeS.

IV. APPLICATION MANAGER

The Application Manager (AM) has two main responsibil-
ities. On one side, it enables the execution of a task into
the VM created by the RM explicitly for this task. This is
done by means of a Globus Toolkit 4 (GT4) [5] container
deployed in each VM. GT4 is configured during the VM
creation and started at the VM boot time, in such a way that
the CM can easily submit the task to the VM and check its
state using the GT4 interface. We use GT4 just because task
management is easier when using GT4 facilities, though our
solution could be generalized to dispense with it. In fact, we

213

have an alternative implementation of the AM that uses SSH
for task submission. On the other side, the AM is in charge of
monitoring the resources provided to and used by the VM and
ensuring the fulfillment of its SLA. There is one AM instance
per application running in the service provider, thus several
AM instances can exist per physical machine.

A. SLA description

Each application has its own SLA, described in XML using
both WS-Agreement [6] and WSLA [7] specifications, as done
in TrustCoM [8]. The SLA characterizes the agreed QoS
between the customer and the provider using a set of service-
level metrics (e.g. throughput, response time, availability, etc.).
However, the component in charge of deriving the resource
requirements needed to fulfill these service-level metrics has
not been implemented within BREIN yet. For this reason, in
order to test the viability of our proposal, in this prototype we
use a proof-of-concept SLA that directly defines two simple
resource-level metrics: the amount of memory used by an
application and a performance metric that intends to compute
the real CPU usage of an application. This performance metric
for the CPU usage is defined as UsedCPU

100 ·CPUfrequency.
An application will have the amount of cycles/sec specified
in the SLA whereas it uses all the assigned CPU. If the
application is not using all the resources then the SLA will
be always fulfilled. The SLA will be violated only when
the application is using all the assigned resources and these
resources are not enough. Notice that this metric assumes
that the pool of machines is homogeneous (as occurs in our
testbed). We believe that this is acceptable in a proof-of-
concept prototype.

The evaluation of SLA metrics can be highly influenced
by the inaccuracy when measuring and the variability of the
measures. When this occurs, the evaluation of the SLA metrics
can depend more on how and when they are measured than in
the metrics themselves. For this reason, when defining SLA
metrics, it is desirable that they can be defined through average
values. This can be accomplished using the capabilities of
the above-mentioned SLA specifications, which allow defining
the window size of the average and the interval between two
consecutive measures. We have defined a window size of 10,
and an interval of 2 seconds.

B. SLA monitoring

The AM includes a subsystem for monitoring the metrics
defined in the SLA, which receives the requests of the Direct
Measurer component (see next section) in order to get the
values for each metric in the specified measurement intervals.
The monitoring subsystem is implemented using daemons
running in the Xen Domain-0. There is one daemon per VM,
which obtains all the information referent to this VM (such as
CPU, memory, disk and network usage) via XML-RPC calls
to the Xen API [9]. These daemons cannot run inside the
VMs for two reasons. Firstly, doing this would consume part
of the assigned resources to the task execution, charging to the
customer the cost (in CPU and memory) of this monitoring.

Secondly, the monitoring system cannot take real measures
inside the VM: this can be only accomplished by measuring
from the Xen Domain-0.

C. SLA enforcement

Described proposal assumes that the SLA negotiation be-
tween the customer and the provider has been carried out
previously, being our prototype responsible of guarantying the
fulfillment of the agreed SLA by means of adequate resource
allocation. The agreed SLA is attached to the task execution
request that arrives at the RM. This SLA is assigned to the
AM that monitors the VM which is going to execute the task.

The agent within this AM executes the SLA enforcement
cycle shown in Figure 3. Notice that, the needed reactiveness
to SLA violations can be easily accomplished using agent
behaviors. The cycle is executed every second. This forces the
interval between two consecutive measures for each metric in
the SLA (see Section IV-A) to be at most 1 second.

The Direct Measurer component gets the values from the
monitoring subsystem described in the previous section, con-
trolling the measurement intervals for each metric in the SLA
and ensuring the refresh of the measures on correct time. When
the new values arrive at the Measurer Sched component, it
checks if any metric has updated its value. In this case, the
Measurer Sched recalculates the top level metric defined in the
SLA and it compares the result with the agreed value specified
in the SLA. If the SLA is fulfilled, the Measurer Sched waits
until the next iteration, otherwise the SLA violation protocol
starts.

The first step in the SLA violation protocol is requesting
more resources to the RM (by increasing the VM dynamic
priority). If the node has surplus resources that have been
distributed among the VMs running in that node, the RM will
redistribute them considering the new value of the dynamic
priority of the VM which is violating its SLA (as described
in Section III-B) and the SLA cycle will start again. If all
the physical resources are already allocated, the AM will
contact the CM to communicate the SLA violation. When the
CM receives this notification, it asks the SeS to attempt a
global solution for the SLA violation taking into account the
customer’s priority and the task deadline. This is out of the
scope of this paper, and part of our current work, but possible
actions include the modification of the minimum allocated
resources of tasks running in the node where the SLA is being
violated, the migration of one of these tasks to another node
or the prosecution of the execution besides the SLA violation
(if this is acceptable for the customer and the provider).

Notice that, since the RM always guarantees the minimum
amount of resources specified by the SeS when it requests
the creation of a VM, the SLA can only be violated when
this minimum amount of resources are not enough to fulfill
the SLA. This can occur when running an application with
variable resource requirements over time (e.g. a web server),
which receives an unexpected workload, or as a result of
an error in the SeS inference process for estimating the

214

Fig. 3. SLA enforcement cycle

resources. The latter has been assumed in Section VI to test
the functionality of the SERA.

Using the adaptation mechanism described in this section,
the system is able to manage itself avoiding as much as
possible the SLA violations. Of course, more intelligence
could be applied in this part. For example, we are planning
to incorporate economic algorithms taking in account the
penalizations for violating the SLA, in order to get the best
configuration in terms of profit.

V. EXPERIMENTAL ENVIRONMENT

As commented in Section II, RM and AM are part of a
bigger system that enables semantic resource allocation in a
virtualized environment. In order to evaluate our proposal, the
whole system needs to be executed, although results presented
in this paper concentrate mainly in the described components.
The main technologies used in SERA include Ontokit [10],
which is a Semantic OGSA implementation, for storing the
semantic descriptions of the tasks and the resources; the Jena 2
framework [11] for supporting inferences and the management
of the semantic metadata; and Jade [12] as the agent platform.
Xen [3] is used as virtualization software.

Our experimental testbed consists of two machines. The first
one is a Pentium D with two CPUs at 3.2GHz with 2GB of
RAM that runs the SeS and the CMs. The second machine is
a 64-bit architecture with 4 Intel Xeon CPUs at 3.0GHz and
10GB of RAM memory. It runs Xen 3.1 and a RM executes
in the Domain-0. These machines are connected through a
Gigabit Ethernet.

VI. EXPERIMENTAL EVALUATION

This section presents the evaluation of our proposal, which
includes the quantification of the time needed to create a VM
and a proof-of-concept experiment for demonstrating the func-
tionality of the whole SERA prototype, but focusing on the
SLA-driven dynamic resource distribution. Used applications
simulate scientific applications with high CPU consumption.

A. VM creation performance

This section provides some indicative measurements about
the time needed to create a VM and make it usable for
a customer’s application, demonstrating the benefit of using

TABLE I
VM CREATION TIMES

Action No cache 1 level 2 level
Download base system 88.1 - -
Create base system image 68.4 - -
Copy base system image (cached) - 45.2 2.3
Copy software image (cached) 13.9 0.0
Create home & swap 13.7 0.0
Load image 4.4
Total time for running an image 184.6 77.2 6.7

our two cache systems to reduce the VM creation time
compared with the default approach. These measurements are
summarized in Table I.

As described in Section III, if caching systems are not used,
we must download the guest system packages (around 100MB
of data), which takes 88 seconds, and create a default base
system image by installing these packages, which takes 68.4
seconds. When using the first caching system, this is done
once per node and the image can be reused for creating each
new VM in that node just by copying it. This copy takes 45
seconds. In both cases, the creation of the VM image requires
also creating the software and the home & swap images, which
takes 13.9 and 13.7 respectively. The second caching system
pre-copies all these images (base system, software image,
home and swap). This allows creating a full VM image in only
2.3 seconds. Notice that, once the image is ready, it must be
loaded, which needs around 4.4 seconds. According to this, the
total time needed in our system to have a full configured VM
started when taking advantage of the two caching mechanisms
is less than 7 seconds.

Nevertheless, the above VM creation time does not include
the time that is needed by the guest operating system to boot
and become available to the user. In addition, the time needed
for instantiating the installed software must be also considered.
All these times can be appreciated in Figure 4, which shows
the execution of a short task (its run time is 75 seconds) just
for exposing in the same timescale all the phases in the whole
VM lifetime (from the VM creation to the VM destruction).
The figure includes the CPU usage of the VM and the Xen
Domain-0. In this figure (and in the rest of figures showing
CPU usage measurements), the amount of allocated CPU to
the VM is quantified using the typical Linux CPU usage metric
(i.e. for a computer with 4 CPUs, the maximum amount of
CPU will be 400%).

As shown in Figure 4, during phase A, the Xen Domain-0
creates the VM. This spends almost one CPU. During phase
B, the guest operating system is booted (first peak in the
CPU usage graph) and then GT4 is started, which includes
certificates creation and deployment of the container (second
peak in the CPU usage graph). At this point, the customer’s
task can be submitted, executing during phase C. Finally,
during phase D, the Xen Domain-0 destroys the VM. Notice
that the CPU consumption of the Xen Domain-0 is only
noticeable during the creation and destruction of the VM.

The results in this figure confirm that the creation of a VM
takes around 7 seconds, while booting the guest system and

215

0
50

100
150
200
250
300
350
400

0 100 200 300 400 500

Virtual Machine 1

Usage Task1

Capacity Task1

SLA Limit

0
50

100
150
200
250
300
350
400

0 100 200 300 400 500

Virtual Machine 2

Usage Task2

Capacity Task2

SLA Limit

0
50

100
150
200
250
300
350
400

0 100 200 300 400 500

Virtual Machine 3

Usage Task3

Capacity Task3

SLA Limit

0
50

100
150
200
250
300
350
400

0 100 200 300 400 500

Domain 0

Domain-0

A B C

C
P

U
 u

sa
g

e
 (

%
)

C
P

U
 u

sa
g

e
 (

%
)

C
P

U
 u

sa
g

e
 (

%
)

C
P

U
 u

sa
g

e
 (

%
)

Time (seconds)

Fig. 5. CPU allocation and consumption

0

50

100

150

200

250

300

350

400

0 20 40 60 80 100 120 140

A B C

Usage Domain-0

C
P
U

 u
sa

g
e
 (

%
)

Time (seconds)

D

Fig. 4. VM lifecycle

starting GT4 take around 30 seconds. According to this, the
full creation of the VM takes around 37 seconds (from the
moment that the RM receives the request until the moment
when the VM is fully functional and the customer’s task can
be executed). In addition, VM destruction takes 6 seconds.
Notice that since our system is intended for the execution of
medium and long running tasks (with running times ranging
from minutes to hours or even days), the overhead incurred
by using virtualization (mainly in the creation and destruction
of the VM) is not significant.

B. SLA-driven resource distribution

This experiment demonstrates how resources are dynami-
cally reallocated among applications and how the system is
able to detect and resolve an SLA violation from one of
the applications and reallocate resources (Memory and CPU)
until all the SLAs are fulfilled. The experiment consists of
running a total amount of three tasks with different resource

requirements and different SLAs within three different VMs
located in the same node. Table II describes for each task: its
requested CPU (i.e. the value provided by the SeS) (REQ),
and the agreed CPU metric in the SLA (SLA). For simplicity,
all the measures and figures are referred only to CPU, but
analogous results could be obtained with Memory.

Requested CPU Agreed CPU in SLA
Task1 100 100
Task2 100 190
Task3 100 100

TABLE II
DESCRIPTION OF TASKS

Figure 5 displays the execution of the three tasks executed
in the test. The first three plots show the allocated CPU for
this particular VM, the really consumed CPU by the VM in
each moment and a horizontal line that indicates the SLA
threshold. If at any moment the consumed CPU is the same
as the allocated CPU and this value is lower than the SLA
line, it means that the SLA is being violated. Notice that,
SLA violations occur only if the task is using all the allocated
resources, and despite this, the SLA threshold is not respected.
Finally, the fourth plot corresponds to the consumed CPU by
the Xen Domain-0, and it shows the CPU costs of creating and
destroying VMs and of reallocating resources among them. In
this figure, three different situations can be distinguished:

Zone A. This is the initial part of the experiment. Task1,
which requests 100% of CPU (see Table II), arrives at the
system. Since this is the only VM running in the node, the RM
gives the whole machine (400% of CPU = 100% requested +
300% surplus) to it. Task2, which requests 100% of CPU, is

216

sent to the system. Task2 represents a special case: we assume
that there has been an error when estimating the minimum
amount of resources needed by this task, so that they are not
enough to fulfill its SLA. In this case, the SLA needs 190%
of CPU to be fulfilled, but the CPU requested by the SeS for
this VM is only 100%. At this point, the total amount of CPU
needed to satisfy the requests of the two tasks is 200% (100%
requested by Task1 and 100% by Task2). The remaining 200%
of CPU is distributed among the two tasks as described in
Section III-B (100% for each). At this moment, no SLA is
being violated, as both tasks have 200% of CPU.

Zone B. In this zone, Task3, which requests 100% of CPU,
is started, so the total amount of CPU needed to satisfy the
requests of the three tasks is now 300% (100% for each one).
In this situation, the remaining 100% is also equally shared
among all the VMs, and, as we can see at the beginning of
Zone B, all the tasks receive 133% of CPU. Having only
133% of CPU, Task2 violates its SLA (notice that at the
center of Zone B, its assigned CPU is under the SLA threshold
(i.e. 190% of CPU)). This starts the SLA violation protocol,
which reallocates the CPU progressively until all the SLAs are
fulfilled. We can see how the surplus CPU assigned to Task1
and Task3 is progressively moved to Task2 until its allocated
CPU is over the SLA threshold.

Zone C. This is the final zone, where all the SLAs
are again within their thresholds. Notice that when a task
finalizes its execution, its allocated resources are freed and
then redistributed among the other tasks. Obviously, if a fourth
application arrived at this node and allocated all the surplus
resources, the SLA for the Task2 would be violated again,
and in this case, there would not be enough free resources to
solve this violation locally. In this situation, the AM would
communicate this situation to the CM, which would ask the
SeS to attempt a global solution for the SLA violation (e.g.
modify the minimum allocated resources of tasks running in
the node, migrate of one them to another node, etc.).

VII. RELATED WORK

SLA-driven resource management is still an open topic in
the Cloud. In fact, current Cloud providers use SLAs that only
support very simple metrics based on resource availability
[13], [14]. Nevertheless, some work has been carried out
for traditional eBusiness environments. For example, in [15],
the authors combine the use of analytic predictive multiclass
queuing network models and combinatorial search techniques
to design a controller for determining the required number
of servers for each application environment in order to con-
tinuously meet the SLA goals under a dynamically varying
workload. Another example is Oceano [16], which is a SLA-
driven prototype for server farms, which enables the dynamic
moving of servers across clusters depending on the customer
changing needs. The addition and removal of servers from
clusters is triggered by SLA violations. Also in [17], which
presents a middleware for J2EE clusters that optimizes the
resource usage to allow application servers fulfilling their SLA
without incurring in resource over-provisioning costs. This

resource allocation is done adding or removing nodes from
the cluster.

Lately, some works have exploited virtualization capabilities
for building their solutions. On one hand, virtualization has
been used to facilitate system administration and provide the
users with dedicated and customized virtual working environ-
ments, making more comfortable their work. For example,
VMShop [18] is a virtual management system which provides
application execution environments for Grid Computing. It
uses VMPlant to provide automated configuration to meet
application needs. VMPlant also allows the creation of flexible
VMs that can be efficiently deployed (by implementing a
caching-based deployment) across distributed Grid resources.
In addition to this, it is typical that these virtual environments
can be scheduled among different nodes by using virtualization
features such as pausing and migration, as occurs in Globus
Virtual Workspace [19] and SoftUDC [20]. Additionally, the
latter adds an efficient shared storage between nodes located
in different locations. This project provides the capability
of sharing resources of different organizations and solves
problems such as sharing data between separated clusters.

On the other hand, while the above proposals deal only
with the global scheduling of VMs between nodes, other
works have also used virtualization to enable fine-grain dy-
namic resource distribution among VMs in a single node.
For instance, [21] develops an adaptive and dynamic resource
flowing manager among VMs, which uses dynamic priorities
for adjusting resource assignation between VMs over a sin-
gle server for optimizing global machine performance. [22]
introduces an adaptive resource control system (implemented
using classical control theory) that dynamically adjusts the
resource shares to VMs, which contain individual components
of complex, multi-tier enterprise applications in a shared
hosting environment, in order to meet application-level QoS
goals. [23] takes advantage of virtualization features to col-
locate heterogeneous workloads on any server machine, thus
reducing the granularity of resource allocation. Finally, [24]
has developed a new communication-aware CPU scheduling
algorithm that improves the performance of a default Xen
monitor by enabling the underlying scheduler being aware
about the behavior of hosted applications.

Our work proposes a more general and extensive solution
for managing service providers by joining in a single frame-
work the creation of application-specific VMs on demand,
global resource allocation among nodes, and SLA-driven dy-
namic resource redistribution at node level (based on the re-
distribution of surplus resources). Some other works combine
some of these functionalities, albeit none of them provides all
our facilities. In particular, [25] proposes a dynamic capacity
management framework for virtualized hosting services, which
is based on an optimization model that links a cost model
based on SLA contracts with an analytical queuing-based
performance model. However, this work does not support
either the creation of VMs on demand or the two-level resource
allocation. In addition, the evaluation does not use a working
implementation of the proposed system, but a discrete event

217

simulation. Similarly, [26] presents a two-level autonomic
resource management system for virtualized data centers that
enables automatic and adaptive resource provisioning in ac-
cordance with SLAs specifying dynamic tradeoffs of service
quality and cost. A novelty of this approach is the use of
fuzzy logic to characterize the relationship between application
workload and resource demand. However, this work does not
support the creation of VMs on demand either.

VIII. CONCLUSIONS AND FUTURE WORK

This paper has described a working prototype of a
framework for facilitating resource management in service
providers, which is part of the Semantically-Enhanced Re-
source Allocator developed within the BREIN European
project. Described solution exploits well-known features of
virtualization for providing application-specific virtual envi-
ronments, granting in this way full control to the applica-
tions of their execution environment without any risks to the
underlying system or the other applications. These virtual
environments are created on demand and consolidated in
the provider’s physical resources, allowing him to optimize
resources usage and reduce costs. In addition, our approach
supports fine-grain dynamic resource distribution among these
virtual environments based on SLAs (encoded using a real
SLA specification). The system implements a self-adaptive
behavior: each application receives enough resources to meet
the agreed QoS, and free resources can be dynamically redis-
tributed among applications when SLA violations are detected.

We have presented experimental results demonstrating the
effectiveness of our approach. These experiments show that
application-specific VMs can be created in around 7 seconds
and be ready to be used in around 37 seconds, which is a
reasonable period of time when executing medium and long
running tasks (which are the target of our work). In addition,
the evaluation demonstrates that our system is able to adapt
the resource allocations in very short time under changing
conditions while fulfilling the agreed performance metrics and
solve SLA violations by rescheduling efficiently the resources.

Although current prototype has a pretty good functionality,
we have started the work for translating high level SLA metrics
into resource requirements. In addition, we are planning to
add more complex policies to the RM based on economic
parameters (e.g. rewards, penalties), and to consider the Xen
Domain-0 CPU usage in the resource allocation decisions.

ACKNOWLEDGMENT

This work is supported by the Ministry of Science and Tech-
nology of Spain and the European Union (FEDER funds) un-
der contract TIN2007-60625, by the Generalitat de Catalunya
under grant 2009FI B 00249, and the European Commission
under FP6 IST contract 034556 (BREIN).

REFERENCES

[1] J. Ejarque, M. de Palol, I. Goiri, F. Julia, J. Guitart, R. Badia, and J. Tor-
res, “SLA-Driven Semantically-Enhanced Dynamic Resource Allocator
for Virtualized Service Providers,” in 4th IEEE International Conference
on e-Science, December 7–12, Indianapolis, USA, 2008, pp. 8–15.

[2] “EU BREIN project,” http://www.eu-brein.com.
[3] “Xen Hypervisor,” http://www.xen.org.
[4] I. Goiri, F. Julia, and J. Guitart, “Efficient Data Management Support

for Virtualized Service Providers,” in 17th Euromicro Conference on
Parallel, Distributed and Network-based Processing (PDP’09), Weimar,
Germany, February 18–20, 2009.

[5] “Globus Toolkit,” http://globus.org/toolkit/.
[6] GRAAP Working Group, “Web Services Agreement Specification (WS-

Agreement), Version 2005/09, Global Grid Forum,” Tech. Rep., 2005.
[7] H. Ludwig, A. Keller, A. Dan, R. King, and R. Franck, “Web Service

Level Agreement (WSLA) Language Specification, Version 1.0, IBM
Corporation,” Tech. Rep., 2003.

[8] “EU TrustCoM project,” http://www.eu-trustcom.com.
[9] E. Mellor, R. Sharp, and D. Scott, “Xen Management API,” revision

1.0.6. July 2008.
[10] “EU OntoGrid project,” http://www.ontogrid.net.
[11] “Jena Semantic Web Framework,” http://jena.sourceforge.net/.
[12] “Java Agent DEvelopment Framework,” http://jade.tilab.com/.
[13] “Amazon EC2 Service Level Agreement,”

http://aws.amazon.com/ec2-sla/.
[14] “GoGrid Service Level Agreement,”

http://www.gogrid.com/legal/sla.php.
[15] M. Bennani and D. Menasce, “Resource Allocation for Autonomic

Data Centers using Analytic Performance Models,” in 2nd International
Conference on Autonomic Computing (ICAC’05), Seattle, USA, June 13–
16 2005, pp. 229–240.

[16] K. Appleby, S. Fakhouri, L. Fong, G. Goldszmidt, S. Krishnakumar,
D. Pazel, J. Pershing, and B. Rochwerger, “Oceano - SLA-based Man-
agement of a Computing Utility,” in Symposium on Integrated Network
Management (IM’01), Seattle, WA, USA, May 14–18 2001, pp. 855–868.

[17] G. Lodi, F. Panzieri, D. Rossi, and E. Turrini, “SLA-Driven Clustering
of QoS-Aware Application Servers,” IEEE Transactions on Software
Engineering, vol. 33, no. 3, pp. 186–197, 2007.

[18] I. Krsul, A. Ganguly, J. Zhang, J. Fortes, and R. Figueiredo, “VMPlants:
Providing and Managing Virtual Machine Execution Environments for
Grid Computing,” in 2004 ACM/IEEE conference on Supercomputing
(SC’04). Washington, DC, USA: IEEE Computer Society, 2004, p. 7.

[19] K. Keahey, I. Foster, T. Freeman, X. Zhang, and D. Galron, “Virtual
Workspaces in the Grid,” in 11th Europar Conference, Lisbon, Portugal,
September 2005, pp. 421–431.

[20] M. Kallahalla, M. Uysal, R. Swaminathan, D. Lowell, M. Wray,
T. Christian, N. Edwards, C. Dalton, and F. Gittler, “SoftUDC: a
Software-based Data Center for Utility Computing,” Computer, vol. 37,
no. 11, pp. 38–46, 2004.

[21] Y. Song, Y. Sun, H. Wang, and X. Song, “An Adaptive Resource Flowing
Scheme amongst VMs in a VM-Based Utility Computing,” in 7th IEEE
International Conference on Computer and Information Technology,
Fukushima, Japan, October 16–19 2007, pp. 1053–1058.

[22] P. Padala, K. Shin, X. Zhu, M. Uysal, Z. Wang, S. Singhal, A. Merchant,
and K. Salem, “Adaptive Control of Virtualized Resources in Utility
Computing Environments,” ACM SIGOPS Operating Systems Review,
vol. 41, no. 3, pp. 289–302, 2007.

[23] M. Steinder, I. Whalley, D. Carrera, I. Gaweda, and D. Chess, “Server
Virtualization in Autonomic Management of Heterogeneous Workloads,”
in 10th International Symposium on Integrated Network Management
(IM’07), Munich, Germany, May 21–25 2007, pp. 139–148.

[24] S. Govindan, A. Nath, A. Das, B. Urgaonkar, and A. Sivasub-
ramaniam, “Xen and Co.: Communication-aware CPU Scheduling
for Consolidated Xen-based Hosting Platforms,” in 3rd International
ACM SIGPLAN/SIGOPS Conference on Virtual Execution Environments
(VEE’07), San Diego, California, USA, June 13–15 2007, pp. 126–136.

[25] B. Abrahao, V. Almeida, J. Almeida, A. Zhang, D. Beyer, and F. Safai,
“Self-Adaptive SLA-Driven Capacity Management for Internet Ser-
vices,” in 10th IEEE/IFIP Network Operations and Management Sympo-
sium (NOMS 2006), Vancouver, Canada, April 3–7 2006, pp. 557–568.

[26] J. Xu, M. Zhao, J. Fortes, R. Carpenter, and M. Yousif, “On the
Use of Fuzzy Modeling in Virtualized Data Center Management,”
in 4th International Conference on Autonomic Computing (ICAC’07),
Jacksonville, USA, June 11–15 2007.

218

