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Abstract—The emergence of affordable mobile devices with
rich interfaces and high-bandwidth wireless connectivity has
revolutionized the mobile Web. However, such new trends also
imply downloading larger data volumes from the Web, with
considerable battery and, often, monetary costs that inevitably
degrade user experience.

The mobile Web calls for end-to-end data deduplication that
is able to achieve both high precision and negligible computa-
tional cost on the battery-constrained client side. We propose
dedupHTTP, a novel deduplication solution that leverages the
generic approach of Cache-Based Compaction to achieve the
above requirements. Using a full-fledged implementation of
dedupHTTP with real workloads from popular Web sites, we
obtained savings in traffic consumption of up to 94,5% when
comparing to plain HTTP transfer.

I. INTRODUCTION

The Web has had a major growth in recent years. While the
volume of data available through the Web is doubling every
year [1], the average Web page size and number of objects
per page are steadily increasing [2]. We resort to Web-based
services for more and more tasks that we used to perform
offline. Examples range from Web-based mail, home banking
and online news, to document editing and social networking.

The emergence of affordable mobile devices allows one
to perform such web-based tasks anywhere, through smart-
phones, handheld and laptop PCs. With the evolution of the
mobile world, mobile users have started to access increasingly
richer Web content, downloading more and more information.

Howeyver, such new trends of the mobile Web come at a cost,
often twofold. First, many wireless Internet providers charge
a per-byte monetary cost. Second, battery autonomy is not
growing as fast as the number of bytes that devices exchange
across power hungry wireless connections [3], [4], [5].

Hence, if we want to deliver a rich Web surfing experience
to mobile users, we need to dramatically reduce the actual
payload that mobile devices download across wireless links.
One natural direction to tackle such a challenge is to exploit
the substantial redundancy that Web contents exhibit [6].

Web deduplication is not a new problem, as well established
techniques such as data compression [7] and classical Web
caching [8] solve it to some extent. The former eliminates
redundancy within the resource being downloaded, whereas
the latter avoids downloading a resource that is entirely
identical to a previous version present in the client’s cache.
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However, there is strong evidence that a considerable
amount of redundancy within downloaded web contents arises
from other forms of redundancy, which escape both data
compression and classical Web caching. The most common
example is when a resource changes little by little over time,
which is typically called resource modification [6].

To address the Web deduplication problem, Rhea et al.
have proposed Value-Based Web Caching (VBWC) [9], subse-
quently improved by Irmak and Suel [10]. Their results show
that, by detecting resource modification and other redundant
data that classical caching and data compression do not, they
achieve substantial network consumption savings [9], [10].

One can consider employing VBWC in the mobile scenario
as a means of alleviating the battery consumption of increas-
ingly energy-demanding clients. However, some characteristics
of VBWC would be crucial limitations when deployed in the
mobile Web scenario. Firstly, VBWC relies on a dedicated
middlebox proxy deployed at the client’s ISP, which interme-
diates all connections of the client with any Web server. This
assumption may not always be a reasonable one for the mobile
scenario. Mobile clients connect to distinct access points as
they move through different geographic locations, which often
causes them to roam across different ISPs.

A second disadvantage of the middlebox based approach
is that it cannot exploit redundancy in page loads that are
served through an HTTPS connection. Finally, VBWC requires
the client to maintain a hash table of every resource block it
currently caches, as well as to perform look ups to such a table
in order to decode the deduplicated contents it receives from
the proxy. On devices with severe battery constraints, such
load has an energy cost that should be far from negligible.

In this paper we propose a novel deduplication system
for the battery-constrained mobile Web, called dedupHTTPl.
dedupHTTP eliminates the above limitations of VBWC when
deployed in such a scenario, while retaining comparable dedu-
plication effectiveness. The key insight behind our solution
is the design of a (i) purely end-to-end [11] deduplication
system (without relying on any intermediate middlebox proxy)
which (ii) pushes all redundancy detection steps to the server.
Requirement (i) makes dedupHTTP well suited to roaming
clients and allows it to work even with encrypted communi-
cation between client and server. Requirement (ii) means that
dedupHTTP places minimal computational load on the client.

With that in mind, we depart from the Cache-Based Com-

!dedupHTTP’s open source is available at http:/deduphttp.sourceforge.net
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Fig. 1. Example of HTTP request using dedupHTTP

paction (CBC) approach [12], which inherently ensures re-
quirements (i) and (ii), and we propose non-trivial extensions
to CBC that allow us to build a complete and practical solution.

More precisely, the main contributions of this paper are:

- We propose an efficient and scalable solution for the
problem of allowing the server to track each client’s cache
contents, a previously unsolved problem in CBC [12].

- We build a full-fledged deduplication system for the mo-
bile Web. DedupHTTP shows savings of network consumption
of up to 94,5% when comparing to plain HTTP transfer.

The remainder of the paper is organized as follows. Section
IT describes dedupHTTP’s architecture, departing from the
generic CBC approach and then detailing the improvements
and modifications that dedupHTTP introduces. Section III
evaluates an implementation of our algorithm. Section IV sur-
veys related work. Finally, Section V draws some conclusions.

II. ARCHITECTURE

DedupHTTP runs in two separate modules, one inside the
client browser and another inside the Web server. The server
maintains a set of resources (e.g., html pages), each one
addressable by a given URL.

Whenever the server creates a new version of a resource
that the server already stores, the server archives the previous
version. Hence, the server actually stores a set of resource
versions for each URL, the current version together with older
ones. This increases the system’s ability to detect redundancy.

Upon receiving an HTTP request for a given URL, the
server responds with the contents of the most recent resource
version the server currently stores for that URL. The client
stores a cache with the resources it downloaded from any
servers, indexed by the resource’s URL.

At a glance, dedupHTTP follows the generic CBC approach
[12], which we describe next in three main steps, which we
call A, B and C. Figure 1 depicts the whole algorithm.

A. Step A: Determining common resources

Each resource version is indexed by an unique identifier,
assigned by the server on the first time any client downloads
that resource version. Such an identifier is given by a (host
domain, serial number) pair. When the client sends the HTTP
request for a given URL, it fetches all identifiers from the
resources stored in the client’s cache that belong to the same
host domain as the requested resource. These are the resources
the server will use as reference resources.

In order to ensure that the resources identified on a request
are not evicted, the client locks the affected cached resources
until the response arrives or the server request times out.
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Fig. 2. Schematic of the server-side redundancy detection algorithm
B. Step B: Server-side redundancy detection

When the server receives a request for some URL, it locates
and fetches the most recent version of the target resource.
Then, the server determines which resources it currently stores
in common with the client’s cache, by crossing the resource
identifiers present in the HTTP request with the ones in
its cache. We call these resources the reference resources
for the target resource. Finally, we run a local redundancy
detection algorithm to find chunks in the target resource that
are redundant with chunks of the reference resources. These
chunks don’t need to be transferred and can be replaced in the
response by references that the client will understand.

1) Chunk division algorithm: We start by creating per-byte
hashes of the resource content. These hashes represent smaller
chunks of the resource. This is done by using the rolling hash
function of Karp-Rabin fingerprinting [13].

Now we have to select the hashes that represent the re-
source. We chose the Winnowing [14] technique, since it
has been experimentally proven to give the best redundancy
detection [15]. To avoid pathological cases, we enforce a
minimum and maximum chunk size. After selecting the
chunk boundaries, we hash each larger chunk using a 64 bit
MurmurHash [16]. This choice was driven by the fact that
MurmurHash outperforms cryptographic hash functions such
as MD5 or SHAI1, while retaining a low collision rate [16].

2) Detecting redundant chunks: The meta-information re-
turned after applying the chunk division algorithm to the target
resource (chunk hash, offset within the resource and length)
is stored in a hash table indexed by the chunk’s hash.

The server iterates through all chunk hashes of the target
resource searching for redundant chunks with its reference
resources and within itself (Figure 2). It gets each reference
resource’s chunk hash table from a resource pool indexed by
the resource identifier, and for each chunk hash, the server
looks it up in the hash table of each reference resource.

C. Step C: Sending the final response

The final response, to be sent by the server to the client,
begins with a metadata section with a sequence of chunk
references to the redundant chunks found between the target
resource and its reference resources.

Each chunk reference is a four-part tuple: the offset in
the current response where the chunk is to be appended, the



32 64 128 256 512 1024 2048 64 128 256 512 1024

CNN 68,8% | 81,9% | 81.8% | 79.3% | 76,3% | 71,4% | 65,7% CNN 939% | 94,5% | 94,4% | 93,.8% | 92,4%

Engadget 46% 57,6% | 50,7% | 38,5% | 32,4% | 254% | 22,3% Engadget 87,6% | 88,5% | 88,9% | 88,4% | 87,3%

HuffPost | 58,7% | 69,6% | 66,6% | 60,7% | 54,7% | 47,1% | 33,7% HuffingtonPost 91% 91,6% | 91,4% | 89,9% | 88,3%
TABLE I TABLE II

REDUNDANCY DETECTED VARIATION WITH DEDUPHTTP

resource identifier of the reference resource where the client
can find the chunk content, the offset in the reference resource
where the chunk content can be found and the length of
the chunk. The tuples are arranged in the same order as the
corresponding chunks appear in the original response. At the
end of the metadata section we append the non-redundant
response content chunks, in the same order as they were
present in the original response.

When the client receives the response it only has to go
through the metadata, copy the chunks referenced by the tuples
to the final response, from the locally cached resources, and
copy the non-redundant content from the received response to
the final response, in the corresponding order.

1) Metadata coalescing optimization: We have observed
that most times there are consecutive redundant chunks de-
tected in the same reference resource. Since we check the
client’s resources in the same order for every chunk, we can
save on metadata by considering a sequence of consecutive
redundant chunks as a single chunk. Hence, we only send one
metadata block for the large coalesced redundant chunk.

A particular case where such an optimization is very effec-
tive is when a requested resource is aliased in the domain. The
only thing that will be sent to the client is a chunk’s worth of
metadata with the whole resource length.

III. EVALUATION

For evaluation purposes we developed prototypes of
dedupHTTP’s client and server modules. For ease of imple-
mentation, these modules were implemented as proxies, using
the OWASP Proxy [17] library, which takes care of every
aspect in HTTP communication.

We also implemented a delta-encoding algorithm to test
against dedupHTTP. We store each requested resource on both
the client and server. When a request is made for a new version
of a resource the client has, we encode a delta between those
two versions at the server. Then we send only the delta to
the client, who reconstructs the new resource using the old
resource version and the delta. We used xdelta3 [18] as the
encoding/decoding algorithm.

The core question we aim to answer with dedupHTTP’s
evaluation is: how much traffic does dedupHTTP save for the
client? From here we expect to impact the client’s battery life
and its other resources in a meaningful way.

Regular browsing still represents a considerable amount
of Internet traffic [1]. The workloads for our experi-
ments were created by downloading every news and com-
ments page linked from the main pages of three world-
wide popular sites: www.cnn.com, www.engadget.com and
www.huffingtonpost.com.These pages are good representatives
of dynamic content sites. We discard all image resources from
the workloads, leaving only plain text, html, xml and javascript
resources. We downloaded these resources on two consecutive
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days at the same hour in order to compare the redundancy
retained from one day to the other, mimicking a regular user
that reads the news once every day.

All results here shown average the downloading of a work-
load’s resources from our Web server to our Web client. The
techniques we compared dedupHTTP to were delta-encoding,
plain HTTP transfer with and without Gzip encoding enabled
and an hybrid dedupHTTP with Gzip compression algorithm.

A. Minimizing transferred volume of data

We evaluated different expected chunk sizes, ranging from
32 bytes up to 2048 bytes (2 KB). Table I presents our results.
The smaller the chunk size, the more metadata the server has
to store, since we have more chunks per resource.

There is a threshold below which the attained precision does
not compensate the increased metadata overhead. This is the
case when we have a 32 byte chunk size, since there can
be chunks down to 8 bytes, because of the chunk size lower
bound. Clearly the lowest feasible expected chunk size is 64
bytes, because then we will have a minimum size of 16 bytes
for the chunk size, which is larger than the communication
overhead per chunk of our implementation (14 bytes).

We also tested our hybrid algorithm with chunk sizes
ranging from 64 to 1024 bytes (1 KB) (Table II).

The redundancy detected with the hybrid is better for 128
and 256-byte chunk sizes, because of fewer metadata while
still detecting most of the redundant data from other resources.

B. Overall transferred volume results

We selected dedupHTTP with 64-byte chunks and hybrid
with 256-byte chunks to represent those techniques against
the competition, since they yielded the best results.

When comparing redundancy detection of all the techniques
(Figure 3), delta-encoding yields the worse results for all
workloads, since it can act only on part of the resources, the
ones with a previous version in the client’s cache.

Gzip compression values are very consistent over all re-
sources and workloads. For the CNN workload, dedupHTTP
is better than Gzip, but not for the other two workloads.



This happened because we witnessed the number of re-
sources prone to delta-encoding being bigger on the CNN
workload. These are the resources where most redundancy will
be found with dedupHTTP, since there is a previous version
of the resource in cache with much redundant content.

Finally, the hybrid algorithm surpasses all of the other
techniques, with 6% to 19% more redundancy detected than
Gzip, which should indicate the amount of data retrieved from
resources other than the one being requested, i.e. the amount
of redundant data which dedupHTTP detects and Gzip doesn’t.

We have also studied the variation of redundancy detected
over time, with workloads for several consecutive days, and
dedupHTTP’s effect in the Time-to-Display for the user over
the Internet. These results are not presented here for space
limitations, but are available elsewhere [19].

IV. RELATED WORK

Chan and Woo proposed the generic Cache-Based Com-
paction (CBC) approach [12]. It combines two main ideas: a
selection algorithm to choose reference objects for redundancy
detection, and an encoding/decoding algorithm that acts upon a
new object using the selected reference objects. They proposed
a dictionary-based solution for encoding/decoding. When there
are no common resources across the client’s cache and the
server storage, CBC acts as traditional data compression.
While when there is only one common resource, CBC behaves
similarly to delta encoding. Their original solution does not
scale well to more than a few common resources (they consider
a maximum of three resources, including the object being
downloaded). In contrast, dedupHTTP scales gracefully to
higher numbers of common resources. CBC’s proposal [12] is
incomplete, as crucial aspects are left unsolved. For instance,
the problem of expressing the client’s cache contents to the
server in an efficient way was not addressed. CBC also has a
security problem in the presence of malicious clients, which
we have also solved but could not explain here due to space
limitations [19].

Rhea et al. devised Value-Based Web Caching (VBWC) [9],
a solution that provides deduplication for clients connected
across low bandwidth links (less than 80 Kbps). VBWC relies
on an ISP proxy. VBWC’s proxy maintains, for each client, a
loosely synchronized set of the hashes of the chunks that such
client is caching. The proxy does not store the actual data,
which ensures the scalability of VBWC, as long as chunk size
remains at coarse levels (2 KBytes in [9]).

When a server sends some resource to the proxy, as a
response to a given client’s request, the proxy divides such
response in chunks and checks if that client already holds each
chunk. If so, it only transfers the chunk’s hash. The client, in
turn, maintains a local chunk hash table that indexes every
chunk the client currently caches. For each chunk hash the
client receives from the proxy, the client looks up the local
hash table to confirm whether that chunk is effectively cached.
Irmak and Suel [10] further improved VBWC by employing
an hierarchical redundancy detection scheme, enabling smaller
chunks while retaining acceptable storage and network over-
heads. Both solutions suffer from important limitations when
deployed in the mobile Web scenario. Namely, their reliance

on an ISP proxy and look up load that both place on the
battery-constrained client side.

V. CONCLUSIONS

The new trends of the rich-content mobile Web imply
downloading larger data volumes from the Web than before.
While wireless bandwidth is keeping up with the pace of such
a revolution, owners of battery-constrained devices are expe-
riencing shorter device autonomy and, often, paying higher
bills when connected through access points that charge them
per each transferred byte.

We propose dedupHTTP, a deduplication solution that lever-
ages the generic approach of Cache-Based Compaction to fight
the problems above. Using a full-fledged implementation of
dedupHTTP with real workloads from popular Web sites, we
obtained savings in network consumption of up to 94,5% when
comparing to plain HTTP transfer.
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