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Abstract—In this paper, we consider the problem of estimating
the distance between any two large data streams in small-
space constraint. This problem is of utmost importance in
data intensive monitoring applications where input streams are
generated rapidly. These streams need to be processed on thefly
and accurately to quickly determine any deviance from nominal
behavior. We present a new metric, theSketch ⋆-metric, which
allows to define a distance between updatable summaries (or
sketches) of large data streams. An important feature of the
Sketch ⋆-metric is that, given a measure on the entire initial data
streams, theSketch ⋆-metric preserves the axioms of the latter
measure on the sketch (such as the non-negativity, the identity,
the symmetry, the triangle inequality but also specific properties
of the f -divergence). Extensive experiments conducted on both
synthetic traces and real data allow us to validate the robustness
and accuracy of theSketch ⋆-metric.

Index Terms—Data stream; metric; randomized approxima-
tion algorithm.

I. I NTRODUCTION

The main objective of this paper is to propose a novel
metric that reflects the relationships between any two discrete
probability distributions in the context of massive data streams.
Specifically, this metric, denoted bySketch⋆-metric, allows
us to efficiently estimate a broad class of distances measures
between any two large data streams by computing these
distances only using compact synopses or sketches of the
streams. TheSketch⋆-metric is distribution-free and makes
no assumption about the underlying data volume. It is thus
capable of comparing any two data streams, identifying their
correlation if any, and more generally, it allows us to acquire
a deep understanding of the structure of the input streams.
Formalization of this metric is the first contribution of this
paper.

The interest of estimating distances between any two data
streams is important in data intensive applications. Many
different domains are concerned by such analyses includ-
ing machine learning, data mining, databases, information
retrieval, and network monitoring. In all these applications,
it is necessary to quickly and precisely process a huge
amount of data. For instance, in IP network management,
the analysis of input streams will allow to rapidly detect
the presence of outliers or intrusions when changes in the
communication patterns occur [1]. In sensors networks, such

an analysis will enable the correlation of geographical and
environmental informations [2], [3]. Actually, the problem
of detecting changes or outliers in a data stream is similar
to the problem of identifying patterns that do not conform
to the expected behavior, which has been an active area of
research for many decades. For instance, depending on the
specificities of the domain considered and the type of outliers
considered, different methods have been designed, namely
classification-based, clustering-based, nearest neighbor based,
statistical, spectral, and information theory. To accurately ana-
lyze streams of data, a panel of information-theoretic measures
and distances have been proposed to answer the specificities
of the analyses. Among them, the most commonly used are
the Kullback-Leibler (KL) divergence [4], thef -divergence
introduced by Csiszar, Morimoto and Ali & Silvey [5], [6],
[7], the Jensen-Shannon divergence and the Battacharyya
distance [8]. More details can be found in the comprehensive
survey of Basseville [9].

Unfortunately, computing information theoretic measuresof
distances in the data stream model is challenging essentially
because one needs to process streams on the fly (i.e, in one-
pass), on huge amount of data, and by using very little storage
with respect to the size of the stream. In addition the analysis
must be robust over time to detect any sudden change in
the observed streams (which may be the manifestation of
routers deny of service attack or worm propagation). We
tackle this issue by presenting an approximation algorithm
that constructs a sketch of the stream from which theSketch
⋆-metric is computed. This algorithm is a one-pass algorithm.
It uses very basic computations, and little storage space (i.e.,
O (t(log n+ k logm)) wherek andt are precision parameters,
m is an upper-bound of stream size andn the number of
distinct items in the stream). It does not need any information
on the size of input streams nor on their structure. This consists
in the second contribution of the paper.

Finally, the robustness of our approach is validated with a
detailed experimentation study based on synthetic traces that
range from stable streams to highly skewed ones.

The paper is organized as follows. First, Section II reviews
the related work on classical generalized metrics and theirap-
plications on the data stream model while Section III describes
this model. Section IV presents the necessary background
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that makes the paper self-contained. Section V formalizes
the Sketch⋆-metric. Section VI presents the algorithm that
fairly approximates theSketch ⋆-metric in one pass and
Section VII presents extensive experiments (on both synthetic
traces and real data) of our algorithm. Finally, we concludein
Section VIII.

II. RELATED WORK

Work on data stream analysis mainly focuses on efficient
methods (data-structures and algorithms) to answer different
kind of queries over massive data streams. Mostly, these
methods consist in deriving statistic estimators over the data
stream, in creating summary representations of streams (to
build histograms, wavelets, and quantiles), and in comparing
data streams. Regarding the construction of estimators, a
seminal work is due to Alonet al. [10]. The authors have
proposed estimators of the frequency momentsFk of a stream,
which are important statistical tools that allow to quantify
specificities of a data stream. Subsequently, a lot of attention
has been paid to the strongly related notion of the entropy
of a stream, and all notions based on entropy (i.e., norm and
relative entropy) [11]. These notions are essentially related to
the quantification of the amount of randomness of a stream
(e.g, [12], [13], [14], [15], [16], [17]). The construction of
synopses or sketches of the data stream have been proposed
for different applications (e.g, [18], [19], [20]).

Distance and divergence measures are key measures in
statistical inference and data processing problems [9]. There
exists two largely used broad classes of measures, namely the
f -divergences and the Bregman divergences. Among them,
there exists two classical distances, namely the Kullback-
Leibler (KL) divergence and the Hellinger distance, that are
very important to quantify the amount of information that
separates two distributions. In [16], the authors have proposed
a one pass algorithm for estimating the KL divergence of an
observed stream compared to an expected one. Experimental
evaluations have shown that the estimation provided by this
algorithm is accurate for different adversarial settings for
which the quality of other methods dramatically decreases.
However, this solution assumes that the expected stream is the
uniform one, that is a fully random stream. Actually in [21],
the authors propose a characterization of the information
divergences that are not sketchable. They have proven that any
distance that has not “norm-like” properties is not sketchable.
In the present paper, we go one step further by formalizing
a metric that allows to efficiently and accurately estimate a
broad class of distances measures between any two large data
streams by computing these distances uniquely on compact
synopses or sketches of streams.

III. D ATA STREAM MODEL

We consider a system in which a nodeP receives a large
data streamσ = a1, a2, . . . , am of data items that arrive
sequentially. In the following, we describe a single instance of
P , but clearly multiple instances ofP may co-exist in a system
(e.g., in caseP represents a router, a base station in a sensor

network). Each data itemi of the streamσ is drawn from the
universeΩ = {1, 2, . . . , n} wheren is very large. Data items
can be repeated multiple times in the stream. In the following
we suppose that the lengthm of the stream is not known. Items
in the stream arrive regularly and quickly, and due to memory
constraints, need to be processed sequentially and in an online
manner. Therefore, nodeP can locally store only a small
fraction of the items and perform simple operations on them.
The algorithms we consider in this work are characterized by
the fact that they can approximate some function onσ with a
very limited amount of memory. We refer the reader to [22] for
a detailed description of data streaming models and algorithms.

IV. I NFORMATION DIVERGENCE OFDATA STREAMS

We first present notations and background that make this
paper self-contained.

A. Preliminaries

A natural approach to study a data streamσ is to model
it as an empirical data distribution over the universeΩ, given
by (p1, p2, . . . , pn) with pi = xi/m, andxi = |{j : aj = i}|
representing the number of times data itemi appears inσ. We
havem =

∑
i∈Ω xi.

1) Entropy: Intuitively, the entropy is a measure of the
randomness of a data streamσ. The entropyH(σ) is minimum
(i.e., equal to zero) when all the items in the stream are the
same, and it reaches its maximum (i.e., log2 m) when all
the items in the stream are distinct. Specifically, we have
H(σ) = −

∑
i∈Ω pi log2 pi. The log is to the base 2 and

thus entropy is expressed in bits. By convention, we have
0 log 0 = 0. Note that the number of timesxi item i appears
in a stream is commonly called the frequency of itemi. The
norm of the entropy is defined asFH =

∑
i∈Ω xi log xi.

2) 2-universal Hash Functions:In the following, we in-
tensively use hash functions randomly picked from a2-
universal hash family. A collectionH of hash functions
h : {1, . . . ,M} → {0, . . . ,M ′} is said to be2-universal if
for everyh ∈ H and for every two different itemsi, j ∈ [M ],
P{h(i) = h(j)} ≤ 1

M ′
, which is exactly the probability of

collision obtained if the hash function assigned truly random
values to anyi ∈ [M ]. In the following, notation[M ] means
{1, . . . ,M}.

B. Metrics and divergences

1) Metric definitions: The classical definition of a metric
is based on a set of four axioms.

Definition 1 (Metric) Given a setX , a metric is a function
d : X ×X → R such that, for anyx, y, z ∈ X , we have:

Non-negativity: d(x, y) ≥ 0 (1)

Identity of indiscernibles: d(x, y) = 0⇔ x = y (2)

Symmetry: d(x, y) = d(y, x) (3)

Triangle inequality: d(x, y) ≤ d(x, z) + d(z, y) (4)

In the context of information divergence, usual distance
functions are not precisely metric. Indeed, most of divergence
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functions do not verify the 4 axioms, but only a subset of them.
We recall hereafter some definitions of generalized metrics.

Definition 2 (Pseudometric)Given a setX , a pseudometric
is a function that verifies the axioms of a metric with the
exception of theidentity of indiscernible, which is replaced by

∀x ∈ X, d(x, x) = 0.

Note that this definition allows thatd(x, y) = 0 for some
x 6= y in X .

Definition 3 (Quasimetric)Given a setX , a quasimetric is
a function that verifies all the axioms of a metric with the
exception of thesymmetry(cf. Relation 3).

Definition 4 (Semimetric)Given a setX , a semimetric is
a function that verifies all the axioms of a metric with the
exception of thetriangle inequality(cf. Relation 4).

Definition 5 (Premetric)Given a setX , a premetric is
a pseudometric that relax both thesymmetry and triangle
inequalityaxioms.

Definition 6 (Pseudoquasimetric)Given a setX , a pseu-
doquasimetric is a function that relax both theidentity of
indiscernibleand thesymmetryaxioms.

Note that the latter definition simply corresponds to a
premetric satisfying the triangle inequality. Remark alsothat
all the generalized metrics preserve thenon-negativityaxiom.

2) Divergences:We now give the definition of two broad
classes of generalized metrics, usually denoted asdivergences.

a) f -divergence:Mostly used in the context of statistics
and probability theory, af -divergenceDf is a premetric that
guarantees monotonicity and convexity.

Definition 7 (f -divergence)Let p and q be two Ω-point
distributions. Given a convex functionf : (0,∞) → R such
that f(1) = 0, thef -divergence of q from p is:

Df (p||q) =
∑

i∈Ω

qif

(
pi
qi

)
,

where by convention0f(00 ) = 0, af( 0
a
) = a limu→0 f(u), and

0f(a0 ) = a limu→∞ f(u)/u if these limits exist.

Following this definition, anyf -divergence verifies both
monotonicity and convexity.

Property 8 (Monotonicity) Given κ an arbitrary transition
probability that respectively transforms twoΩ-point distribu-
tions p and q into pκ and qκ, we have:

Df (p||q) ≥ Df (pκ||qκ).
Property 9 (Convexity) Let p1, p2, q1 andq2 be fourΩ-point
distributions. Given anyλ ∈ [0, 1], we have:

Df (λp1 + (1− λ)p2||λq1 + (1− λ)q2)

≤ λDf (p1||q1) + (1− λ)Df (p2||q2).
This class of divergences has been introduced in indepen-

dent works by chronologically Csiszár, Morimoto and Ali &
Silvey [5], [6], [7]. All the distance measures in the so-called
Ali-Silvey distancesare applicable to quantifying statistical
differences between data streams.

b) Bregman divergence:Initially proposed in [23], this
class of generalized metrics encloses quasimetrics and semi-
metrics, as these divergences do not satisfy the triangle in-
equality nor symmetry.

Definition 10 (Bregman divergence)GivenF a continuously-
differentiable and strictly convex function defined on a closed
convex setC, theBregman divergence associated withF for
p, q ∈ C is defined as

BF (p||q) = F (p)− F (q)− 〈∇F (q), (p− q)〉 .
where the operator〈·, ·〉 denotes the inner product.

In the context of data stream, it is possible to reformulate
this definition according to probability theory. Specifically,

Definition 11 (Decomposable Bregman divergence)Let p and
q be twoΩ-point distributions. Given a strictly convex function
F : (0, 1] → R, the Bregman divergence associated withF
of q from p is defined as

BF (p||q) =
∑

i∈Ω

(F (pi)− F (qi)− (pi − qi)F
′(qi)) .

Following these definitions, any Bregman divergence ver-
ifies non-negativity and convexity in its first argument, but
not necessarily in the second argument. Another interesting
property is given by thinking of the Bregman divergences as
an operator of the functionF .

Property 12 (Linearity) LetF1 andF2 be two strictly convex
and differentiable functions. Given anyλ ∈ [0, 1], we have
that

BF1+λF2
(p||q) = BF1

(p||q) + λBF2
(p||q).

3) Classical metrics: In this section, we present several
commonly used metrics inΩ-point distribution context. These
specific metrics are used in the evaluation part presented in
Section VII.

a) Kullback-Leibler divergence:The Kullback-Leibler
(KL) divergence [4], also called the relative entropy, is a robust
metric for measuring the statistical difference between two
data streams. The KL divergence owns the special feature
that it is both af -divergence and a Bregman one (with
f(t) = F (t) = t log t).

Given p and q two Ω-point distributions, the Kullback-
Leibler divergence is then defined as

DKL(p||q) =
∑

i∈Ω

pi log
pi
qi

= H(p, q)−H(p), (5)

whereH(p) = −
∑

pi log pi is the (empirical) entropy ofp
andH(p, q) = −∑

pi log qi is the cross entropy ofp andq.
b) Jensen-Shannon divergence:The Jensen-Shannon di-

vergence (JS) is a symmetrized and smoothed version of
the Kullback-Leibler divergence. Also known as information
radius (IRad) or total divergence to the average, it is defined
as

DJS(p||q) =
1

2
DKL(p||ℓ) +

1

2
DKL(q||ℓ), (6)

whereℓ = 1
2 (p+q). Note that the square root of this divergence

is a metric.
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c) Bhattacharyya distance:The Bhattacharyya distance
is derived from his proposed measure of similarity between
two multinomial distributions, known as the Bhattacharya
coefficient (BC) [8]. It is defined as

DB(p||q) = − log(BC(p, q)) whereBC(p, q) =
∑

i∈Ω

√
piqi.

This distance is a semimetric as it does not verify the triangle
inequality. Note that the famous Hellinger distance [24] equal
to

√
1−BC(p, q) verifies it.

V. SKETCH ⋆-METRIC

We now present a method to sketch two input data streams
σ1 andσ2, and to compute any generalized metricφ between
these sketches such that this computation preserves all the
properties ofφ computed onσ1 andσ2. Proof of correctness
of this method is presented in this section.

Definition 13 (Sketch⋆-metric) Let p and q be any twon-
point distributions. Given a precision parameterk, and any
generalized metricφ on the set of allΩ-point distributions,
there exists aSketch ⋆-metric φ̂k defined as follows

φ̂k(p||q) = max
ρ∈Pk(Ω)

φ(p̂ρ||q̂ρ) with ∀a ∈ ρ, p̂ρ(a) =
∑

i∈a

p(i),

wherePk(Ω) is the set of all partitions of anΩ-element set
into exactlyk nonempty and mutually exclusive cells.

Remark 14 Note that fork > Ω, it does not exist a partition
of Ω into k nonempty parts. By convention, we consider that
φ̂k(p||q) = φ(p||q) in this specific context.

In this section, we focus on the preservation of axioms
and properties of a generalized metricφ by the corresponding
Sketch⋆-metric φ̂k.

A. Axioms preserving

Theorem 15 Given any generalized metricφ then, for any
k ∈ Ω, the corresponding Sketch⋆-metric φ̂k preserves all
the axioms ofφ.

Proof: The proof is directly derived from Lemmata 16,
17, 18 and 19.

Lemma 16 (Non-negativity)Given any generalized metricφ
verifying the Non-negativity axiom then, for anyk ∈ Ω, the
corresponding Sketch⋆-metricφ̂k preserves the Non-negativity
axiom.

Proof: Let p andq be any twoΩ-point distributions. By
definition,

φ̂k(p||q) = max
ρ∈Pk(Ω)

φ(p̂ρ||q̂ρ)

As for any two k-point distributions,φ is positive we have
φ̂k(p||q) ≥ 0 that concludes the proof.

Lemma 17 (Identity of indiscernible)Given any generalized
metricφ verifying the Identity of indiscernible axiom then, for
any k ∈ Ω, the corresponding Sketch⋆-metric φ̂k preserves
the Identity of indiscernible axiom.

Proof: Let p be anyΩ-point distribution. We have

φ̂k(p||p) = max
ρ∈Pk(Ω)

φ(p̂ρ||p̂ρ) = 0,

due toφ Identity of indiscernible axiom.
Consider now twoΩ-point distributionsp and q such that

φ̂k(p||q) = 0. Metric φ verifies both the non-negativity axiom
(by construction) and the Identity of indiscernible axiom (by
assumption). Thus we have∀ρ ∈ Pk(Ω), p̂ρ = q̂ρ, leading to

∀ρ ∈ Pk(Ω), ∀a ∈ ρ,
∑

i∈a

p(i) =
∑

i∈a

q(i). (7)

Moreover, for anyi ∈ Ω, there exists a partitionρ ∈ Pk(Ω)
such that{i} ∈ ρ. By Equation 7,∀i ∈ Ω, p(i) = q(i), and so
p = q.

Combining the two parts of the proof leads tôφk(p||q) =
0⇐⇒ p = q, which concludes the proof of the Lemma.

Lemma 18 (Symmetry)Given any generalized metricφ
verifying the Symmetry axiom then, for anyk ∈ Ω, the
corresponding Sketch⋆-metric φ̂k preserves the Symmetry
axiom.

Proof: Let p andq be any twoΩ-point distributions. We
have

φ̂k(p||q) = max
ρ∈Pk(Ω)

φ(p̂ρ||q̂ρ).

Let ρ ∈ Pk(Ω) be a k-cell partition such thatφ(p̂ρ||q̂ρ) =
maxρ∈Pk(Ω) φ(p̂ρ||q̂ρ). We get

φ̂k(p||q) = φ(p̂ρ||q̂ρ) = φ(q̂ρ||p̂ρ) ≤ φ̂k(q||p).

By symmetry, consideringρ ∈ Pk(Ω) such thatφ(q̂ρ||p̂ρ) =
maxρ∈Pk(Ω) φ(q̂ρ||p̂ρ), we also haveφ̂k(q||p) ≤ φ̂k(p||q),
which concludes the proof.

Lemma 19 (Triangle inequality)Given any generalized met-
ric φ verifying the Triangle inequality axiom then, for any
k ∈ Ω, the corresponding Sketch⋆-metric φ̂k preserves the
Triangle inequality axiom.

Proof: Let p, q andr be any threeΩ-point distributions.
Let ρ ∈ Pk(Ω) be a k-cell partition such thatφ(p̂ρ||q̂ρ) =
maxρ∈Pk(Ω) φ(p̂ρ||q̂ρ).

We have

φ̂k(p||q) = φ(p̂ρ||q̂ρ)
≤ φ(p̂ρ||rρ) + φ(rρ||q̂ρ)
≤ max

ρ∈Pk(Ω)
φ(p̂ρ||rρ) + max

ρ∈Pk(Ω)
φ(rρ||q̂ρ)

= φ̂k(p||r) + φ̂k(r||q)

that concludes the proof.

B. Properties preserving

Theorem 20 Given a f -divergenceφ then, for anyk ∈ Ω,
the corresponding Sketch⋆-metric φ̂k is also af -divergence.

Proof: From Theorem 15,̂φk preserves the axioms of the
generalized metric. Thus,̂φk andφ are in the same equivalence
class. Moreover, from Lemma 22,̂φk verifies the monotonicity
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property. Thus, as thef -divergence is the only class of
decomposable informationmonotonicdivergences (cf. [25]),
φ̂k is also af -divergence.

Theorem 21 Given a Bregman divergenceφ then, for anyk ∈
Ω, the corresponding Sketch⋆-metric φ̂k is also a Bregman
divergence.

Proof: From Theorem 15,̂φk preserves the axioms of the
generalized metric. Thus,̂φk andφ are in the same equivalence
class. Moreover, the Bregman divergence is characterized by
the property of transitivity (cf. [26]) defined as follows. Given
p, q andr threeΩ-point distributions such thatq = Π(L|r) and
p ∈ L, with Π is a selection rule according to the definition of
Csiszár in [26] andL is a subset of theΩ-point distributions,
we have the Generalized Pythagorean Theorem:

φ(p||q) + φ(q||r) = φ(p||r).

Moreover the authors in [27] show that the setSn of all
discrete probability distributions overn elements (X =
{x1, . . . , xn}) is a Riemannian manifold, and it owns another
different dually flat affine structure. They also show that
these dual structures give rise to the generalized Pythagorean
theorem. This is verified for the coordinates inSn and for
the dual coordinates [27]. Combining these results with the
projection theorem [26], [27], we obtain that

φ̂k(p||r) = max
ρ∈Pk(n)

φ(p̂ρ||r̂ρ)

= max
ρ∈Pk(n)

(φ(p̂ρ||q̂ρ) + φ(q̂ρ||r̂ρ))

= max
ρ∈Pk(n)

φ(p̂ρ||q̂ρ) + max
ρ∈Pk(n)

φ(q̂ρ||r̂ρ)

= φ̂k(p||q) + φ̂k(q||r)

Finally, by the characterization of Bregman divergence through
transitivity [26], and reinforced with Lemma 24 statement,φ̂k

is also a Bregman divergence.
In the following, we show that theSketch⋆-metricpreserves

the properties of divergences.

Lemma 22 (Monotonicity) Given any generalized metricφ
verifying the Monotonicity property then, for anyk ∈ Ω, the
corresponding Sketch⋆-metric φ̂k preserves the Monotonicity
property.

Proof: Let p and q be any twoΩ-point distributions.
Given c < N , consider a partitionµ ∈ Pc(Ω). As φ is
monotonic, we haveφ(p||q) ≥ φ(p̂µ||q̂µ) [28]. We split the
proof into two cases:

Case (1). Suppose thatc ≥ k. Computing φ̂k(p̂µ||q̂µ)
amounts in considering only thek-cell partitionsρ ∈ Pk(Ω)
that verify

∀b ∈ µ, ∃a ∈ ρ, b ⊆ a.

These partitions form a subset ofPk(Ω). The maximal value of
φ(p̂ρ||q̂ρ) over this subset cannot be greater than the maximal
value over the wholePk(Ω). Thus we have

φ̂k(p||q) = max
ρ∈Pk(Ω)

φ(p̂ρ||q̂ρ) ≥ φ̂k(p̂µ||q̂µ).

Case (2). Suppose now thatc < k. By definition, we have
φ̂k(p̂µ||q̂µ) = φ(p̂µ||q̂µ). Considerρ′ ∈ Pk(Ω) such that∀b ∈
µ, ∃a ∈ ρ′, b ⊆ a. It then exists a transition probability that
respectively transformŝpρ′ and q̂ρ′ into p̂µ and q̂µ. As φ is
monotonic, we have

φ̂k(p||q) = max
ρ∈Pk(Ω)

φ(p̂ρ||q̂ρ)

≥ φ(p̂ρ′ ||q̂ρ′)

≥ φ(p̂µ||q̂µ) = φ̂k(p̂µ||q̂µ).
Finally for any value ofc, φ̂k guarantees the monotonicity

property. This concludes the proof.

Lemma 23 (Convexity) Given any generalized metricφ
verifying the Convexity property then, for anyk ∈ Ω, the
corresponding Sketch⋆-metric φ̂k preserves the Convexity
property.

Proof: Let p1, p2, q1 and q2 be any fourΩ-point distri-
butions. Given anyλ ∈ [0, 1], we have:

φ̂k (λp1 + (1− λ)p2||λq1 + (1− λ)q2)

= max
ρ∈Pk(Ω)

φ
(
λp̂1ρ + (1− λ)p̂2ρ||λq̂1ρ + (1− λ)q̂2ρ

)

Let ρ′ ∈ Pk(Ω) such that

φ
(
λp̂1ρ′ + (1 − λ)p̂2ρ′ ||λq̂1ρ′ + (1− λ)q̂2ρ′

)

= max
ρ∈Pk(Ω)

φ
(
λp̂1ρ + (1 − λ)p̂2ρ||λq̂1ρ + (1− λ)q̂2ρ

)
.

As φ verifies the Convex property, we have:

φ̂k (λp1 + (1− λ)p2||λq1 + (1 − λ)q2)

= φ
(
λp̂1ρ′ + (1− λ)p̂2ρ′ ||λq̂1ρ′ + (1− λ)q̂2ρ′

)

≤ λφ(p̂1ρ′ ||q̂1ρ′) + (1− λ)φ(p̂2ρ′ ||q̂2ρ′)

≤ λ

(
max

ρ∈Pk(Ω)
φ(p̂1ρ||q̂1ρ)

)
+ (1− λ)

(
max

ρ∈Pk(Ω)
φ(p̂2ρ||q̂2ρ)

)

= λφ̂k(p1||q1) + (1− λ)φ̂k(p2||q2)
that concludes the proof.

Lemma 24 (Linearity) The Sketch⋆-metric definition pre-
serves the Linearity property.

Proof: Let F1 and F2 be two strictly convex and dif-
ferentiable functions, and anyλ ∈ [0, 1]. Consider the three
Bregman divergences generated respectively fromF1, F2 and
F1 + λF2.

Let p andq be twoΩ-point distributions. We have:

B̂F1+λF2k
(p||q) = max

ρ∈Pk(Ω)
BF1+λF2

(p̂ρ||q̂ρ)

= max
ρ∈Pk(n)

(BF1
(p̂ρ||q̂ρ) + λBF2

(p̂ρ||q̂ρ))

≤ B̂F1k
(p||q) + λB̂F2k

(p||q)
As F1 and F2 two strictly convex functions, and taken a

leaf out of the Jensen’s inequality, we have:

B̂F1k
(p||q) + λB̂F2k

(p||q)
≤ max

ρ∈Pk(Ω)
(BF1

(p̂ρ||q̂ρ) + λBF2
(p̂ρ||q̂ρ))

= B̂F1+λF2k
(p||q)
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that conclude the proof.
This concludes the proof that theSketch⋆-metric preserves

all the axioms of a metric as well as the properties off -
divergences and Bregman divergences. We now show how to
efficiently implement such a metric.

VI. A PPROXIMATION ALGORITHM

In this section, we propose an algorithm that computes
the Sketch⋆-metric in one pass on the stream. By definition
of the metric (cf., Definition 13), we need to generate all
the possiblek-cell partitions. The number of these partitions
follows the Stirling numbers of the second kind, which is equal
to S(n, k) = 1

k!

∑k
j=0(−1)k−j

(
k
j

)
jn, wheren is the size of

the items universe. Therefore,S(n, k) grows exponentially
with n. Unfortunately,n is very large. As the generating
function of S(n, k) is equivalent toxn, it is unreasonable
in term of space complexity. We show in the following that
generatingt = ⌈log(1/δ)⌉ randomk-cell partitions, where
δ is the probability of error of our randomized algorithm, is
sufficient to guarantee good overall performance of our metric.

Our algorithm is inspired from the Count-Min Sketch al-
gorithm proposed in [19] by Cormode and Muthukrishnan.
Specifically, the Count-Min algorithm is an (ε, δ)-approxi-
mation algorithm that solves thefrequency-estimationprob-
lem. For any items in the input streamσ, the algorithm
outputs an estimation̂fv of the frequency of itemv such
that P{|f̂v − fv| > εfv} < δ, whereε, δ > 0 are given as
parameters of the algorithm. The estimation is computed by
maintaining a two-dimensional arrayC of t× k counters, and
by using t 2-universal hash functionshi (1 ≤ i ≤ t), where
k = 2/ε and t = ⌈log(1/δ)⌉. Each time an itemv is read
from the input stream, this causes one counter of each line to
be incremented,i.e., C[hi(v)] is incremented by one for each
i ∈ [1..t].

To compute theSketch⋆-metric of two streamsσ1 and
σ2, two sketcheŝσ1 and σ̂2 of these streams are constructed
according to the above description. Note that there is no
particular assumption on the length of both streamsσ1 and
σ2. That is their respective length is finite but unknown. By
construction of the 2-universal hash functionshi (1 ≤ i ≤ t),
each line ofCσ1

andCσ1
corresponds to one partitionρi of the

N -point empirical distributions of bothσ1 andσ2. Thus when
a query is issued to compute the given distanceφ between
these two streams, the maximal value over all thet partitions
ρi of the distanceφ betweenσ̂1ρi

and σ̂2ρi
is returned,i.e.,

the distanceφ applied to theith lines of Cσ1
and Cσ1

for
1 ≤ i ≤ t. Figure 1 presents the pseudo-code of our algorithm.

Lemma 25 Given parametersk and t, Algorithm 1
gives an approximation of the Sketch⋆-metric, using
O (t(logn+ k logm)) bits of space.

Proof: The matricesCσi
, for any i ∈ {1, 2}, are com-

posed oft× k counters, which usesO (logm). On the other
hand, with a suitable choice of hash family, we can store the
hash functions above inO(t logn) space.

Figure 1. Sketch⋆-metric algorithm

Input : Two input streamsσ1 andσ2; the distanceφ, k
and t settings;

Output : The distanceφ betweenσ1 andσ2

1 Chooset functionsh : [n]→ [k], each from a 2-universal
hash function family;

2 Cσ1
[1...t][1...k]← 0;

3 Cσ2
[1...t][1...k]← 0;

4 for aj ∈ σ1 do
5 v = aj;
6 for i = 1 to t do
7 Cσ1

[i][hi(v)]← Cσ1
[i][hi(v)] + 1;

8 for aj ∈ σ2 do
9 w = aj ;

10 for i = 1 to t do
11 Cσ2

[i][hi(w)]← Cσ2
[i][hi(w)] + 1;

12 On queryφk(σ1||σ2) return
φ = max1≤i≤tφ(Cσ1

[i][−],Cσ2
[i][−]);

VII. PERFORMANCEEVALUATION

We have implemented ourSketch⋆-metric and have con-
ducted a series of experiments on different types of streams
and for different parameters settings. We have fed our algo-
rithm with both real-world data and synthetic traces. Real data
give a realistic representation of some real systems, while
the latter ones allow to capture phenomenon which may be
difficult to obtain from real-world traces, and thus allow to
check the robustness of our metric. We have varied all the
significant parameters of our algorithm, that is, the maximal
number of distinct data itemsn in each stream, the number
of cells k of each generated partition, and the number of
generated partitionst. For each parameters setting, we have
conducted and averaged100 trials of the same experiment,
leading to a total of more than300, 000 experiments for the
evaluation of our metric. Real data have been downloaded
from the repository of Internet network traffic [29]. We have
used five traces among the available ones. Two of them
represent two weeks logs of HTTP requests to the Internet
service provider ClarkNet WWW server – ClarkNet is a full
Internet access provider for the Metro Baltimore-Washington
DC area – the other two ones contain two months of HTTP
requests to the NASA Kennedy Space Center WWW server,
and the last one represents seven months of HTTP requests to
the WWW server of the University of Saskatchewan, Canada.
In the following these data sets will be respectively referred to
as ClarkNet, NASA, and Saskatchewan traces. Table I presents
the statistics of these data traces, in term of stream size (cf. “#
items” in the table), number of distinct items in each stream
(cf. “# distinct items”) and the number of occurrences of the
most frequent item (cf. “max. freq.”). For more information on
these data traces, an extensive analysis is available in [30]. We
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Data trace # items # distinct items max. freq.

NASA (July) 1,891,715 81,983 17,572
NASA (August) 1,569,898 75,058 6,530
ClarkNet (August) 1,654,929 90,516 6,075
ClarkNet (September) 1,673,794 94,787 7,239
Saskatchewan 2,408,625 162,523 52,695

Table I
STATISTICS OF REAL DATA TRACES.

Figure 2. Logscale distribution of frequencies for each real data trace.

have evaluated the accuracy of our metric by comparing for
each data set (real and synthetic), the results obtained with our
algorithm on the stream sketches (referred to asSketchin the
legend) and the ones obtained on full streams (referred to as
Ref distance in the legend). That is, for each couple of input
streams, and for each generalized metricφ, we have computed
both the exact distance between the two streams and the one
as generated by our metric. We now present the main lessons
drawn from these experiments.

Figure 3 and 4 shows the accuracy of our metric as a func-
tion of the different input streams and the different generalized
metrics applied on these streams. All the histograms shown
in Figures 3(a)–4(e) share the same legend, but for readability
reasons, this legend is only indicated on histogram 3(c). Three
generalized metrics have been used, namely the Bhattacharyya
distance, the Kullback-Leibler and the Jensen-Shannon diver-
gences, and five distribution families denoted byp andq have
been compared with these metrics.

Let us focus on synthetic traces. The first noticeable re-
mark is that our metric behaves perfectly well when the two
compared streams follow the same distribution, whatever the
generalized metricφ used (cf., Figure 3(a) with the uniform
distribution, Figures 3(b), 3(d) and 3(f) with the Zipf distribu-
tion, Figure 3(c) with the Pascal distribution, Figure 3(e)with
the Binomial distribution, and Figure 3(g) with the Poisson
one). This result is interesting as it allows the sketch⋆-
metric to be a very good candidate as a parametric method for
making inference about the parameters of the distribution that
follow an input stream. The general tendency is that when the
distributions of input streams are close (e.g, Zipf distribution
with different parameter, Pascal and the Zipf withα = 4), then
applying the generalized metricsφ on sketches give a good

estimation of the distance as computed on the full streams.
Now, when the two input distributions exhibit a totally

different shape, this may have an impact on the precision of
our metric. Specifically, let us consider as input distributions
the Uniform and the Pascal distributions (see Figure 3(a)
and 3(c)). Sketching the Uniform distribution leads tok-cell
partitions whose value is well distributed, that is, for a given
partition all thek cell values have with high probability the
same value. Now, when sketching the Pascal distribution, the
repartition of the data items in the cells of any given partitions
is such that a few number of data items (those with high
frequency) populate a very few number of cells. However,
the values of these cells is very large compared to the other
cells, which are populated by a large number of data items
whose frequency is small. Thus the contribution of data items
exhibiting a small frequency and sharing the cells of highly
frequent items will be biased compared to the contribution of
the other items. This explains why the accuracy of the sketch
⋆-metric is slightly lowered in these cases.

We can also observe the strong impact of the non-symmetry
of the Kullback-Leibler divergence on the computation of the
distance (computed on full streams or on sketches) with a clear
influence when the input streams follow a Pascal and Zipf with
α = 1 distributions (see Figures 3(c) and 3(b)).

Finally, Figure 3(h) summarizes the good properties of our
method whatever the input streams to be compared and the
generalized metricφ used to do this comparison.

The same general remarks hold when considering real data
sets. Indeed, Figure 4 shows that when the input streams
are close to each other, which is the case for both (July
and August) NASA and (August and September) ClarkNet
traces (cf. Figure 2), then applying the generalized metrics
φ on sketches gives good results w.r.t. full streams. When
the shapes of the input streams are different (which is the
case for Saskatchewan w.r.t. the 4 other input streams), the
accuracy of the sketch⋆-metric decreases a little bit but in a
small proportion. Notice that the scales on the y-axis differ
significantly in Figure 3 and in Figure 4

Figure 5 presents the impact of the number of cells per
generated partition on the accuracy of our metric on both syn-
thetic traces and real data. It clearly shows that, by increasing
k, the number of data items per cell in the generated partition
shrinks and thus the absolute error on the computation of the
distance decreases. The same feature appears when the number
n of distinct data items in the stream increases. Indeed, when
n increases (for a givenk), the number data items per cell
augments and thus the precision of our metric decreases. This
gives rise to a shift of the inflection point, as illustrated in
Figure 5(b), due to the fact that data sets have almost twenty
times more distinct data items than the synthetic ones. As
aforementioned, the input streams exhibit very different shapes
which explain the strong impact ofk. Note also thatk has the
same influence on theSketch⋆-metric for all the generalized
distancesφ.
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(a) p = Uniform distribution
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(b) p = Zipf distribution with α = 1
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(c) p = Pascal distribution withr = 3 andp =
n

2r+n
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(d) p = Zipf distribution with α = 2
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(e) p = Binomial distribution withp = 0.5
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(f) p = Zipf distribution withα = 4
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(g) p = Poisson distribution withp =
n
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(h) p = Uniform distribution andq = Pascal distribution, as a function
of its parameterr (p =

n

2r+n
).

Figure 3. Sketch⋆-metric accuracy as a function ofp andq (or r for 3(h)). Parameters setting is as follows:m = 200, 000; n = 4, 000; k = 200; t = 4

wherem represents the size of the stream,n the number of distinct data items in the stream,t the number of generated partitions andk the number of cells
per generated partition.
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(a) p = NASA webserver (August)
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(b) p = NASA webserver (July)
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(c) p = ClarkNet webserver (August)
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(d) p = ClarkNet webserver (September)
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(e) p = Saskatchewan University webserver

Figure 4. Sketch⋆-metric accuracy as a function of real data traces. Parameters setting is as follows:k = 2, 000; t = 4.
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(a) Sketch⋆-metric accuracy as a function ofk. We have
m = 200, 000; n = 4, 000; t = 4; r = 3
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(b) Sketch⋆-metric accuracy between data trace extracted from ClarkNet-
work (August) and Saskatchewan University, as a function ofk

Figure 5. Sketch⋆-metric between the Uniform distribution and Pascal with
parameterp =

n

2r+n
(Figures 5(a) and 6(a)), and between data trace extracted

from ClarkNetwork (August) and Saskatchewan University (Figures 5(b)
and 6(b)).

Figure 6 shows the slight influence of the numbert of
generated partitions on the accuracy of our metric. The reason
comes from the use of2-universal hash functions, which
guarantee for each of them and with high probability that
data items are uniformly distributed over the cells of any
partition. As a consequence, augmenting the number of such
hash functions has a weak influence on the accuracy of the
metric. Figure 7 focuses on the error made on theSketch⋆-
metric for five different values oft as a function of parameter
r of the Pascal distribution (recall that increasing values of
r – while maintaining the mean value – makes the shape
of the Pascal distribution flatter). Figures 7(b), 7(d), and7(f)
respectively depict for each value oft the difference between
the reference and the sketch values which makes more visible
the impact of t. The same main lesson drawn from these
figures is the moderate impact oft on the precision of our
algorithm.

VIII. C ONCLUSION AND OPEN ISSUES

In this paper, we have introduced a new metric, theSketch
⋆-metric, that allows to compute any generalized metricφ on
the summaries of two large input streams. We have presented a
simple and efficient algorithm to sketch streams and compute

this metric, and we have shown that it behaves pretty well
whatever the considered input streams. We are convinced of
the undisputable interest of such a metric in various domains
including machine learning, data mining, databases, informa-
tion retrieval and network monitoring.

Regarding future works, we plan to characterize our metric
among Rényi divergences [31], also known asα-divergences,
which generalize different divergence classes. We also plan
to consider a distributed setting, where each site would be in
charge of analyzing its own streams and then would propagate
its results to the other sites of the system for comparison or
merging. An immediate application of such a “tool” would
be to detect massive attacks in a decentralized manner (e.g.,
by identifying specific connection profiles as with worms
propagation, and massive port scan attacks or by detecting
sudden variations in the volume of received data).
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(f) Difference with Jensen-Shannon divergence

Figure 7. Sketch⋆-metric estimation between Uniform distribution and Pascal with parameterp =
n

2r+n
, as a function ofk, t andr.
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