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Abstract—In this paper, we consider the problem of estimating an analysis will enable the correlation of geographical and
the distance between any two large data streams in small- environmental informations [2],[[3]. Actually, the probbe
space constraint. This problem is of utmost importance in ot getecting changes or outliers in a data stream is similar
data intensive monitoring applications where input streans are . s
generated rapidly. These streams need to be processed on tie to the problem of |den_t|fy|ng .patterns that do not_ conform
and accurately to quickly determine any deviance from nomiml 10 the expected behavior, which has been an active area of
behavior. We present a new metric, theSketch x-metric, which  research for many decades. For instance, depending on the
allows to define a distance between updatable summaries (or specificities of the domain considered and the type of astlie
sketches) of large data streams. An important feature of the considered, different methods have been designed, namely

Sketch x-metric is that, given a measure on the entire initial data lassification-b d. clusterina-b d t nei d
streams, the Sketch x-metric preserves the axioms of the latter classification-based, clustering-based, nearest neidfased,

measure on the sketch (such as the non-negativity, the idety,  Statistical, spectral, and information theory. To acalyaaina-

the symmetry, the triangle inequality but also specific progrties lyze streams of data, a panel of information-theoretic mess

of the f-divergence). Extensive experiments conducted on both and distances have been proposed to answer the specificities
synthetic traces and real data allow us to validate the robusiess ¢ ihe analyses. Among them, the most commonly used are
and accuracy of the Sketch «-metric. - - the Kullback-Leibler (KL) divergence [4], the¢'-divergence

Index Terms—Data stream; metric; randomized approxima- . . , s
tion algorithm. introduced by Csiszar, Morimoto and Ali & Silvey[5].][6],
[7], the Jensen-Shannon divergence and the Battacharyya
distance([3]. More details can be found in the comprehensive
survey of Basseville [9].

The main objective of this paper is to propose a novel Unfortunately, computing information theoretic measwes
metric that reflects the relationships between any two diecr distances in the data stream model is challenging esdgntial
probability distributions in the context of massive dateaims. because one needs to process streams on theefyin( one-
Specifically, this metric, denoted b§ketchx-metric allows pass), on huge amount of data, and by using very little seorag
us to efficiently estimate a broad class of distances messungth respect to the size of the stream. In addition the amalys
between any two large data streams by computing thes@st be robust over time to detect any sudden change in
distances only using compact synopses or sketches of the observed streams (which may be the manifestation of
streams. TheSketchx-metric is distribution-free and makesrouters deny of service attack or worm propagation). We
no assumption about the underlying data volume. It is thitgckle this issue by presenting an approximation algorithm
capable of comparing any two data streams, identifying thehat constructs a sketch of the stream from which $ketch
correlation if any, and more generally, it allows us to acguix-metricis computed. This algorithm is a one-pass algorithm.
a deep understanding of the structure of the input streanttsuses very basic computations, and little storage spige (
Formalization of this metric is the first contribution of ghi O (¢(logn + klogm)) wherek andt are precision parameters,
paper. m is an upper-bound of stream size andthe number of

The interest of estimating distances between any two daligtinct items in the stream). It does not need any inforomati
streams is important in data intensive applications. Mamn the size of input streams nor on their structure. Thisistss
different domains are concerned by such analyses includ-the second contribution of the paper.
ing machine learning, data mining, databases, informationFinally, the robustness of our approach is validated with a
retrieval, and network monitoring. In all these applicatip detailed experimentation study based on synthetic trdwas t
it is necessary to quickly and precisely process a hugenge from stable streams to highly skewed ones.
amount of data. For instance, in IP network management,The paper is organized as follows. First, Secfidn Il reviews
the analysis of input streams will allow to rapidly detecthe related work on classical generalized metrics and Hyeir
the presence of outliers or intrusions when changes in thkcations on the data stream model while Sedfioh Ill dési
communication patterns occurl [1]. In sensors networksh suthis model. Section IV presents the necessary background
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that makes the paper self-contained. Secfidn V formalizestwork). Each data itemof the streanv is drawn from the
the Sketchx-metric Section[V] presents the algorithm thauniverseQ2 = {1,2,...,n} wheren is very large. Data items
fairly approximates theSketch x-metric in one pass and can be repeated multiple times in the stream. In the follgwin
Sectior VIl presents extensive experiments (on both syiathewe suppose that the length of the stream is not known. ltems
traces and real data) of our algorithm. Finally, we conclide in the stream arrive regularly and quickly, and due to memory
Section V1. constraints, need to be processed sequentially and in &reonl
manner. Therefore, nod® can locally store only a small
fraction of the items and perform simple operations on them.
Work on data stream analysis mainly focuses on efficielhe algorithms we consider in this work are characterized by
methods (data-structures and algorithms) to answer diifer the fact that they can approximate some functionronith a
kind of queries over massive data streams. Mostly, thegery limited amount of memory. We refer the reader td [22] for
methods consist in deriving statistic estimators over thta d a detailed description of data streaming models and algost
stream, in creating summary representations of streams (to
build histograms, wavelets, and quantiles), and in comgari
data streams. Regarding the construction of estimators, aVe first present notations and background that make this
seminal work is due to Aloret al. [L0]. The authors have paper self-contained.
proposed estimators of the frequency moméntsf a stream,
which are important statistical tools that allow to quantif
specificities of a data stream. Subsequently, a lot of atent A natural approach to study a data streanis to model
has been paid to the strongly related notion of the entroffyas an empirical data distribution over the univefegiven
of a stream, and all notions based on entrapy, (norm and by (p1,p2, ..., ps) With p; = 2;/m, andz; = |[{j : a; = i}
relative entropy)[[T1]. These notions are essentiallyteelao representing the number of times data iteappears inr. We
the quantification of the amount of randomness of a stredt@vem = . q ;.
(e.g [12], [13), [14], [15], [16], [17]). The construction of 1) Entropy: Intuitively, the entropy is a measure of the
synopses or sketches of the data stream have been propégggomness of a data streamThe entropyH (o) is minimum
for different applicationsd.g [18], [19], [20]). (i.e,, equal to zero) when all the items in the stream are the
Distance and divergence measures are key measuressdme, and it reaches its maximure( log, m) when all
statistical inference and data processing probléms [9gr@hthe items in the stream are distinct. Specifically, we have
exists two largely used broad classes of measures, naneely th(o) = — > ,cqpilog, p;. The log is to the base 2 and
f-divergences and the Bregman divergences. Among thelfiys entropy is expressed in bits. By convention, we have
there exists two classical distances, namely the Kullbacklog0 = 0. Note that the number of times; item i appears
Leibler (KL) divergence and the Hellinger distance, tha ain & stream is commonly called the frequency of iténThe
very important to quantify the amount of information thaform of the entropy is defined d@s; =}, i log z;.
separates two distributions. In]16], the authors havegsed  2) 2-universal Hash Functionsin the following, we in-
a one pass algorithm for estimating the KL divergence of d@nsively use hash functions randomly picked from2a
observed stream compared to an expected one. Experimetitayersal hash family. A collectior’{ of hash functions
evaluations have shown that the estimation provided by tHis: {1,..., M} — {0,..., M’} is said to be2-universalif
algorithm is accurate for different adversarial settings ffor everyh € # and for every two different items j € [M],
which the quality of other methods dramatically decreasd®&{h(i) = h(j)} < 3, Which is exactly the probability of
However, this solution assumes that the expected streame is ¢ollision obtained if the hash function assigned truly ramd
uniform one, that is a fully random stream. Actually in[21]values to anyi € [M]. In the following, notation)/] means
the authors propose a characterization of the informatids, ..., M}.
divergences that are not sketchable. They have provenrlyat
distance that has not “norm-like” properties is not sketdta
In the present paper, we go one step further by formanzingl) Metric definitions: The classical definition of a metric
a metric that allows to efficiently and accurately estimate i Pased on a set of four axioms.
broad class of distances measures between any two large @agéinition 1 (Metric) Given a setX, a metric is a function
streams by computing these distances uniquely on compdctX x X — R such that, for anys,y, z € X, we have:
synopses or sketches of streams.

Il. RELATED WORK

IV. INFORMATION DIVERGENCE OFDATA STREAMS

A. Preliminaries

B. Metrics and divergences

Non-negativity: d(z,y) > (1)

lll. DATA STREAM MODEL Identity of indiscernibles: d(z,y) =0 < z =y 2)

We consider a system in which a nodiereceives a large Symmetry: d(z,y) = d(y, z) ()
data streamo = aq,as,...,a,, of data items that arrive Triangle inequality: d(z,y) < d(z,2) + d(z,y) (4)

sequentially. In the following, we describe a single ins&@nf
P, but clearly multiple instances df may co-exist in a system In the context of information divergence, usual distance
(e.g, in caseP represents a router, a base station in a sendganctions are not precisely metric. Indeed, most of divaoge



functions do not verify the 4 axioms, but only a subset of them b) Bregman divergencetnitially proposed in [[28], this
We recall hereafter some definitions of generalized metricsclass of generalized metrics encloses quasimetrics and sem

Definition 2 (Pseudometric)Given a setX, a pseudometric  Metrics, as these divergences do not satisfy the triangle in
is a function that verifies the axioms of a metric with th@quality nor symmetry.
exception of thédentity of indiscerniblewhich is replaced by Definition 10 (Bregman divergencefiven F' a continuously-
o differentiable and strictly convex function defined on aselb
Ve e X, d(z,z) =0.

convex set”, the Bregman divergence associated with?” for
Note that this definition allows that(x,y) = 0 for some p 4 e C is defined as

x#yin X.

. o . . B = F(p) — F(q) — (VF —q)).
Definition 3 (Quasimetric)Given a setX, a quasimetric is r(plla) (p) (9) = (VF(q), (p — 0))
a function that verifies all the axioms of a metric with thavhere the operatof-, -) denotes the inner product.

exception of thesymmetry(cf. Relation[3). In the context of data stream, it is possible to reformulate
Definition 4 (Semimetric)Given a setX, a semimetric is this definition according to probability theory. Specifigal

a function that verifies all the axioms of a metric with th@efinition 11 (Decomposable Bregman divergendsst p and
exception of theriangle inequality(cf. Relation[4). q be twoQ2-point distributions. Given a strictly convex function
Definition 5 (Premetric)Given a setX, a premetric is F : (0,1] — R, the Bregman divergence associated with?'
a pseudometric that relax both theymmetry and triangle of ¢ from p is defined as
inequality axioms. y
B = F(pi) = F(q:) — (pi — @) F"(a:)) -

Definition 6 (Pseudoquasimetridbiven a setX, a pseu- r(vllo) g( (p:) (@) = (i = a)F'(@))
doquasimetric is a function that relax both thédentity of : - .
N . . Following these definitions, any Bregman divergence ver-
indiscernibleand thesymmetryaxioms. o - L I

ifies non-negativity and convexity in its first argument, but

Note that the latter definition simply corresponds to gqt necessarily in the second argument. Another inteigstin

premetric satisfying the triangle inequality. Remark atlsat property is given by thinking of the Bregman divergences as
all the generalized metrics preserve then-negativityaxiom. an operator of the functio’.

2) Divergences:We now give the definition of two broad

classes of generalized metrics, usually denotedivwrgences Property 12 (Linearity) Let Iy and F be two strictly convex

a) f-divergence:Mostly used in the context of statisticsand differentiable functions. Given any € [0, 1], we have

and probability theory, &-divergenceD; is a premetric that that
guarantees monotonicity and convexity. Bry+ar: (plla) = Br, (plla) + ABr (plla)-

Definition 7 (f-divergence)Let p and ¢ be two Q-point 3) Classical metrics:In this section, we present several
distributions. Given a convex functigh: (0,00) — R such commonly used metrics ife-point distribution context. These

that f(1) = 0, the f-divergence of ¢ from p is: specific metrics are used in the evaluation part presented in
‘ Section V.
Ds(pllg) = Zqif (&) , a) Kullback-Leibler divergence:The Kullback-Leibler
qi

icQ (KL) divergencel[4], also called the relative entropy, iobust
where by conventioff(2) = 0, af(2) = alim, .o f(u), and metric for measuring the_ statistical difference betv_veen tw
0f() = alimy oo f(u)/u if these limits exist. data streams. The KL divergence owns the special feature
that it is both a f-divergence and a Bregman one (with
ft) = F(t) =tlogt).
o _ _ N Given p and ¢ two Q-point distributions, the Kullback-
Property 8 (Monotonicity) Given x an arbitrary transition | ejpler divergence is then defined as

probability that respectively transforms tw-point distribu- P;
tions p and ¢ into p,, and g,., we have: Dir(pllg) =) pilog " H(p,q) —H(p), (5

Dy (plla) > Dy (pella). -
) ) where H(p) = — > _ p;logp; is the (empirical) entropy op
Property 9 (Convexity) Letp1, pa, ¢1 andg; be fourQ-point  ang f7(p, q) = — S~ pilogq; is the cross entropy qf andg.
distributions. Given any € [0, 1], we have: b) Jensen-Shannon divergencehe Jensen-Shannon di-
Dy (Ap1 + (1 = Mpal|Ags + (1= N)ga) vergence (JS) ?s a symmetrized and smoothe_d versio_n of
< AD;(pr]lar) + (1 — \)D (pal|g2)- the Kullback-Leibler divergence. Also known as informatio

radius (IRad) or total divergence to the average, it is ddfine
This class of divergences has been introduced in indepes-

dent works by chronologically Csiszar, Morimoto and Ali & Dys(pllg) = lDKL(p”é) + 1DKL((J||€), (6)
Silvey [5], [6], [7]. All the distance measures in the soledl 2 2

Ali-Silvey distancesare applicable to quantifying statisticalwherel = %(p—l—q). Note that the square root of this divergence
differences between data streams. is a metric.

Following this definition, anyf-divergence verifies both
monotonicity and convexity.



¢) Bhattacharyya distanceThe Bhattacharyya distance Proof: Let p be anyQ-point distribution. We have
is derived from his proposed measure of similarity between ~
two multinomial distributions, known as the Bhattacharya ¢ (pllp)
coefficient (BC) [8]. It is defined as

= D D, = O

e, 9(Dpllpp) =0,

due to¢ ldentity of indiscernible axiom.

Dg(pl|lq) = —log(BC(p, q)) where BC(p, q) = Z N T Consider now tyon—po_ir_n distributionsp and ¢ s_u_ch th_at
ieq ¢r(pllg) = 0. Metric ¢ verifies both the non-negativity axiom

(by construction) and the Identity of indiscernible axiohy (

This distance is a semimetric as it does not verify the mkangassumption) Thus we haw € Py (), 5, = 4, leading to
. syHp — Hpo

inequality. Note that the famous Hellinger distance [24)aq
to /1 - BC(p,q) verifies it. Vp € Pe(Q),Va € p,> p(i) = qli). (7)
V. SKETCH *-METRIC e _ = .
) Moreover, for anyi € €, there exists a partitiop € P(Q)
We now present a method to sketch two input data streagigch that{i} € p. By Equatiori¥ Vi € Q, p(i) = ¢(i), and so
o1 andos, and to compute any generalized metpibetween p=q.
these sketches such that this computation preserves all theompining the two parts of the proof leads 4 (p||q) =

properties ofy computed orr; ando,. Proof of correctness () p = ¢, which concludes the proof of the Lemma.m

of this method is presented in this section. Lemma 18 (Symmetry)Given any generalized metrig

Definition 13 (Sketch*'metric) Letp andq be any twon- Verifying the Symmetry axion)\ then' for ahy c Q’ the

point distributions. Given a precision parameter and any corresponding Sketch-metric ¢, preserves the Symmetry
generalized metrigy on the set of all2-point distributions, axjom.

there exists aBketch +-metric ¢ defined as follows Proof: Let p andgq be any two2-point distributions. We

1.(pllq) = max 6(5,l[d,) with Va € p, By(a) = 3_p(i), have

PEPL(Q ; & = max ¢(D,||7,).
i€a ox(pllg) pepk(méb(ppn%)

where P, () is the set of all partitions of af2-element set | 5 € Pe(Q)
into exactlyk nonempty and mutually exclusive cells.

Remark 14 Note that fork > Q, it does not exist a partition ~ R A ~
of Q into k& nonempty parts. By convention, we consider that or(plle) = ¢(05lla5) = ¢(a5llP5) < Pr(qllp).
or(plla) = ¢(p||q) in this specific context.

be ak-cell partition such that(p5||¢5) =
MaXyepy (Q) (b(ﬁp”qu)- We get

_ _ _ By symmetry, considering € P (S2) such thate(g,||p,) =
In this se_ctlon, we focu_s on the_preservatlon of a>§|0rn§laxpepk(m #(3,/|p,). we also have@k(qﬂp) < ¢A5k(p||q),
and properties of a generalized mewiby the corresponding \yhich concludes the proof. -

Sketchx-metric g Lemma 19 (Triangle inequality)Given any generalized met-

A. Axioms preserving ric ¢ verifying the Triangle inequality axiom then, for any

. ) . k € Q, the corresponding Sketchmetric ¢, preserves the
Theorem 15 Given any generalized metrig then, for any Triangle inequality axiom.

k € Q, the corresponding Sketchmetric ¢, preserves all

the axioms of. Proof: Let p, ¢ andr be any three-point distributions.

Let € Pr(Q?) be ak-cell partition such thats(p;||g5) =

Proof: The proof is directly derived from Lemmaial16, . AT
PEFk :

(17,18 and_10. B \We have
Lemma 16 (Non-negativity) Given any generalized metri¢ ~ R
verifying the Non-negativity axiom then, for akye €, the o1 (plla) = o(Ppllan)
corresponding Sketchrmetric ¢, preserves the Non-negativity < o(P5lIT5) + 6(T51|35)
axiom. < max ¢(pyllTp) + max B(Tpl|g,)
Proof: Let p andq be any twof2-point distributions. By pEPL) PP
definition, = ok (pllr) + or(rllg)
o (pllg) = pg%%z) & (Dplldp) that concludes the proof. ]

As for any two k-point distributions,¢ is positive we have B. Properties preserving

or(pllg) > 0 that concludes the proof. B Theorem 20 Given a f-divergences then, for anyk € (,
Lemma 17 (Identity of indiscernible)Given any generalized the corresponding SketehmetAric ¢ is also a f-divergence.
metric ¢ verifying the Identity of indiscernible axiom then, for  Proof: From Theorem 15¢;, preserves the axioms of the
any k € Q, the corresponding Sketchmetric ¢, preserves generalized metric. Thugy, and¢ are in the same equivalence
the Identity of indiscernible axiom. class. Moreover, from LemniaR@;, verifies the monotonicity



property. Thus, as thef-divergence is the only class of Case (2). Suppose now that< k. By definition, we have
decomposable informatiomonotonicdivergences df. [25]), qﬁk(pullqu ¢(pu|q.). Considerp’ € P(2) such thatvb €
¢, is also af-divergence. B p,3da € p/,b C a. It then exists a transition probability that

Theorem 21 Given a Bregman divergengethen, for anyk € respectively transformg,, and g, into p, andg,. As ¢ is
Q, the corresponding Sketchmetric ¢, is also a Bregman Monotonic, we have

divergence. or(pll) = max ¢(5,](G,)
Proof: From TheoreArhjS(j?;C preserves the axioms of the PEPHY)
generalized metric. Thugy, and¢ are in the same equivalence
class. Moreover, the Bregman divergence is characteriged b
the property of transitivity ¢f. [26]) defined as follows. Given
p, ¢ andr threeQ-point distributions such thagt= II(L|r) and
p € L, with IT is a selection rule according to the definition o
Csiszar in[[26] and. is a subset of th€-point distributions,
we have the Generalized Pythagorean Theorem:

¢(73p’||qu’)
¢(ﬁu||un) = (bk(ﬁquAu)

Finally for any value ofc, qASk guarantees the monotonicity
Property. This concludes the proof. [ ]
Lemma 23 (Convexity) Given any generalized metrig
verifying the Convexity property then, for ay € , the
corresponding Sketch-metric $k preserves the Convexity
o(plla) + ¢(qllr) = o(pl|r)- property.

Proof: Let p1, p2, ¢1 and g2 be any fourQ-point distri-
butions. Given any\ € [0, 1], we have:

>
>

Moreover the authors in_[27] show that the s&t of all
discrete probability distributions oven elements (X -
{z1,...,2,}) is @ Riemannian manifold, and it owns another ¢, (Ap1 + (1 — A)p2|| g1 + (1 — N)g2)
different dually flat affine structure. They also show that _ .. V> 1= N5 e 1=\
these dual structures give rise to the generalized Pyteagor PEPK() (b( 2rast )P2,l[AG1, + ( )Q2p)
theorem. This is verified for the coordinates $i and for Let p' P1(Q) such that
the dual coordinates [27]. Combining these results with the ~ - ~ ~
projection theorem [26]/[27], we obtain that ¢ (AL, + (1 _f)p%’”)‘qlp’ :L ( _A/\)qu”) R

- o = Inax ¢ (M1, + (1= Np2,lAq1, + (1= N2,) -

or(pllr) = max ¢(p,l[7,) PEPL(Y)

PEPK(n) As ¢ verifies the Convex property, we have:

max ($(Dplldp) + ¢(@p7p))

T pePy(n) & A1 + (1= Npa|Aar + (1 — N)g2)
= D o(Ppllap) + x| D(aplTp) =¢ (M1, + (1= Np2y NG, + (1= Nay)

S )\ D1 i 0 / + 1_A Do / 75 ’
_ Q/)k(qu) + Qbk(q”r) (b(plp ||Q1p) ( )¢(p2p ||q2p )
Finally, by the characterization of Bregman divergencetiigh <A (pen%af ¢(P1, a1, )> +(1=A) (pe%%z) ¢(p2p||q2p)>
transitivity [26], and reinforced with Lemnia R4 statemem _ _

is also a Bregman divergence. = Aok (prllar) + (1 — Nk (pallg2)

In the following, we show that thsketcm-metrlcpreserves that concludes the proof. ]
the properties of divergences. Lemma 24 (Linearity) The Sketchx-metric definition pre-
Lemma 22 (Monotonicity) Given any generalized metrig  Serves the Linearity property.
verifying the Monotonicity property then, for artye €2, the Proof: Let F} and F; be two strictly convex and dif-
corresponding Sketck-metric ¢, preserves the Monotonicity ferentiable functions, and any € [0, 1]. Consider the three
property. Bregman divergences generated respectively flamF, and

Proof: Let p and ¢ be any two-point distributions. F1+ AEy.
Given ¢ < N, consider a partitiony € P.(Q). As ¢ is Let p and ¢ be two Q-point distributions. We have:

monotonic, we haves(p|lq) > ¢(Pul|q.) [28]. We split the BFﬁszk(PHQ) max_ B, 1ar, (B,l[3,)
proof into two cases: PEPL(Q)

Case (1). Suppose that > k. Computing ¢ (7,|g,) = (Br, (Bpll@p) + ABr, (Pplldp))
amounts in considering only thie-cell partitionsp € P(Q) r A
that verify < Br,, (pllg) + ABr,, (pllg)
Vb € p,3a € p,b Ca. As Fy and F, two strictly convex functions, and taken a

» ) leaf out of the Jensen’s inequality, we have:
These partitions form a subset®f(€2). The maximal value of

¢(p,|3,) over this subset cannot be greater than the maximal Bry, (plla) + ABr,, (plla)
value over the wholé,(2). Thus we have < max (Br, (B,13,) + MBr, (B,13,))
pPe

ox(pllg) = peI%%z(Q) (Ppllap) > P (Pullgy)- = BF1+>\F2k(p||q)



that conclude the proof. ]

This concludes the proof that ttf&ketchx-metric preserves Figure 1. Sketch-metric algorithm
all the axioms of a metric as well as the propertiesfof  INput: Two input streams, andoy; the distancep, k
divergences and Bregman divergences. We now show how to andt settings;
efficiently implement such a metric. Output: The distancep betweeno; andos

1 Chooset functionsh : [n] — [k], each from a 2-universal
hash function family;
2 Co,[1...8][1...K] < O;

In this section, we propose an algorithm that computesCo,[1...t][1...k] <= 0;
the Sketchx-metric in one pass on the stream. By definitiort for a; € o1 do
of the metric ¢f., Definition [I3), we need to generate all U= aj,
the possiblek-cell partitions. The number of these partitions for i = 1 to ¢ do _
follows the Stirling numbers of the second kind, which is@qu 7 | Co, [i][Pi(v)] = Co, [i)[hi ()] + 1;
_ 1k (k=g (k) in i i =
to S(n, k) = 372 25-0(=1) (5)5", wheren is the size of o € 0y do
the items universe. Therefor&(n, k) grows exponentially 0 W=
with n. Unfortunately,n is very large. As the generatin o
function of S(n, k) is equivalent toz™, it is unreasonable fori =11totdo
n, x", . . .
| a | . | Coulil[hi(w)] 4= Co, [i][s(w)] + 1;
in term of space complexity. We show in the following that |
geperatingt = jlog(l/&)] random k-cell p{;\rtitions, v.vherellz On queryg, (o1 ||o2) return
0 is t_he probability of error of our randomized algonthm, IS ¢ = max;<i<td(Co, [i][~], Con [i][-]);
sufficient to guarantee good overall performance of our imetr
Our algorithm is inspired from the Count-Min Sketch al-
gorithm proposed in[[19] by Cormode and Muthukrishnan.
Specifically, the Count-Min algorithm is are,)-approxi- VIl. PERFORMANCEEVALUATION
mation algorithm that solves thigequency-estimatioprob- _ _
lem. For any items in the input stream, the algorithm  We have implemented ouBketchx-metric and have con-
outputs an estimatiorf, of the frequency of itemw such ducted a series of experiments on different types of streams
that P{|f, — fu| > fs} < &, wheree,d > 0 are given as and for different parameters settings. We have fed our algo-
parameters of the algorithm. The estimation is computed B§hm with both real-world data and synthetic traces. Rediad
maintaining a two-dimensional arr&y of ¢ x k counters, and 9ive a realistic representation of some real syst_ems, while
by usingt 2-universal hash functions; (1 < i < t), where the latter ones allow to capture phenomenon which may be
k = 2/e andt = [log(1/8)]. Each time an item is read difficult to obtain from real-world traces, and thus allow to
from the input stream, this causes one counter of each lineCGfaeck the robustness of our metric. We have varied all the
be incremented,e., C[h;(v)] is incremented by one for eachsignificant parameters of our algorithm, that is, the makima
ie[l.t. number of distinct data items in each stream, the number
To compute theSketch«-metric of two streamso;, and of cells £ of each generated partition, and the number of
o2, two sketchess, anda, of these streams are constructe§€nerated partitions. For each parameters setting, we have
according to the above description. Note that there is f@nducted and averaged( trials of the same experiment,
particular assumption on the length of both streamsand Ieadmg_ to a total of more thaB00, 000 experiments for the
o5. That is their respective length is finite but unknown. Bvaluation of our metric. Real data have been downloaded
construction of the 2-universal hash functidns(1 <i < ¢), rom th_e repository of Internet network traffic [29]. We have
each line oiC,,, andC,, corresponds to one partition of the used five traces among the available ones. Two of them
N-point empirical distributions of both; ando». Thus when Tepresent two weeks logs of HTTP requests to the Internet
a query is issued to compute the given distascbetween Service provider ClarkNet WWW server — ClarkNet is a full

these two streams, the maximal value over all thgartitions !ntérnet access provider for the Metro Baltimore-Wastongt
p; of the distancep betweens; anda, is returned;.e DC area — the other two ones contain two months of HTTP
P Pi " "

the distances applied to theith lines of ICUI and C,, for requests to the NASA Kennedy Space Center WWW server,
1 < i < t. Figure[l presents the pseudo-code of our algorithﬁ{‘d the last one represents_ seven months of HTTP requests to
the WWW server of the University of Saskatchewan, Canada.
In the following these data sets will be respectively refdrio
as ClarkNet, NASA, and Saskatchewan traces. Table | present
the statistics of these data traces, in term of stream sfz&#(
Proof: The matricesC,,, for anyi € {1,2}, are com- items” in the table), number of distinct items in each stream
posed oft x k counters, which use® (logm). On the other (cf. “# distinct items”) and the number of occurrences of the
hand, with a suitable choice of hash family, we can store theost frequent itemdf. “max. freq.”). For more information on
hash functions above i®(tlogn) space. B these data traces, an extensive analysis is available jn\\&0

VI. APPROXIMATION ALGORITHM

Lemma 25 Given parametersk and t, Algorithm [
gives an approximation of the Sketck-metric, using
O (t(logn + klogm)) bits of space.



Data trace # items # distinct items  max. freq.
NASA (July) 1,891,715 81,983 17,572

estimation of the distance as computed on the full streams.

NASA (AugusD 1560898 75058 6530 Now, when the two input distributions exhibit a totally
ClarkNet (August) 1,654,929 90,516 6,075 different shape, this may have an impact on the precision of
ClarkNet (September) 1,673,794 94,787 7,239 our metric. Specifically, let us consider as input distridog
Saskatchewan 2,408,625 162,523 52695 the Uniform and the Pascal distributions (see Figure]3(a)
Table | and[3(c)). Sketching the Uniform distribution leadsiteell

STATISTICS OF REAL DATA TRACES partitions whose value is well distributed, that is, for aegi

partition all thek cell values have with high probability the

100000 T T
NASA (July) —>—

AN same value. Now, when sketching the Pascal distributian, th
10000 | Univestity of Sek neheven ——av | repartition of the data items in the cells of any given piantis

is such that a few number of data items (those with high

frequency) populate a very few number of cells. However,

] the values of these cells is very large compared to the other

cells, which are populated by a large number of data items

) whose frequency is small. Thus the contribution of data $tem

exhibiting a small frequency and sharing the cells of highly

frequent items will be biased compared to the contributibn o

the other items. This explains why the accuracy of the sketch

*-metric is slightly lowered in these cases.

I ‘ L . ‘ i We can also observe the strong impact of the non-symmetry
: 10 1001001000 10000009 of the Kullback-Leibler divergence on the computation af th
Figure 2. Logscale distribution of frequencies for eacH deda trace. distance (computed on full streams or on sketches) withax cle

influence when the input streams follow a Pascal and Zipf with
« = 1 distributions (see Figurés 3[c) apd 3(b)).

have evaluated the accuracy of our metric by comparing forFinally, Figure[ 3(F) summarizes the good properties of our

each data set (real and synthetic), the results obtainédowit method whatever the input streams to be compared and the

algorithm on the stream sketches (referred t&kstchin the generalized metrig) used to do this comparison.

legend) and the ones obtained on full streams (referred to aghe same general remarks hold when considering real data

Ref distance in the legend). That is, for each couple of inpsets. Indeed, Figurel 4 shows that when the input streams

streams, and for each generalized meftigve have computed are close to each other, which is the case for both (July

both the exact distance between the two streams and the and August) NASA and (August and September) ClarkNet
as generated by our metric. We now present the main lesstrages ¢f. Figure[2), then applying the generalized metrics
drawn from these experiments. ¢ on sketches gives good results w.r.t. full streams. When
Figure[3 and ¥ shows the accuracy of our metric as a furtbe shapes of the input streams are different (which is the
tion of the different input streams and the different gelized case for Saskatchewan w.r.t. the 4 other input streams), the

metrics applied on these streams. All the histograms shoaocuracy of the sketck-metric decreases a little bit but in a

in Figured 3(8)4(¢) share the same legend, but for redgabismall proportion. Notice that the scales on the y-axis diffe

reasons, this legend is only indicated on histogram 3(c)ed& h significantly in Figurd B and in Figuféd 4

generalized metrics have been used, namely the Bhatta@hary Figure[% presents the impact of the number of cells per

distance, the Kullback-Leibler and the Jensen-Shannaer-divgenerated partition on the accuracy of our metric on both syn

gences, and five distribution families denotedibgnd ¢ have thetic traces and real data. It clearly shows that, by irginga
been compared with these metrics. k, the number of data items per cell in the generated partition
Let us focus on synthetic traces. The first noticeable rehrinks and thus the absolute error on the computation of the
mark is that our metric behaves perfectly well when the twdistance decreases. The same feature appears when thernumbe
compared streams follow the same distribution, whatever th of distinct data items in the stream increases. Indeed, when
generalized metri¢p used ¢f.,, Figure[3(d) with the uniform n increases (for a giver), the number data items per cell
distribution, Figure§ 3(b), 3(H) afd 3(f) with the Zipf difu- augments and thus the precision of our metric decreases. Thi

tion, Figure[3(d) with the Pascal distribution, Figlire Bfgph gives rise to a shift of the inflection point, as illustrated i

the Binomial distribution, and Figurie 3{g) with the Poissofigure[5(b), due to the fact that data sets have almost twenty

one). This result is interesting as it allows the sketeh times more distinct data items than the synthetic ones. As
metric to be a very good candidate as a parametric method &orementioned, the input streams exhibit very differdaipes
making inference about the parameters of the distributia t which explain the strong impact & Note also that has the
follow an input stream. The general tendency is that when tkame influence on th8ketchx-metric for all the generalized
distributions of input streams are closed Zipf distribution distancesp.

with different parameter, Pascal and the Zipf with= 4), then

applying the generalized metrigs on sketches give a good

1000

Item frequency

100 |

10 |
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Figure 3. Sketchx-metric accuracy as a function gf andg (or r for [3{h)). Parameters setting is as follows: = 200, 000; n = 4,000; k = 200; ¢t = 4
wherem represents the size of the streamthe number of distinct data items in the strednthe number of generated partitions aindhe number of cells
per generated partition.
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Figure 4. Sketchx-metric accuracy as a function of real data traces. Parameteragsédtas follows:k = 2,000; ¢t = 4.
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this metric, and we have shown that it behaves pretty well

> R | whatever the considered input streams. We are convinced of
3t o< 1 the undisputable interest of such a metric in various domain
s | f Ret - Bhatacharyya distance , including machine learning, data mining, databases, méor

' Repeich  Bhatacharyya distance —>— | tion retrieval and network monitoring.

/ Sketch - Kullback-Leibler divergence
;‘:( Ref - Jensen-Shannon divergence
15 / Sketch - Jensen-Shannon divergence

Metric value

. Regarding future works, we plan to characterize our metric
T among Rényi divergences [31], also knowncaslivergences,

i i which generalize different divergence classes. We alsa pla
w | to consider a distributed setting, where each site wouldhbe i
" charge of analyzing its own streams and then would propagate
1000 10000 100000 its results to the other sites of the system for comparison or
K parameter merging. An immediate application of such a “tool” would
(@) Sketchx-metric accuracy as a function df. We have be to detect massive attacks in a decentralized marmer (

m = 200,000; n = 4,000; t =4, r=3

0.25 T T T T T

by identifying specific connection profiles as with worms
propagation, and massive port scan attacks or by detecting
sudden variations in the volume of received data).
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