
Quality-of-Experience driven Acceleration of Thin
Client Connections

Mayutan Arumaithurai, Jan Seedorf, Maurizio Dusi
NEC Laboratories Europe

Kurfuerstenanlage 36
Heidelberg
Germany

mayutan.arumaithurai@neclab.eu
jan.seedorf@neclab.eu

maurizio.dusi@neclab.eu

Edo Monticelli, Renato Lo Cigno
University of Trento

Via Belenzani 12
Trento
Italy

edo.monticelli@studenti.unitn.it
locigno@disi.unitn.it

Abstract—Thin-client based solutions allow users to connect
to remote servers and access content that is running on these
servers within a virtual PC. With the advent of cloud based
solutions, thin-client deployments running on remote Data-centers
are increasingly popular. Unfortunately, since the traffic has to
traverse through the Internet, issues such as latency, packet drops,
and potentially congestion are introduced, which in turn affect
the Quality of Experience (QoE) for the user. Our objective is
to provide preferential treatment to certain thin-client flows over
the rest of the thin-client flows traversing the same intermediate
node, based on the application that the user is using at a given
point in time. This is not straightforward, as it is not easy to
identify what actual application is running inside a given thin
client session, given that thin client protocols essentially only send
bitmaps of the desktop to the client and in addition are often
encrypting traffic. Assuming that some statistical mechanisms
for application identification for thin client connections exists,
the challenge we address is how to exploit this information for
QoE-driven scheduling.

We present a scheme that allows the prioritization of thin-
client flows that are serving delay-sensitive applications, i.e.,
prioritizing flows based on the specific QoE requirements of
the dynamically changing individual applications running within
persistent thin client traffic flows. Our solution is essentially a
hybrid scheduling scheme that takes into account the dynami-
cally changing delay and bandwidth requirements of inner (i.e.,
tunneled in the thin client protocol) applications to prioritize
flows that are close to an application-dependent QoE threshold.
Our evaluation based on a prototype implementation reveals
that our algorithm is indeed effective in dynamically prioritizing
persistent thin-client flows based on the dynamically changing
inner applications running within the flows.

I. INTRODUCTION

Thin-client solutions allow users to connect to remote
services and access content with a virtual PC as if they had
physical access to the remote machine. Thin-client protocols,
such as Microsoft Remote Desktop Protocol (RDP) and Citrix
High Definition user eXperience (HDX), allow graphical dis-
plays to be virtualized and served across a network to a client
device, while application logic is executed on the server (e.g.,
editing documents or running multimedia applications).

Thin-client solutions were initially designed for LAN envi-
ronments, where bandwidth and delays between users and their
Virtual PCs are generally not an issue. But with the advent
of cloud based solutions, thin-client deployments running on
remote Data-centers is increasing in popularity. Unfortunately,
since in this case the traffic has to traverse through a WAN,
issues such as latency, packet drops, and potentially congestion
are introduced, which in turn affect the Quality of Experience
(QoE) for the user. As users perform interactive real-time
activities through thin-client protocols such as watching video,
VoIP, or web browsing, the responsiveness of the network
becomes a crucial parameter to determine the QoE perceived
by end-users when interacting remotely with their virtual PC.
Moreover, the presence of one or more bottlenecks might have
varying effects to different applications, e.g., the effect on RTT
due to congestion might be tolerable for a user reading a
document via the thin-client, but probably unacceptable for
a user watching multimedia content.

We target the following (realistic) scenario: Multiple (pos-
sibly encrypted) thin client connections run through a mid-
dlebox. The applications running in individual flows (and
correspondingly the QoE expectation and bandwidth require-
ments for the flows) as well as the RTT of each flow change
dynamically over time. We assume that some sort of (most
likely statistical) per-flow application identification is available
to the middlebox (see [1]), such that it can estimate at each
point in time the type of application running within each thin
client flow. Knowing the kind of application that users are
currently running on their virtual PC is necessary to determine
the individual QoE that they perceive given the actual network
conditions, and allows solutions such as preferential treatment
based scheduling. However, the detection of the application
running inside a thin-client protocol is a challenging task [1]:
Thin-client connections are usually encrypted and run on the
same port (rendering pattern-matching or port-based appli-
cation identification unfeasible). Further, the data exchanged
within a thin-client session consists only of video bitmaps
of what appears on the remote screen, and does not follow



Fig. 1. Targeted Scenario of Thin-Client Flow Scheduling

the request-response scheme of the specific protocol that the
running application is using. Finally, most thin-client protocols
are closed source, making it hard to use their properties
to infer the current application running inside a connection.
Still, machine-learning techniques exist that feature a low
false-positive rate in classifying application types running in
thin client sessions [1]. We assume the availability of such
mechanisms for our work.

Our objective is to design a QoE-driven, scalable per-
flow scheduling at the middlebox by periodically applying a
scheduling technique that takes into account the dynamically
changing delay and bandwidth requirements of inner applica-
tions. The overall goal is to provide good QoE for multimedia
content running in thin client sessions, by dynamically provid-
ing preferential treatment to certain flows over the rest of the
thin-client flows traversing the same intermediate node (based
on the dynamically changing QoE requirements and delay of
the flows). One core challenge is thus the design of a scheme
that balances the computation complexity of the scheduling
algorithm with fast enough reaction to changing conditions
within the network and the individual flows. We believe that
this is the first work to propose an application identification
based scheduling mechanism solution for thin-client flows.

Fig. 1 visualizes our general scenario: A middle-box can
see tunneled flows only at the level of the tunneling thin client
protocol (e.g., RDP) which is running over a transport protocol,
e.g., TCP. Given that the middle-box can somehow estimate
the higher-layer application running within each flow (which
is dynamically changing within a persistent tunnel flow), it can
apply scheduling on the transport layer in order to prioritize
certain flows for a certain amount of time (depending on
the dynamically changing application type running within a
given tunnel flow). Note that the server terminates individual
application flows to the Internet and tunnels the application
into an existing thin client flow to the client. The middlebox
needs to be placed before a downstream bottleneck (e.g., close
to the access network of clients), and is assumed to handle in
the order of hundreds thin client flows in parallel (as is realistic
in current Virtual Desktop Infrastructure (VDI) deployments).

Our contribution is the design and evaluation of a scalable,

per-flow middlebox scheduling scheme. Our solution enables
to preferentially treat delay-sensitive thin-client connection
compared to delay-insensitive ones. Our results demonstrate,
that in cases where there is congestion on the downstream path,
our approach results in significantly increased QoE at users.
Section II describes our solution and proposed scheduling
algorithm, followed by an overview of our prototype imple-
mentation in Section III. We present evaluation results of our
approach in Section IV, discuss related work in Section V, and
conclude the paper with a summary in Section VI.

II. A SOLUTION BASED ON DELAY BUDGETS

A. Assumptions and Requirements

Our solution assumes that a middlebox has some means
of application identification for thin-client flows, i.e., it can
estimate (with a certain probability) what actual type of appli-
cation is currently running inside a persistent thin client flow at
a given point in time (e.g. video streaming vs. webbrowsing).
Our prototype (see Section III) integrates the algorithms de-
veloped in [1], which leverage machine learning techniques
to identify the type of application running in a thin client
flow based on IP-level features (e.g., packet size or packet
inter-arrival times). However, our approach, which is described
in detail in this section is orthogonal to the specific type of
application identification mechanism used by the middlebox,
as long as at each point in time the mechanism can provide
an estimate with a reasonably low false positive rate.

B. Thin-client Scheduling

In order to provide preferential treatment to different thin-
client flows traversing the same bottlenecks, we propose the
use of a scheduling scheme, which is essentially a deadline-
based solution based on a) per-flow Quality-of-Experience
(QoE) threshold (changing dynamically as users change ap-
plications they execute within a thin client session), b) per-
flow RTT (changing dynamically due to network conditions
and congestion, see Section III for details on how the RTT is
measured from a middlebox), c) per-flow bandwidth require-
ments of each flow (changing dynamically as users change
applications their execute within a thin client session). In short,
the scheduling component consists of frequently calculating
the current delay budget available for each flow which is
the difference between the QoE-threshold (i.e., the maximum
tolerable RTT for the identified application currently running
in the flow) and the flow’s current RTT. The lower the delay-
budget, the higher should be its priority. Therefore, in order
to use our scheme, we need to have a means of estimating
the current application running inside a thin client flow, the
corresponding bandwidth requirements, and its RTT. Thin
clients use protcols such as RDP to transmit data and thereby
send a bitmap of the image of the screen, therefore even if a
user is using multiple applications at the same time, the most
delay-sensitive application takes precedence and the RDP flow
accordingly adjusts its sending/refresh rate. E.g. if a user is
watching Youtube and reading a word document, the refresh



rate for Youtube is higher and therefore the rate at which RDP
sends the image of the screen is proportional to the more delay-
sensitive Youtube flow.

We can derive the following requirements for our target
scenario and envisioned solution: 1) Scalability: It must be able
to handle a large number of flows, 2) Effectiveness/Efficiency:
It must provide a good throughput and good QoE for thin client
users in scenarios with some congestion, ensuring that no flows
are starved, 3) Complexity: Since the scheduling needs to be
performed at line rates, it is essential that the computational
complexity is kept low, 4) Flexibility: The scheduler must
adapt to changing applications within flows, a varying number
of flows, and varying network conditions.

C. Scheduling Algorithm

Our goal is to exploit the knowledge of the individual
application that runs in each RDP flow (as identified e.g. with
machine learning) as well as the measured RTT and bandwidth
requirements per flow for treating flows differently: Given that
for each flow we a) can identify the application and b) measure
its current RTT, we want to prioritize flows depending on
how close they are to a QoE threshold (expressed as a fixed
RTT value for each application type). In previous work, we
have derived concrete values for such QoE thresholds based
on extensive experiments with users [1]: 50ms for video and
100ms for data applications. Note that these QoE thresholds
have been derived for (and are therefore specific) to thin client
connections running over RDP (taking into account how users
perceive the effect of delay on bitmap delivery, depending on
individual applications executed).

Accordingly, assuming we have a set F = f1, f2, ..., fn of
n flows that run through the envisioned scheduler, we define
the Delay Budget (DB) for each flow at time tj as follows:

DB(fi, tj) = QT (fi, tj)−RTT (fi, tj) (1)

where RTT (fi, tj) is the measured RTT and QT (fi, tj) is
the QoE threshold based on the identified application for flow
fi at time tj . At any time our scheduler thus knows the
Delay Budget for each flow. Intuitively, we would like to apply
Earliest Deadline First (EDF) scheduling based on the Delay
Budget to our problem. However, regular EDF is not directly
applicable to our scenario for two reasons: First, when resource
utilization is higher than 100% (as in our target scenario), EDF
cannot guarantee that some flows will not starve [2]. Second, a
per-packet computation of the Delay Budget is computationally
not feasible and does not scale [3] [4].

Hence, we developed QoE Driven thin client Scheduling
(QDS), a combination of different queuing approaches (i.e.,
Weighted Fair Queuing (WFQ), Class Based Queuing (CBC),
and Earliest Deadline First (EDF)) as follows. Flows get
classified into m classes C = c1, c2, ..., cm (in general we
assume less classes than flows, i.e., m < n) depending on
their Delay Budget. Each class ck ∈ C has a maximum Delay

Budget, DBmax(ck); classes are strictly ordered such that
k < h→ DBmax(ck) < DBmax(ch). Periodically, each flow
fi gets allocated to the class ck with the lowest DBmax(ck)
that is higher than DB(fi, tj). We say fi ∈ ck(tj) if a flow
fi has been allocated to class ck at time tj .

In addition, we want to assign the outgoing bandwidth
for queues depending on the bandwidth requirements of the
flows allocated to them. Thus, assume further that —to large
extent depending on its individual application type— each
flow fi has a certain bandwidth requirement. For instance,
video streaming might require x bit/s downstream bandwidth
whereas web browsing might only require y bit/s downstream
bandwidth (where x > y). Our scheduler frequently measures
and averages bandwidth requirements per flow and thus known
at any time tj the average bandwidth requirements for each
flow BR(fi, tj). Each class ck then periodically gets assigned
a weight w(ck, tj) which is calculated based on the Delay
Budgets of the flows in that class (DB(fi, tj)) and on the
bandwidth requirements of the flows in that class (BR(fi, tj))
for all fi ∈ ck(tj). For each class there is a scheduling queue,
and the outgoing bandwidth of each queue is proportional to
the weight of its class.

If we want to schedule purely based on the Delay Budget,
a simple algorithm would assign weights such that each class
ck would periodically get assigned a weight w(ck, tj) which
is proportional to the number of flows currently allocated to
that class and inversely proportional to the Delay Budgets of
all individual flows (counting negative DBs as zero):

w(ck, tj) =
∑

fi∈ck(tj)

1− max (0, DB (fi, tj))∑n
h=1max (0, DB (fh, tj))

(2)

However, different application types may vary significantly
with respect to their bandwidth requirements (e.g., a video
flow might demand a bitrate of 5Mbit/s were as a web-
browsing application might only need 1Mbit/s). Therefore, a
more sophisticated algorithm assigns weights to classes not
only based on the Delay Budgets of flows in the class, but
in addition according to the bandwidth requirements of the
individual flows. We propose the following algorithm, where
α and β are configuration parameters that steer how much to
weight the Bandwidth Requirements of flows and how much
to prioritize flows with lower Delay Budget:

w(ck, tj) =

 ∑
fi∈ck(tj)

β × BR (fi, tj)

minfh∈F (BR (fh, tj))

× l (ck)
(3)

where

l (ck) =

{
1 if k =

⌈
m
2

⌉
1 + α×

(⌈
m
2

⌉
− k
)

otherwise
(4)



Weights are then normalized over all weights (note that this
normalization would also apply when using equation (2)):

wnorm(ck, tj) =
w(ck, tj)∑

i=1,...,m w (ci, tj)
(5)

For each class there is a scheduling queue, and the nor-
malized weights are multiplied with the overall capacity of the
congested downstream link to assign the outgoing bandwidth
(e.g., in Mbps) of each outgoing queue proportionally to the
weight of its class.

The overall rationale behind our approach is as follows:
Flows get allocated outgoing bandwidth proportionally to
their bandwidth requirements (tunable with β), and flows get
proportionally higher priority the closer they are to their QoE
threshold (i.e. inversely proportional to their Delay Budget,
tunable with α; this is conceptionally close to the idea of EDF).
This is achieved by weighting (similar to WFQ). The concept
of classes avoids to have a single scheduling queue per flow
by grouping flows with similar Delay Budget together (similar
to CBQ). Finally, by computing Delay Budgets, Bandwidth
Requirements, and the weights of classes/queues periodically,
the algorithm introduces acceptable computational overhead.

Key to the weight calculation and the assignment of
weights to queues is to find the right frequency of the
execution, i.e., balance the tradeoff between highly frequent
computation and high accuracy with the overall load of the
scheduling algorithm and scalability with number of flows to
handle. Here lies the advantage of our approach: By emulating
an EDF-style scheduling algorithm (based on the Delay Budget
concept) with an adaptation and combination of class-based
queuing and weighted fair queuing, it allows to execute an
earliest deadline first scheme in intervals and not on a per-
packet level. Nonetheless, the scheduling algorithm needs to
be executed more often than the flows are expected to change
their general properties in order to be effective. For instance, in
our experimental evaluation (see Section IV), we execute the
computation of weights and (re-)allocation of flows to classes
periodically every 100ms. Changes of flow properties within
this interval (e.g. due to a user changing the application within
a flow) are only detected (and handled) from the next algorithm
execution point onward. This is not problematic because during
this short timeframe a respective flow is not starved; the cor-
responding queue just gets a suboptimal outgoing bandwidth
allocated for a short period of time.

To avoid that small fluctuations in consecutively measured
RTT of a flow will potentially result in a flow being re-
allocated to queuing classes very frequently (as a fluctuating
RTT will result in a fluctuating Delay Budget), the average
RTT gets computed using a sliding-window approach (see
also Section III): the RTT of a flow fi at time tj used in
the algorithm, RTT (fi, tj), is always the average of a fixed
number of directly preceeding, consecutive single RTT mea-
surements. By using such a sliding window, small functuations
in singular RTT measurements get smoothed out. At the same

time, large fluctuations or continuous small changes in the
same direction will have the desired effect of a change in the
Delay Budget that possibly leads to a re-allocation of the flow
to a different queuing class. Similar to RTT, also the bandwidth
requirements of flows get computed using a sliding window
(see further Section III). The small disadvantage of this sliding-
window approach to computing averages is that it may take
slightly longer for significant changes in flow properties (e.g.
due to a change of the application running inside the flow)
to propagate into effective change in queue allocation. As
discussed previously, this only results in a slightly suboptimal
outgoing bandwidth allocation for a short period of time.

III. PROTOTYPE IMPLEMENTATION

A. Machine Learning Integration into ’BlockMon’ Framework

We have implemented a prototype middlebox of our thin
client acceleration approach for Microsoft’s Remote Desktop
Protocol (RDP). Our middlebox integrates previous work that
developed mature machine learning techniques for RDP traffic
[1] based on the Weka machine learning libraries1. In essence,
we re-use the previously offline RDP-trained database to
classify flows according to the type of application running in
the thin client flow. At each point in time the machine learning
estimates for a given flow if it is of application type video (e.g.,
video streaming applications), audio (e.g., VoIP), or data (e.g.,
web-browsing) [1].

Fig. 2. Prototype of Thin-Client Acceleration Middlebox

In addition, we have integrated the machine-learning based
application identification into our modular monitoring frame-
work BlockMon [5]. This integration of all components into
BlockMon improves speed in identification and classification
of packets. Further, it enables a clean separation of components
of our middlebox into BlockMon modules [5]. Figure 2
shows the overall architecture of our prototype and core Block-
Mon modules. The application identification also provides the
bandwidth estimation we use in our algorithm (computing
in a sliding-window the average bandwidth requirements per
flow). Apart from the application identification, the PCAP
filter (running in kernel space and obtaining packet headers)
and the RTT computation (measuring the RTT of individual

1http://www.cs.waikato.ac.nz/ml/weka/



packets, and computing average RTT values per flow using a
sliding window) are BlockMon modules we implemented for
our prototype.

B. RTT Estimation

Measurement of RTT in a middlebox is not straightforward.
The RTT module maintains a database for a sub-sample of
packets that pass through it on a per flow basis and when
the TCP ACK returns, it calculates the uni-directional RTT
from the middlebox to the client. Similarly, it measures the
RTT to the server and thus obtains combined RTT of the
flow. In more detail, the RTT module for each flow maintains
the last measured and the weighted average RTT. These
values are updated everytime the pcap block captures an
acknowledgment. The RTT measurement thus logically divides
the (RDP client-server) communication into two halves, with
respect to the point where it is run. The RTT is computed
independently for the two halves and the complexive value is
given by their addition: everytime one of the parts is updated,
the overall value also is updated. To compute the RTT for one
of the halves, whenever a TCP packet is captured, its sequence
number and arrival time are stored in a list of ’unacked
tcp packets’. Everytime a tcp acknowledgment is captured,
the list of ’unacked tcp packets’ in the opposite direction is
searched for the corresponding sequence number. The RTT is
then computed as the difference of the acknowledgment and
the packet arrival times. Our actual implementation is more
complex as it must also deal with a multitude of possible cases
(connection initialization, termination, different window size,
keepalive packets, and so forth).

Note that our RTT measurement algorithm only provides
an estimation of the RTT: if the traffic is strongly asymmetric,
i.e. the majority of packets are being sent in one direction, then
one of the halves is updated much more frequently, possibly
leading to inaccuracy of the estimated RTT. This is indeed
the case with the RDP traffic we measure in our prototype,
which upon a scarce user interaction generates much more
traffic in the server to client direction than in the reverse one.
To account for this asymmetric traffic, we measured the RTT
close to the server in our experiments. A real-world solution
—being likely deployed close to clients— would need to find
a more sophisticated solution for coping with asymetric traffic
when estimating RTT.

C. Scheduling Algorithm

The scheduling algorithm (as described in Section II) has
been implemented in user space with the Linux Traffic Control
API2. It receives per-flow measurements and application iden-
tification from the BlockMon modules. Our implementation
makes use of the existing implementation of Hierarchical
Token Bucket (HTB) (which provides basic functionalities such
as class based queuing and allocating weights (i.e., bandwidth)
to outgoing queues). The scheduler frequently calculates the

2http://linux.die.net/man/8/tc

delay budget for each flow, and —using HTB primitives—
assigns flows to classes and computed weights to queues
(according to equations (3), (4), (5)).

IV. EXPERIMENTAL EVALUATION

A. Testbed Setup

We set up a local testbed to emulate a scenario with a
large number of thin-clients, their traffic passing through a
bottleneck. Our testbed consists of our middlebox prototype
placed on the path from several thin clients to multiple RDP
servers (in principle as shown in Fig. 1). The RDP servers
run Windows Server 2008; both the middlebox and client
are standard Linux machines with Debian squeeze (stable).
To emulate a WAN environment with realistic delays and
congestion, we deployed another host between the middlebox
and the clients running netem3. The netem device introduces
a normally distributed random (initial) delay between 5-10
ms per flow for each run. N clients establish each a single
RDP connection to one of S = N/2 servers (one server per
two clients). Inside each RDP session runs an application of
type either v (watching a video stream) or d (data application,
i.e., viewing websites / editing documents), such that there
are in total N = V + D (denoted below as [V : D])
RDP flows, where V is the total number of video flows
and D is the total number of data flows. The flows are
set up such that the congestion caused is 20% above the
overall allocated bandwidth from middlebox to clients (denoted
with c). In each experiment, we started V 5Mbit/s video
flows and D 1Mbit/s data flows in parallel and emulated an
overall downstream capacity limit c from the middlebox to the
clients. We emulated user behaviour by scripting the automatic
execution of a video/data type of application with Windows
login scripts. The bandwidth limit c is varied from 10Mbit/s
to 30Mbit/s and each simulation run last 60s. In the case of
different flow combinations — see Fig. 4(a) — the simulation
runtime is longer, as each single application type lasts for
60s. For all our experiments, we executed 10 runs each for
the same setting, and present below the average and standard
deviation. The QDS scheduling uses m = 10 classes/queues
(with DBmax(ci) increasing from 0 to 100ms in 10ms steps
among the classes), and updates the weights of the queues
every 100ms.

B. Results

In the absence of any other reference algorithm directly
suitable for our scenario —i.e., exploiting application identifi-
cation for per-flow thin client scheduling (see further Section
V)— we compare our solution, QDS, to FIFO. Any other
reference algorithm would either need to use application
identification for scheduling or could only perform very poorly
with respect to treating flows differently according to their in-
dividual RTT (not knowing their expected QoE threshold). We

3http://www.linuxfoundation.org/collaborate/workgroups/networking/netem



(a) α=0.2, c=20, Mbit/s,V :D=3 : 9

(b) β=1, c=20, Mbit/s, V :D=3 : 9

Fig. 3. Study of the impact of α and β for QDS.

thus considered a comparison with other existing algorithms
(besides FIFO) not fair for our target scenario.

Fig. 3 and Fig. 4 shows the average RTT (and standard de-
viation) we obtained —for video and data flows, respectively—
for FIFO and QDS under different settings. Fig. 3(a) compares
different values for β for a congested downstream link of
c = 20Mbit/s with 3 video flows and 9 data flows (3 : 9)
for a fixed value of α = 0.2. The first value on the x-axis
of β = ‘ − ‘ indicates that bandwidth requirements were not
used at all, i.e., in this case the weight for each class was only
computed according to equation (4). The values for FIFO are
displayed as green lines, essentially being the same for video
and data as one would expect without application-dependent
prioritization; dotted grey lines show the QoE threshold for
video (50ms) and data (100ms). It can be observed that
with increasing values of β, one can prioritize video over
data flows more and more, possibly at the expense of data
flows being over their QoE threshold (100ms). This result

(a) c=20, Mbit/s, α=0.2, β=1

(b) V =D, α=0.2, β=1

Fig. 4. Scalability of QDS for varying V:D ratio, bandwidth.

shows that our algorithm effectively splits video and data
flows into different queues (according to their delay budget),
and in addition the allocation of weights to queues based on
bandwidth requirements throttles the overall bandwidth that
data flows can consume. In summary, β = 1 performs best, in
the sense that this setting is able to “push” (compared to FIFO)
the average RTT for video flows below the QoE threshold
of 50ms, while data flows are at the same time on average
below their QoE threshold of 100ms. Consequently, Fig. 3(b)
compares different values for α for the same setting with a
fixed value of β = 1. It can be seen that with increasing values
of α, the average RTT for video flows becomes smaller, while
the average RTT for data flows slightly increases. This is to
be expected as with increasing α the flows with lower delay
budget get prioritized more (i.e., mostly the video flows as they
have a smaller QT than the data flows). Overall, in most of our
experiments α = 0.2 and β = 1 obtained the best tradeoff for
getting both video and data flows below their QoE threshold.



Fig. 4(a) shows how our algorithm can adapt to variations
of application types running in the flows for c = 20Mbit/s.
We varied the ratio between video and data flows (i.e., V : D)
over time to show that our algorithm can successfully maintain
application-dependent QoE thresholds, independent of the indi-
vidual applications running in flows. Note that the ratios V : D
are not chosen randomly, but such that the overall bandwidth
requirements of the flows equal 1.2× c, i.e., 20% congestion.
E.g., 2 video flows at 5Mbit/s and 14 data flows at 1Mbit/s
should cause the same congestion over a c = 20Mbit/s
downstream link as 4 video flows at 5Mbit/s and 4 data
flows at 1Mbit/s. The results demonstrate that our algorithm
is successful in achieving its objectives as application types
running in the flows change dynamically. On the other hand,
the latency for video (and data) flows increases in the case of
FIFO as the total number of TCP flows increases and TCP
dynamics aim for fair share among the flows. Fig. 4(b) shows
how our solution scales up with the size of the capacity limit c:
We ran the same number of video and data flows and varied the
overall downstream bandwidth limit (c = 10, 20, 30). Again,
we scaled the ratio of video and data flows according to c (i.e.,
2:2, 4:4, and 6:6). The results demonstrate that our algorithm
scales well with changing overall downstream capacity limit
(for other V:D ratios we obtained similar results). Note that
QDS performs better than FIFO and as observed in Fig. 4(a),
because when the ratio of video to data changes and as the
total number of flows increases, video flows experience higher
latency.

In addition to the average RTT values depicted in Fig. 3
and Fig. 4, Table I displays the percentage of packets that
arrive within the QoE threshold for the given application type,
and the percentage of packets that arrive less than 20% late
(i.e., within 60ms for video flows and within 120ms for data
flows). Note that the QT values we use (obtained in [1]), do
not constitute strict thresholds such that an RTT slightly over
a given QT implies bad quality for the user. Instead, packets
that arrive slightly after the QT will only have a small effect
on QoE perceived by the user. The results show that QDS
can significantly decrease the number of packets that arrive
after the QoE threshold (compared to FIFO). Concretely, in
a scenario with congestion (120% overall bitrate of flows vs.
c), our approach can ensure that 80% (77%) of packets arrive
within 1.2QT for V : D = 3 : 9 (respectively for V : D = 2 :
14).

Finally, we verified that our prototype implementation can
schedule in the order of 100 parallel thin client flows with very
low computational load on commodity hardware (i.e. a regular
dual-core Linux host). We are thus confident that our solution
scales computationally well for realistic real-world thin client
deployments.

V. RELATED WORK

There exists a vast amount of literature on various schedul-
ing algorithms such as Weighted Fair Queuing (WFQ), Hi-
erarchical Token Bucket (HTB), (Hierarchical) Packet Fair

TABLE I. % OF VIDEO (V), DATA (D) PACKETS THAT ARE BELOW A
CERTAIN QOE THRESHOLD (QT) FOR DIFFERENT SCHEDULING

ALGORITHMS (C [V:D]), α = 0.2, β = 1

Scheduling % of V % of D % of V % of D
≤ QT ≤ QT ≤ QT+20% ≤ QT+20%

FIFO (20 [3:9]) 29 100 68 100
QDS (20 [3:9]) 68 73 80 80

FIFO (20 [2:14]) 19 100 46 100
QDS (20 [2:14]) 64 74 77 82

Queuing (PFQ) [6] [7], Deficit Round Robin (DRR) and many
others. However, most scheduling algorithms are designed for
scheduling a large amount of packets at line rate (e.g., on
backbone routers). In contrary, our work aims at per-flow level
scheduling (i.e., taking individual characteristics of each flow
into account) which usually only scales up to the order of
hundreds of flows and can therefore only be applied at access
routers (or to a dedicated subset of all flows going through
a router). Another distinctiveness of our approach is that we
apply deadline-based scheduling: The current RTT and the
(dynamically changing) QoE deadline of each flow is taken
into account in scheduling. The majority of existing queuing
mechanisms just ensures that a certain assigned rate is satisfied.
Therefore, we will limit our state-of-the-art discussion to per
flow, deadline-based scheduling approaches.

Several proposals have been made on using Early Deadline
First (EDF) scheduling in networking. Usually, a delay budget
is calculated for each flow based on the flow’s RTT and the
maximum RTT that a flow can have without affecting the
user’s QoE [8] [9]. The packets in the scheduler are served
based on the increasing order of their deadline. The authors in
[2] prove that in a deterministic setting, EDF is the optimal
scheduling policy at a single switch. However, the computation
complexity of EDF is very high [3], mostly since a search
operation is required whenever a new packet arrives at the
scheduler (for sorting packets according to their deadlines)
[4]. To reduce the computational load of EDF, Liebeherr et al.
propose Rotating Priority Queue (RPQ) [4]. This algorithm
approximates EDF without requiring queued packets to be
sorted. Incoming packets are assigned to a set of ordered
FIFO queues based on their delay-budget, and queues rotate
in sending packets such that queues with lower delay-budget
flows get allocated more outgoing bandwidth. A downside of
this approach is that it may result in packets being sent late or
out of order due to residue packets that are left in a sending
queue for a whole rotation cycle. This could have an adverse
affect on the QoE for those flows.

Hierarchical Fair Service Curve based queuing [10]
proposes a service curve based QoS model, which defines
both delay and bandwidth based requirements of a class, to
include fairness. The algorithm ensures that flows are serviced
according to the assigned service curve. Though in principle
this design is similar to our approach, our solution can provide
preferential treatment to any flow that is running short on its
delay budget. I.e if a data flow has a lower delay budget than
a video flow, it will receive preferential treatment.



Finally, similar to our solution, there exist approaches
(e.g. [11]) that dynamically adjust weights for queues based
on packet arrival rates. However, it is important to realize
that these approaches do not re-allocate flows to queues
dynamically and do not re-compute weights based on a per-
flow QoE threshold that changes dynamically. Instead, existing
approaches are mostly based on a DiffServ-like model, where
the allocation of flow to a queuing class and its QoE threshold
is static over time.

In [1], we proposed statistical mechanisms for application
identification within thin client connections. In this work,
we use this application identification mechanism to provide
preferential treatment to delay-sensitive flows, but the proposed
solution is designed to work work with any application iden-
tification mechanism.

In summary, to the best of our knowledge, there exists no
scheduling algorithm designed for the specific (but very rele-
vant in practice) scenario that is the scope of our work: Thin
client connections run through scheduler-middlebox where the
application running in each flow (and correspondingly the QoE
expectation and bandwidth requirements for the flow) as well
as the RTT of each flow changes over time and has to be
somehow re-estimated frequently and used in a timely, scalable
manner by the scheduling algorithm. Prior work considers
scenarios and solutions where either the application running
in an individual flow is not changing over time (i.e., when
the user starts a new application, a new TCP/UDP session is
started), therefore flows are usually assigned to a certain class
for their lifetime. Our contribution is to provide a solution
for preferential treatment to certain delay-sensitive thin client
flows by identifying applications in flows dynamically and
frequently re-assigning flows to classes and weights to queues
in a scalable deadline-based scheduler.

VI. CONCLUSION

In this paper, we presented the design and evaluation
of a scheduling scheme for QoE-driven per-flow scheduling
of thin client connections. Our approach aims at handling
the dynamicity of application types running inside thin
client sessions as well as changing network conditions in a
scalable way. The results we obtained through our prototype
implementation confirm that —in a scenario with downstream
congestion— our solution is effective in allocating outgoing
bandwidth to thin client connections depending on the QoE
requirements of individual flows. Overall, our approach can
ensure that a much higher percentage of users will experience
good QoE for the specific applications they run in a virtual
desktop infrastructure.

As future work, we intend to study our approach for thin
client protocols besides RDP, and potentially also for other,
non thin-client tunneling protocols (e.g. such as SSH). Further,
we plan to validate the effectiveness of our solution in a larger
variety of scenarios (e.g., with other types of applications
running in flows and with different degrees of congestion).

ACKNOWLEDGEMENT

This work has been partially supported by the mPlane
project (mPlane: an Intelligent Measurement Plane for Future
Network and Application Management), a research project
supported by the European Commission under its 7th Frame-
work Program (contract no. 318627). The views and conclu-
sions contained herein are those of the authors and should not
be interpreted as necessarily representing the official policies
or endorsements, either expressed or implied, of the mPlane
project or the European Commission.

REFERENCES

[1] M. Dusi, S. Napolitano, S. Niccolini, and S. Longo, “A closer look
at thin-client connections: statistical application identification for qoe
detection,” IEEE Communications Magazine, vol. 50, no. 11, pp. 195–
202, November 2012.

[2] L. Georgiadis, R. Guerin, and A. Parekh, “Optimal multiplexing on
a single link: delay and buffer requirements,” IEEE Transactions on
Information Theory, vol. 43, no. 5, pp. 1518 –1535, September 1997.

[3] V. Sivaraman and F. Chiussi, “Providing end-to-end statistical delay
guarantees with earliest deadline first scheduling and per-hop traffic
shaping,” in In Proc. of IEEE INFOCOM 2000, 2000, pp. 631–640.

[4] J. Liebeherr, D. Wrege, and D. Ferrari, “Exact admission control for
networks with a bounded delay service,” IEEE/ACM Transactions on
Networking, vol. 4, no. 6, pp. 885 –901, December 1996.

[5] A. di Pietro, F. Huici, N. Bonelli, B. Trammell, P. Kastovsky, T. Groleat,
S. Vaton, and M. Dusi, “Blockmon: Toward high-speed composable
network traffic measurement,” in IEEE Infocom mini-Conf, 2013.

[6] S. Golestani, “A self-clocked fair queueing scheme for broadband appli-
cations,” in INFOCOM ’94. Networking for Global Communications.,
13th Proceedings IEEE, June 1994, pp. 636 –646 vol.2.

[7] J. C. R. Bennett and H. Zhang, “Hierarchical packet fair queueing
algorithms,” in IEEE/ACM Trans. Netw., 1997, pp. 143–156.

[8] D. Ferrari and D. C. Verma, “A scheme for real-time channel estab-
lishment in wide-area networks,” IEEE Journal on Selected Areas in
Communications, vol. 8, no. 3, pp. 368–379, April 1990.

[9] D. C. Verma, H. Zhang, and D. Ferrari, “Guaranteeing delay jitter
bounds in packet switching networks,” TRICOMM, pp. 35–46, April
1991.

[10] I. Stoica, H. Zhang, and T. S. E. Ng, “A hierarchical fair service curve
algorithm for link-sharing, real-time and priority services,” in ACM
SIGCOMM, 1997.

[11] F. Baker, S. Barbara, and Q. Ma, “Dynamic weighted resource sharing,”
US PATENT 6,775,231 B1, April 2004.


