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Abstract—Current distributed key-value stores generally pro-
vide greater scalability at the expense of weaker consistency
and isolation. However, additional isolation support is becom-
ing increasingly important in the environments in which these
stores are deployed, where different kinds of applications with
different needs are executed, from transactional workloads to
data analytics. While fully-fledged ACID support may not be
feasible, it is still possible to take advantage of the design of
these data stores, which often include the notion of multiversion
concurrency control, to enable them with additional features at a
much lower performance cost and maintaining its scalability and
availability. In this paper we explore the effects that additional
consistency guarantees and isolation capabilities may have on
a state of the art key-value store: Apache Cassandra. We
propose and implement a new multiversioned isolation level that
provides stronger guarantees without compromising Cassandra’s
scalability and availability. As shown in our experiments, our
version of Cassandra allows Snapshot Isolation-like transactions,
preserving the overall performance and scalability of the system.

Keywords—Data store, Distributed, Key-value, Cassandra, Iso-
lation, Snapshot, Latency

I. INTRODUCTION

In recent years, the industry and research community have
witnessed an extraordinary growth in research and develop-
ment of data-analytic technologies. In addition to distributed,
large-scale data processing with models like MapReduce, new
distributed data stores have been introduced to deal with
huge amounts of structured and semi-structured data: Google’s
BigTable [1], Amazon’s Dynamo [2], and others often modeled
after them. These key-value data stores were created out of
need for highly reliable and scalable databases, and they have
been extremely successful in introducing new ways to think
about large-scale models and help solve problems that require
dealing with huge amounts of data.

The emergence of these new data stores, along with its
widespread and rapid adoption, is changing the way we think
about storage. Only a few years ago, relational database
systems used to be the only back-end storage solution, but
its predominant and almost exclusive position is now being
challenged. While scalable key-value stores are definitely not
a replacement for RDBMs, which still provide a richer set of
features and stronger semantics, they are marking an important
shift in storage solutions. Instead of using a single database
system on a high-end machine, many companies are now

adopting a number of different and complementary technolo-
gies, from large-scale data processing frameworks to key-value
stores to relational databases, often running on commodity
hardware or cloud environments.

This new scenario is challenging since key-value stores are
being adopted for uses that weren’t initially considered, and
data must sometimes be accessed and processed with a variety
of tools as part of its dataflow. In this environment, distributed
key-value stores are becoming one of the corner-stones as they
become the central component of the back-end, interacting
concurrently with multiple producers and consumers of data,
and often serving different kinds of workloads at the same
time: from responding to transactional queries to storing the
output of long-running data analytics jobs.

Consistency and isolation become increasingly important
as soon as multiple applications and workloads with different
needs interact with each other. Providing strong semantics and
fully-fledged transactions on top of distributed key-value stores
often involves a significant penalty on the performance of the
system since it is orthogonal to its goals. So, while fully-
fledged ACID (a set of properties to describe transactions,
and which stands for Atomicity, Consistency, Isolation and
Durability) support may not be feasible, it is still possible
to take advantage of the design of these data stores, which
often include the notion of multiversion concurrency control,
to enable them with additional features at a much lower per-
formance cost and maintaining its scalability and availability.

This is the approach we are following in this paper. Our
goal is to provide stronger isolation on top of a distributed
key-value store in order to allow certain operations that would
otherwise not be possible or require significant effort on the
client side, but without compromising its performance. We
implement this improved isolation level in the form of readable
snapshots on top of Apache Cassandra, a state of the art
distributed column-oriented key-value store.

The remaining sections of the paper describe our approach
and implementation. We first present an overview of Cassandra
in Section II, and then describe its isolation and consistency
levels in Section III. Section IV describes how we have
extended the level of isolation and how we implement it on top
of Cassandra. An evaluation of our implementation is studied
in Section V. Finally, we discuss related work in Section VI
and conclude in Section VII.



II. BACKGROUND

Apache Cassandra [3] is a distributed database manage-
ment system initially developed by Facebook for internal usage
and later released as an open source project. Cassandra inherits
its data model from Google’s BigTable [1], and its replica-
tion mechanism and distribution management from Amazon’s
Dynamo [2]. We use Cassandra as an example of a widely
used key-value store known for its scalability and support for
tunable consistency.

Cassandra’s data model is schema-free, meaning there is
no need to define the structure of the data in advance. Data
is organized in column families, which are similar to tables
in a relational database model. Each column family contains
a set of columns, which are equivalent to attributes, and a
set of related columns compose a row. Each row is identified
by a key, which are provided by applications and are the
main identifier used to locate data, and also to distribute
data across nodes. Cassandra does not support relationships
between column families, disregarding foreign keys and join
operations. Knowing this, the best practice when designing a
data model is to keep related data in the same column family,
denormalizing it when required.

The architecture of Cassandra is completely decentralized
and peer-to-peer, meaning all nodes in a Cassandra cluster are
equivalent and provide the same functionality: receive read
and write requests, or forward them to other nodes that are
supposed to take care of the data according to how data is
partitioned.

When a read request is issued to any target node, this node
becomes the proxy of the operation, determines which nodes
hold the data requested by the query, and performs further read
requests to get the desired data directly from the nodes that
hold the data. Cassandra implements automatic partitioning
and replication mechanisms to decide which nodes are in
charge of each replica. The user only needs to configure the
number of replicas and the system assigns each replica to a
node in the cluster. Data consistency is also tunable by the
user when queries are performed, so depending on the desired
level of consistency, operations can either return as soon as
possible or wait until a majority or all nodes respond.

III. ISOLATION AND CONSISTENCY LEVELS

The goal of current distributed key-value stores such as
Cassandra [3] is to read and write data operations, exactly
the same as any database system. However, while traditional
databases provide strong consistency guarantees of replicated
data by controlling the concurrent execution of transactions,
Cassandra provides tunable consistency in order to favour scal-
ability and availability. While there is no tight control of the
execution of concurrent transactions, Cassandra still provides
mechanisms to resolve conflicts and provide durability even in
the presence of node failures.

Traditionally, database systems have provided different iso-
lation levels that define how operations are visible to other con-
current operations. Standard ANSI SQL isolation levels have
been criticized as too few [4], but in addition to standard ANSI
SQL, other non-standard levels have been widely adopted
by database systems. One such level is Snapshot Isolation,

which provides almost the same guarantees as serializable
transactions, but instead of avoiding concurrent updates, it
simply allows transactions to see their own version of the data
(a snapshot).

Cassandra, on the other hand, unlike traditional databases,
doesn’t provide any kind of server-side transaction or isolation
support. For instance, if an application needs to insert related
data to multiple tables, additional logic will be needed on
the application (e.g. to manually roll-back the changes if
one operation fails). Instead, Cassandra provides a tunable
consistency mechanism that defines the state and behaviour of
the system after executing an operation, and basically allows
specifying how much consistency is required for each query.

Tables I and II show Cassandra’s tunable read and write
consistency levels, respectively.

TABLE I. CASSANDRA’S READ CONSISTENCY LEVELS.

Level Description

One Get data from first node to respond.
Quorum Wait until majority of replicas respond.
All Wait for all replicas to respond.

TABLE II. CASSANDRA’S WRITE CONSISTENCY LEVELS.

Level Description

Zero Return immediately, write value asynchronously.
Any Write value or hint to at least one node.
One Write value to log and memtable of at least one node.
Quorum Write to majority of replicas.
All Write to all replicas.

As it can be derived from their description, strong con-
sistency can only be achieved when using Quorum and All
consistency levels. More specifically, strong consistency can
be guaranteed in Cassandra as long as equation 1 holds true.

Write replicas + Read replicas > Replication factor (1)

Operations that use weaker consistency levels, such as
Zero, Any and One, aren’t guaranteed to read the most recent
data. However, this weaker consistency provides certain flexi-
bility for applications that can benefit from better performance
and don’t have strong consistency needs.

A. Extending Cassandra’s Isolation

While Cassandra’s consistency is tunable, it doesn’t offer a
great deal of flexibility when compared to traditional databases
and its support for transactions. Cassandra applications could
benefit from extended isolation support, which would be
specially helpful in the environments in which Cassandra is
being used, and remove the burden of additional logic on the
application side.

Lock-based approaches, used to implement true serializable
transactions, aren’t desirable due to the distributed and non-
blocking nature of Cassandra, since locks would have a huge
impact on the performance. But there are other approaches
that seem more appropriate, such as multiversioned concur-
rency control. Cassandra, unlike other key-value or column
stores, doesn’t provide true multiversion capabilities and older
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Fig. 1. Data is persisted in Cassandra by flushing a column family’s memtable
into an SSTable.

versions of the data aren’t guaranteed to be available in the
system, but its timestamps provide a basic notion of versions
that can be the basis for multiversion-like capabilities.

Our goal is then to extend Cassandra to support an
additional isolation level that will make it possible to pro-
vide stronger semantics using a multiversioned approach. In
particular, we implement read-only transactions, guaranteeing
that reads within a transaction are repeatable and exactly
the same. This kind of transactions are specially relevant
in the environments in which Cassandra is being adopted,
where there’s a continuous stream of new data and multiple
consumers that sometimes need to operate on a consistent view
of the database. Our proposal is similar to Snapshot Isolation
in that it guarantees that all reads made in a transaction see the
same snapshot of the data, but it isn’t exactly the same since we
aren’t concerned with conflicting write operations. Hence from
now on we call this new isolation level Snapshotted Reads.

IV. IMPLEMENTING SNAPSHOTTED READS

Implementing Snapshotted Reads requires multiple
changes in different parts of Cassandra: first, the data store,
to enable creating and maintaining versioned snapshots of the
data, and second, the reading path, in order to read specific
versions of the data.

A. Data Store

Cassandra nodes handles data for each column family
using two structures: memtable and SSTable. A memtable is
basically an in-memory write-back cache of data; once full, a
memtable is flushed to disk as an SSTable. So, while there is
a single active memtable per node and column family, there
is usually a larger number of associated SSTables, as shown
in Figure 1. Also, note that when memtables are persisted to
disk as SSTables, an index and a bloom filter are also written
along with the data, so as to make queries more efficient.

Once a memtable is flushed, its data is immutable and
can’t be changed by applications, so the only way to update
a record in Cassandra is by textitappending data with a newer
timestamp.

Our implementation of Snapshotted Reads takes advantage
of the fact that SSTables are immutable to allow keeping
multiple versions of the data and thus providing effective snap-
shots to different transactions. This mechanism is described in
the following figures. Figure 2 shows the data for a column
family stored in a particular node: there is data in memory
as well as in three SSTables. Once we begin a Snapshotted
Read transaction, a new snapshot of the data is created by 1)

Memtable SSTables

...

Fig. 2. State of a column family in a Cassandra node before starting a
Snapshotted Read transaction.

Memtable SSTables
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Fig. 3. State of a column family in a Cassandra node after starting a
Snapshotted Read transaction and creating snapshot S1.

emptying the memtable, flushing its data into a new SSTable,
and 2) assigning an identifier to all SSTables, as shown in
Figure 3.

After the snapshot is created, the transaction will be able
to read from it for as long as the transaction lasts, even if
other transactions keep writing data to the column family. It
is also possible for multiple transactions to keep their own
snapshots of the data, as shown in the following figures.
Figure 4 shows the state of column family when writes occur
after a snapshot (S1). Writes continue to operate as expected,
eventually creating new SSTables: in this particular example,
there is new data in the memtable as well as in two SSTables.
If a transaction were to begin a new Snapshotted Read and
create new snapshot, the procedure would be the same: flush
and assign identifiers to SSTables, as shown in Figure 5.

B. Reading and Compacting

Reading from a snapshot during a transaction is a matter
of selecting data from the appropriate SSTables during the

Memtable SSTables

S1 S1 S1 S1...

Fig. 4. State of a snapshotted column family in a Cassandra node after some
additional writes.
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Fig. 5. State of a column family with two snapshots (S1, S2).
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Fig. 6. State of a column family in a Cassandra node with two snapshots
after a bounded compaction.

collation process, ignoring SSTables that aren’t part of the
snapshot.

However, multiple records may still be available even
within a snapshot, and Cassandra provides mechanisms to
address this kind of diverging results, such as read repair. Read
repair simply pushes the most recent record to all replicas when
multiple records are found during a read operation. Since there
is no way to push new data to an older snapshot, read repair
is disabled for Snapshotted Read transactions.

Compaction, on the other hand, is a background operation
that merges SSTables, combining its columns with the most
recent record and removing records that have been overwritten.
Compaction removes duplication, freeing up disk space and
optimizing the performance of future reads by reducing the
number of seeks. The default compaction strategy is based on
the size of SSTables, but doesn’t consider snapshots, so it may
delete relevant data for our transactions.

We have implemented a new compaction strategy that
takes into account snapshots. The main idea behind the new
strategy is to compact SSTables only within certain boundaries,
namely snapshots. Using this bounded compaction strategy,
only SSTables that share exactly the same set of snapshots are
considered for compaction. For instance, continuing with the
same example in Figure 5, compaction can only be applied
to the older four SSTables (identified as S1 and S2) or
the remaining three SSTables (identified as S2). One of the
possible outcomes of a major compaction is shown in Figure 6.

C. API Extension

Finally, in order to support snapshots, some changes have
been made to Cassandra’s API, including 3 new operations:
create snapshot, delete snapshot, and get data from a particular
snapshot.

Operations to create or delete a snapshot take 2 arguments:
first, the snapshot identifier, and then, optionally, the name
of a column family. If no column family is specified, all
column families in the current namespace are snapshotted.
The operation to retrieve data from a snapshot resembles and
works exactly like Cassandra’s standard get operation with
an additional argument to specify the snapshot identifier from
which the data is to be retrieved.

V. EXPERIMENTS

In this section we include results from three experiments
that explore the performance of our implementation of Snap-
shotted Reads for Cassandra. Experiment 1 shows the overall
performance of the system under different loads in order
to compare the maximum throughput achievable with each
version of Cassandra. In Experiment 2 we compare Cassandra

with and without Snapshotted Read support using a synthetic
benchmark in order to see what is the impact of keeping
snapshots under different workloads trying to achieve maxi-
mum throughput. Finally, Experiment 3 studies how does our
implementation perform and scale in the presence of multiple
snapshots.

A. Environment

The following experiments have been executed on a Cas-
sandra cluster consisting of 20 Quad-Core 2.13 GHz Intel
Xeon machines with a single SATA disk and 12 GB of mem-
ory, connected with a gigabit ethernet network. The version of
Cassandra used for all the experiments is 1.1.6.

In these experiments we run the synthetic workloads
provided by the Yahoo! Cloud Serving Benchmark (YCSB)
tool [5]. The workloads are defined as follows:

A: Update heavy. Read/update ratio: 50%/50%.
Application example: session
store recording recent actions.

B: Read mostly. Read/update ratio: 95%/5%.
Application example: photo
tagging; add a tag is an update,
but most operations are to read
tags.

C: Read, modify, write. Read/read-modify-write
ratio: 50%/50%. Application
example: user database, where
user records are read and
modified by the user or to
record user activity.

D: Read only. Read/update ratio: 100%/0%.
Application example: user
profile cache, where profiles
are constructed elsewhere (e.g.
Hadoop).

E: Read latest. Read/insert ratio: 95%/5%. Ap-
plication example: user status
updates, people want to read the
latest.

The execution of each workload begins with the same
initial dataset, which consists of 380,000,000 records (ap-
proximately 400 GB in total) stored across the 20 nodes of
the cluster with a single replica, meaning each node stores
approximately 20 GB of data, and thus exceeds the capacity
of the memory. During each execution, a total of 15,000,000
read and/or write operations, depending on the workload, are
executed from 5 clients on different nodes. Cassandra nodes
are configured to run the default configuration for this system,
consisting of 16 threads for read operations and 32 threads for
writes.

The following tables and figures show the results of running
the workloads with two different versions of Cassandra: the
original version and our version of Cassandra with Snapshotted
Read support. Note that for our version of Cassandra we
also compare regular reads, which are equivalent to reading
in the original Cassandra, regular reads in the presence of a
snapshot, and finally snapshotted reads, which get data from
one particular snapshot.



B. Experiment 1: Throughput

In this experiment we execute two workloads with different
configurations in order to explore how does Cassandra perform
reads under different loads (which are specified to the YCSB
client as target throughputs). We first study the workload D,
which only performs read operations, since our changes to
Cassandra are focused on the read path. We then execute
workload A in order to validate the results under update-
intensive workloads.

Tables and figures in this section show the four different
kinds of ways to read data from Cassandra that we compare
in this experiment: the first one reading from the Original
Cassandra, and the remaining three reading from Cassandra
with Snapshotted Read support. In particular, for Cassandra
with Snapshotted Read Support we evaluate performing regular
reads (S/R), performing regular reads in the presence of a snap-
shot (S/RwS), and performing Snapshotted Reads (S/SR). The
measured results are the average and corresponding standard
deviation after running 5 executions of each configuration.

Table III and Figure 7 show the results of running workload
D. As it can be observed, latency is similar under all configu-
rations for each target throughput, and the same pattern can be
observed in all executions: on the one hand the performance
of regular reads is similar, independently of the version of
Cassandra and the presence of the snapshot, and on the other
hand reading from the snapshot is slightly slower with a
slowdown around 10%.

TABLE III. AVERAGE READ LATENCY (MS) OF WORKLOAD D USING
ORIGNAL CASSANDRA AND CASSANDRA WITH SNAPSHOTTED READ

SUPPORT (S/R, S/RWS, SR)

Operations/s Original S/R S/RwS S/SR

1000 6.09 6.15 6.18 6.54
2000 7.44 7.46 7.64 7.96
3000 10.15 10.44 10.51 11.42
4000 13.18 13.33 13.45 14.06
5000 18.47 18.46 18.60 19.39

Figure 7 also shows the standard deviation of the exe-
cutions, and the real throughput achieved with each target
(shown as a black line). As it can be seen in this workload, the
observed throughput grows linearly with the target throughput
until its optimal level, which is approximately 4400 operations
per second when running the Original Cassandra. After reach-
ing the maximum throughput, latency simply degrades without
any benefit in terms of throughput.

Similarly, Table IV and Figure 8 show the results of
running workload A (50% read, 50% update) under different
loads. The main difference in this workload compared to
workload D (100% read) is the performance of reading from
the snapshot, which is slightly faster. If more than one record is
found when reading a key, Cassandra will merge the multiple
records and select the right one. However, in this particular
experiment, the snapshot is created under perfect conditions
and SSTables are fully compacted. So, while regular reads
may degrade slightly over time as new SSTables are created
by updates and not yet compacted, the latency of snapshotted
reads remains mostly the same since snapshots aren’t updated.

Therefore, the differences in the performance when reading
from a snapshot depending on the kind of workload can be
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TABLE IV. AVERAGE READ LATENCY (MS) OF WORKLOAD A USING
ORIGNAL CASSANDRA AND CASSANDRA WITH SNAPSHOTTED READ

SUPPORT (S/R, S/RWS, SR)

Operations/s Original S/R S/RwS S/SR

4000 8.25 8.47 8.44 7.71
5000 9.25 9.25 9.22 8.68
6000 11.32 11.69 11.57 10.38
7000 14.19 14.42 14.30 13.76
8000 15.36 15.77 15.45 14.78
9000 18.59 18.73 18.97 18.17

explained by how Cassandra handles read and write operations,
and the strategy used to compact SSTables. As described in
Section II, Cassandra first writes data to a memtable, and
once it is full it is flushed to disk as a new SSTable, which
eventually will be compacted with other SSTables. Compaction
is not only important to reclaim unused space, but also to
limit the number of SSTables that must be checked when
performing a read operation and thus its performance. Our
version of Cassandra with Snapshotted Read support uses a
custom compaction strategy, as described in Section IV-B.
While our bounded compaction strategy is necessary to keep
data from snapshots, it also makes compaction less likely since
it won’t allow compaction between snapshot boundaries.

The consequences of this behaviour for Cassandra with
Snapshotted Read support are twofold: first, as observed,
reading from a snapshot may be faster on workloads in which
data is mostly updated (and snapshots eventually consolidated),
and second, it may make regular reads slower when snapshots
are present, due to the increased amount of SSTables caused
by our compaction strategy.

Figure 9 shows the distribution of how many SSTables must
be checked during read queries in workload A. As it can be
observed, there is a significant difference between reading from
a snapshot and performing a regular read. While snapshotted
reads always get the data from a single SSTable, regular reads
require checking two SSTables or more at least half of the
time. Again, it should be noted that there is nothing that
makes snapshot intrisincally less prone to spreading reads to
multiple SSTables, it is simply their longer-term nature that
helps consolidate and compact snapshots. Regular reads, on
the other hand, need to deal with the latest updates, so they
are more likely to be spread across multiple SSTables.

In order to compare how does the number of SSTables
impact our version of Cassandra, we also executed the update-
intensive workload A, and then increased the frequency at
which the number of SSTables are generated, thus increasing
the number of SSTables. As it can be observed in Figure 10,
while performing regular reads with Original Cassandra be-
comes slower when we force a larger number of SSTables,
reading from a snapshot remains mostly unchanged since it
simply reads from the same subset of SSTables all the time.

C. Experiment 2: Read Latency

In this experiment we compare the latency of reading
operations under different workloads in order to find out what’s
the impact of supporting snapshotted reads as well as what’s
the performance of reading from a snapshot compared to a
regular read under a wider variety of scenarios.
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This experiment compares two different kinds of ways to
read: the first one reading from the Original Cassandra, and
the second one reading from a snapshot on our version of
Cassandra with Snapshotted Read support. We omit here the
results of regular reads on our version of Cassandra since they
are similar to Original Cassandra. All workloads are executed
5 times, and the YCSB client is configured to run with the
maximum number of operations per second.

These workloads show different behaviours. One the one
hand, in read-modify workloads, including A and B, data is
updated but the size of the data set (number of keys) remains
the same. On the other hand, in write-once workloads, which
include D and E (read-only and read-insert respectively), each
record is only written once and it’s not modified afterwards.
Finally, workload C can be thought of as a special case
since half of the operations are composed and perform a read
followed by a write operation.

As shown in Table V and Figure 11, the latency of reading
from a single snapshot is similar to performing regular reads.
Generally speaking, reading from the original Cassandra is
slightly faster, and the slower reads are from our version
of Cassandra performing snapshotted reads on read-intensive
workloads.

TABLE V. AVERAGE READ LATENCY (MS) USING ORIGNAL
CASSANDRA AND CASSANDRA WITH SNAPSHOTTED READ SUPPORT

(REGULAR, SNAPSHOT)

Workload Original Snapshot

A 18.59 18.17
B 18.66 18.75
C 19.08 20.04
D 18.47 19.39
E 12.07 12.73

As it can be observed, read-modify workloads (A, B) are
the workloads that remain closer to each other, independently
of the kind of read we are performing. Workload A remains
faster when reading from a snapshot than when reading reg-
ularly, while snapshotted read under workload B is slightly
slower since the amount of updates is relatively small and
thus regular reads almost always involve a single SSTable. On
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the other hand, both write-once workloads (D, E) display a
much more noticeable difference between the two kinds of
reads since data is only written once and so each operation
reads from exactly one SSTable.

D. Experiment 3: Increasing the Number of Snapshots

While the previous experiments discuss the performance of
different kinds of reads with a single fully-compacted snapshot,
in this experiment we evaluate the evolution of the performance
under a more realistic scenario in which multiple snapshots are
created and read during its execution.

In order to test multiple snapshots and compare the results
of previous experiments, we execute workload A ten times
consecutively one after another. In particular, we execute 3
different versions in this experiment: first the original Cas-
sandra performing regular reads, and then our version of
Cassandra, either creating a single snapshot at the beginning
(S/1), or creating a new snapshot for each iteration (S/N). Since
workload A involves at least 50% of update operations, we
ensure an increasing number of SSTables as new snapshots
are created.

As shown in Figure 12, after the first few executions, the
performance of read operations degrades slightly over time
as new consecutive executions of workload A are completed,
independently of the version of Cassandra we are running.
Regular reads with Original Cassandra and snapshotted reads
with our version of Cassandra and a single snapshot both
become more stable after a few iterations and don’t change too
much afterwards. However, as it could be expected, departing
from the initial scenario with fully compacted SSTables and
keeping multiple snapshots becomes noticeably slower over
time as shown in the Figure. When creating a new snapshot for
each iteration (S/N), read latency goes from 18.17 ms during
the first iteration to 22.87 after all iterations with 10 snapshots.

The varying performance can also be explained in terms of
how the data is read and stored as SSTables. For instance, while
with the original version of Cassandra there are 193 SSTables
in the cluster after all executions, with our version of Cassandra
creating a new snapshot for each iteration (S/N) there are as
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Fig. 12. Evolution of average read latency for 10 consecutive executions of
Workload A

many as 532 SSTables. Figure 13 also shows the evolution
of the distribution of SSTables read for each operation. As
expected, at the beginning when there is only one snapshot
and the data is still well compacted, all operations only read
from a single SSTable. However, as soon as we introduce more
snapshots (3 and 5 as shown in the Figure), the number of
seeks to SSTables for each read operation increases as well,
thus making read operations slower.

VI. RELATED WORK

There have been many efforts to implement features usually
available in relational databases on top of distributed data
stores [6], [7], [8], and, as other have pointed out [9], [10], this
further proves that some of their functionality is converging.
Isolation and transactional support for distributed data stores
is also a widely studied topic, and there has been some related
work done, including support for lock-free transactions [11]
and snapshot isolation [12] for distributed databases.

There has also been work more focused on stronger se-
mantics for distributed key-value data stores. Google’s Percola-
tor [13] implements snapshot isolation semantics by extending
Bigtable with multi-version timestamp ordering using a two-
phase commit, while Spanner [10] and Megastore [14] also
provide additional transactional support for Bigtable. In [15]
and [16] the authors also implement snapshot isolation for
HBase, allowing multi-row distributed transactions for this
column-oriented database. While the former approach uses
additional meta-data on top of standard HBase, the latter
introduces a more advanced client to support snapshot isolation
transactions.

There hasn’t been much work done in the space of isolation
for Cassandra in particular since improving it is orthogonal
to its design, and other than the configurable consistency
levels, there is basically no support for transactions. Cassandra
currently only provides support to create backup snapshots,
which are only meant to be used as a way to backing up
and restoring data on disk. So, unlike our proposal, with
backup snapshots it is only possible to read from one of these
snapshots at at time and reading from a different snapshot
involves reloading the database.
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Fig. 13. Distribution of number of SSTables read for each read operation on workload A with multiple snapshots

VII. CONCLUSIONS

In this paper we have presented a technique to provide
stronger isolation support on top of distributed key-value
stores, and implemented it for Apache Cassandra.

Our approach takes advantage of the fact that one of the
major structures used to persist data in this kind of stores are
SSTables, which are immutable. Our proposal modifies Cas-
sandra so as to keep SSTables when requested by concurrently
running transactions, effectively allowing multi-versioned con-
currency control for read operations on Cassandra in the form
of snapshots. As shown in our evaluation, our version of
Cassandra with Snapshotted Read support is able to read from
snapshots with a low impact on read latency and the overall
performance of the system. While regular reads are slightly
slower on our version of Cassandra, operations that read from
a snapshot are sometimes faster due to its limited scope.

We believe this approach to improve the isolation capa-
bilities of distributed key-value stores without compromising
its performance is specially interesting in the environments
in which these stores are nowadays executed, which tend to
involve a range of technologies on the back-end side instead
of a single database solution, and different applications and
workloads running at the same time sharing and processing
the same data.
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