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Abstract

This paper considers the communication and storage costmaofating atomic (linearizable) multi-
writer multi-reader shared memory in distributed messaa@gsing systems. The paper contains three main
contributions
(1) We present a atomic shared-memory emulation algorithmwieatall Coded Atomic StoragCAS).

This algorithm usesrasure codingnethods. In a storage system withservers that is resilient t6 server
failures, we show that the communication cost of CA%¥_¥27. The storage cost of CAS is unbounded.

(2) We present a modification of the CAS algorithm known as CA® Wiairbage Collection (CASGC). The
CASGC algorithm is parametrized by an integeand has a bounded storage cost. We show that in every
execution where the number of write operations that are woent with a read operation is no bigger than
0, the CASGC algorithm with parametérsatisfies atomicity and liveness. We explicitly charactethe
storage cost of CASGC, and show that it has the same comntionicast as CAS.

(3) We describe an algorithm known as the Communication Cosh@p®tomic Storage (CCOAS) algo-
rithm that achieves a smaller communication cost than CABGARSGC. In particular, CCOAS incurs read
and write communication costs %ﬁ—j measured in terms of number of object values. We also discuss
drawbacks of CCOAS as compared with CAS and CASGC.
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1 Introduction

Since the late 1970s, emulation of shared-memory systerdistinbuted message-passing environments has
been an active area of research[[2=8[12-18, 24, 29, 30]. rat&ional approach to building redundancy for
distributed systems in the context of shared memory enomadireplication In their seminal paper [7], Attiya,
Bar-Noy, and Dolev presented a replication based algorftramulating shared memory that achieves atomic
consistency[[19, 20]. In this paper we consider a simple imulter generalization of their algorithm which
we call theABD algorithnﬂ. This algorithm uses a quorum-based replication schenjed8tnbined with read
and write protocols to ensure that the emulated object iwiatf20] (linearizable[[1PB]), and to ensure liveness,
specifically, that each operation terminates provided alnanost(%} server nodes fail. A critical step in
ensuring atomicity in ABD is theropagatephase of the read protocol, where the readers write backaibe v
they read to a subset of the server nodes. Since the read &edpvatocols require multiple communication
phases where entire replicas are sent, this algorithm haghacbmmunication cost. In[14], Fan and Lynch
introduced a directory-based replication algorithm kn@asrihe LDR algorithm that, liké [7], emulates atomic
shared memory in the message-passing model; howevergilikits read protocol is required to write only
some metadata information to the directory, rather tharvéhee read. In applications where the data being
replicated is much larger than the metadata, LDR is les$ydbsin ABD in terms of communication costs.

The main goal of our paper is to develop shared memory emualatgorithms, based on the ideassésure
coding that are efficient in terms of communication and storagéscdsrasure coding is a generalization of
replication that is well known in the context of classicarage systems [10,11,/21]28]. Specifically, in erasure
coding, each server does not store the value in its entliatynly a part of the value calledcaded elemenin
the classical coding theory framework which studies s®i@fta single version of a data object, this approach
is well known to lead to smaller storage costs as comparegplation (see Sectidd 3). Algorithms for shared
memory emulation that use the idea of erasure coding to stafgple versions of a data object consistently
have been developed in [2:4,8,8,12[13, 18, 29]. In thispagedevelop algorithms that improve on previous
algorithms in terms of communication and storage costs. Wiasarize our main contributions and compare
them with previous related work next.

Contributions

We consider a static distributed message-passing settiegenthe universe of nodes is fixed and known, and
nodes communicate using a reliable message-passing ketWerassume that client and server nodes can fail.
We define our system model, and communication and storageneasures in Sekl 2.

The CAS algorithmWe develop theCoded Atomic StoragéCAS) algorithm presented in Sectigh 4, which
is an erasure coding based shared memory emulation algonitfe present a brief introduction of the technique
of erasure coding in Sectidh 3. For a storage system Wititodes, we show in Theordm #.9 that CAS ensures
the following liveness property: all operations that anoked by a non-failed client terminate provided that
the number okerverfailures is bounded by a parametérwhere f < (%1 and regardless of the number of
client failures. We also show in Lemrha .9 that CAS ensuresiaity regardless of the number of (client or
server) failures. In Theoreim 4]10 in Sectidn 4, we also aeallye communication cost of CAS. Specifically, in
a storage system witN servers that is resilient tb server node failures, we show that the communication costs
of CAS are equal tq%. We note that these communication costs of CAS are smablerréplication based
schemes (see Append]é A for an analysis of communicatiots @@ABD and LDR algorithms.). The storage
cost of CAS, however, are unbounded because each serves #tervalue associated with the latest version of
the data object it receives. Note that in comparison, in tB®Algorithm which is based on replication, the
storage cost is bounded because each node stores onlyeteviatsion of the data object (see Apperdix A for
an explicit characterization of the storage cost incurnedBD).

"The algorithm of Attiya, Bar-Noy and Dole][7] allows only angle node to act as a writer. Also, it did not distinguishvizetn
client and server nodes as we do in our paper.



The CASGC algorithmin Sectior[ b, we present a variant of CAS called the CAS withb@ge Collection
(CASGC) algorithm, which achieves a bounded storage cogjdnlpage collectioni.e., discarding values
associated with sufficiently old versions. CASGC is paraized by an integed which, informally speaking,
controls the number of tuples that each server stores. We stad CASGC satisfies atomicity in Theoréml5.1
by establishing a formal simulation relation [23] betweehSCand CASGC. Because of the garbage collection
at the servers, the liveness conditions for CASGC are mdregent than CAS. The liveness property satisfied
by CASGC is described in Theorémb.5 in Secfibn 5, where weedifgat in an execution of CASGC where the
number of write operations concurrent with a read operasamo bigger than a paramet&revery operation
terminates. The main technical challenge lies in carefsigiteof the CASGC algorithm in order to ensure that
an unbounded number of writes that fail before propagatimaugh number of coded elements do not prevent
a future read from returning a value of the data object. Iti@dar, failed writes that begin and end before a
read is invoked are not treated as operations that are gemtwvith the read, and therefore do not contribute to
the concurrency limit ob. While CASGC incurs the same communication costs as CASc¢itrs a bounded
storage cost. A non-trivial bound on the storage cost imcliny an execution of CASGC is described in
Theoreni 5.11.

Communication Cost Lower Bounth Sectior[ 6 we describe a new algorithm called the Commtinita
Cost Optimal Atomic Storage (CCOAS) algorithm that satssflee same correctness conditions as CAS, but
incurs smaller communication costs. However, CCOAS woultlhe easily generalizable to settings where
channels could incur losses because, unlike CAS and CAS@&LLlires that messages from clients to servers
are delivered reliably even after operations associatéld the message terminates. While CCOAS is appli-
cable in our model of reliable channels, designing a prdtedth this property may not be possible when the
channel has losses especially if the client fails beforevel@éhg the messages. We describe CCOAS, analyse
its communication costs, and discuss its drawbacks in Gg6ti

Comparison with Related Work

Erasure coding has been used to develop shared memory emuéthniques for systems with crash failures
in [3,/4,/13[29] and Byzantine failures inl [ZB]QIEB]n erasure coding, note that each server stores a coded
element, so a reader has to obtain enough coded elementsadedand return the value. The main challenge
in extending replication based algorithms such as ABD tswracoding lies in handling partially completed
or failed writes. In replication, when a read occurs duringaatially completed write, servers simply send
the stored value and the reader returns the latest valuemedtaom the servers. However, in erasure coding,
the challenge is to ensure that a read that observes thedfacpartially completed or failed write obtains a
enough coded elements corresponding to the same versietuta a value. Different algorithms have different
approaches in handling this challenge of ensuring that eéhelar decodes a value of the data object. As a
consequence, the algorithms differ in the liveness pragsesatisfied, and the communication and storage costs
incurred. We discuss the differences here briefly.

Among the previous works, [8,12,/13,18] have similar cdmess requirements as our paper; these refer-
ences aim to emulate an atomic shared memory that suppoitarcent operations in asynchronous networks.
We note that the algorithm of[8] cannot be generalized teylasannel models (see discussionlinl [13]). We
compare our algorithms with tH@eRCAS-Balgorithm of , the algorithm of[[18], which we call thelGR
algorithm, and thévi-PoWerStorealgorithm of [12]. We note thaf [13] assumes lossy channets[42 /18]
assume Byzantine failures. Here, we interpret the algostiof [12] 18] 18] in our model that has lossless
channels and crash failures, and use worst-case costsniqracison.

The CAS and CASGC algorithms resemble the M-PoWerStore &&R ldlgorithms in their structure.
These algorithms handle partially completed or failedegrtbyhiding ongoing writes from a read until enough

“An earlier version of our work is presented in a technicabre[9].
"The ORCAS-Aalgorithm of [13], although uses erasure coding, has thesarst cas&communication and storage costs as ABD.



coded elements have been propagated to the servers. Tleecamimunication costs of CAS, CASGC, M-
PoWerStore, HGR and ORCAS-B are all the same. However, Hrerdifferences between these algorithms in
the liveness properties, garbage collection strategidsead communication costs.

CAS is essentially a restricted version of fePoWerStorealgorithm of [12] for the crash failure model.
The main difference between CAS and M-PoWerStore is thatAis Gervers perform gosEb However,
M-PoWerStore does not involve garbage collection and fhexéncurs an infinite storage cost. The garbage
collection strategies of HGR and ORCAS-B are similar to tfaCASGC with the parametey set tol. In
fact, the garbage collection strategy of CASGC may be viemsed non-trivial generalization of the garbage
collection strategies of ORCAS-B and HGR. We next discusréinces between these algorithms in terms of
their liveness properties and communication costs.

The ORCAS-B algorithm satisfies the same liveness progesseABD and CAS, which are stronger than
the liveness conditions of CASGC. However, in ORCAS-B, todia partially completed writes, a server sends
coded elements corresponding to multiple versions to thdae This is because, in ORCAS-B, a server, on
receiving a request from a reader, registers the Miand sends all the incoming coded elements to the reader
until the read receives a second message from a client. foheréhe read communication cost of ORCAS-B
grows with the number of writes that are concurrent with areda fact, in ORCAS-B, if a read client fails in
the middle of a read operation, servers may send all the celgedents it receives from future writes to the
reader. In contrast, CAS and CASGC have smaller commuaitaists because each server sends only one
coded element to a client per read operation, irrespecfitieeonumber of writes that are concurrent with the
read.

In HGR, read operations satisfpstruction freedopthat is, a read returns if there is a period during the
read where no other operation takes steps for sufficiently.|d@herefore, in HGR, operations may terminate
even if the number of writes concurrent with a read is arbiyrdarge, but it requires a sufficiently long period
where concurrent operations do not take steps. On the egnitmaCASGC, by setting to be bigger than,
we ensure that read operations terminate even if concurpamations take steps, albeit at a larger storage cost,
so long as the number of writes concurrent with a read is bedifay§. Interestingly, the read communication
cost of HGR is larger than CASGC, and increases with the nuwfberites concurrent to the read to allow for
read termination in presence of a large number of concuwaetgs.

We note that the server protocol of the CASGC algorithm isencmmplicated as compared with previous
algorithms. In particular, unlike ORCAS-B, HGR and M-PoWere, the CASGC algorithm requires gossip
among the servers to ensure read termination in presenaanoficent writes at a bounded storage cost and
low communication cost. A distinguishing feature of our s that we provide formal measures of com-
munication and storage costs of our algorithms. Our caniohs also include the CCOAS algorithm, and
complete correctness proofs of all our algorithms throdghdevelopment of invariants and simulation rela-
tions, which may be of independent interest. The genetalizaf CAS and CASGC algorithms to the models
of [8,[12,[13[18] which consider Byzantine failures and yoskannel models is an interesting direction for
future research.

2 System Model

2.1 Deployment setting.

We assume atatic asynchronous deployment settimbere all the nodes and the network connections are
known a priori and the only sources of dynamic behavior adersiop-failures (or simply, failures) and pro-
cessing and communication delays. We consider a messagmgasetting where nodes communicate via

VAs we shall see later, the server gossip is not essentialrteatness of CAS. It is however useful as a theoretical togirove
correctness of CASGC.

YThe idea of registering a client’s identity was introduceidioally in [25] and plays an important role in our CCOAS alithm as
well.



point-to-point reliable channels. We assume a universeodés that is the union aferverand client nodes,
where the client nodes areaderor writer nodes. N represents the set of server noddsgdenotes the cardi-
nality of A/. We assume that server and client nodes can fail (stop eregw@i any point. We assume that the
number of server node failures is at mgstThere is no bound on the number of client failures.

2.2 Shared memory emulation.

We consider algorithms that emulate multi-writer, muétader (MWMR) readwrite atomic shared memory
using our deployment platform. We assume that read clieatsive read requests (invocations) from some
local external source, and respond with object values. e\dients receive write requests and respond with
acknowledgments. The requests follow a “handshake” digeipwhere a new invocation at a client waits for
a response to the preceding invocation at the same clientetjgre that the overall external behavior of the
algorithm corresponds to atomic (linearizable) memoryr $tmplicity, in this paper we consider a shared-
memory system that consists of just a single object.

We represent each version of the data object @a@ value) pair. When a write client processes a write
request, it assignstag to the request. We assume that the tag is an element of g totdkred sef that has
a minimum element,. The tag of a write request serves as a unique identifier firrdguest, and the tags
associated with successive write requests at a particulte glient increase monotonically. We assume that
value is a member of a finite sét that represents the set of values that the data object carotgknote that
value can be represented yg, | V| bitd]. We assume that all servers are initialized with a defaitiirstate.

2.3 Requirements

The key correctness requirement on the targeted shared mpegmoice isatomicity. A shared atomic object is
one that supports concurrent access by multiple clientsvuede the observed global external behaviors “look
like” the object is being accessed sequentially. Anothguirement idiveness by which we mean here that an
operation of a non-failed client is guaranteed to termipateided that the number of server failures is at most
f, and irrespective of the failures of other cliéfits

2.4 Communication cost

Informally speaking, the communication cost is the numlebits transferred over the point-to-point links
in the message-passing system. For a message that can yakalun in some finite setM, we measure its
communication cost aeg, | M| bits. We separate the cost of communicating a value of thee @lgjiect from
the cost of communicating the tags and other metadata. f&jadlgi we assume that each message is a triple
(t,w,d) wheret € T isatagw € W is a component of the triple that depends on the value asedaidth tag
t, andd € D is any additional metadata that is independent of the védeee,)V is a finite set of values that the
second component of the message can take on, depending walubenf the data objec® is a finite set that
contains all the possible metadata elements for the mesfagse sets are assumed to be known a priori to the
sender and recipient of the message. In this paper, we makapfiroximationlog, |M| ~ log, |W|, that is,
the costs of communicating the tags and the metadata aligibeghs compared to the cost of communicating
the data object values. We assume that every message isnsbahalf of some read or write operation. We
next define the read and write communication costs of anighgor

For a given shared memory algorithm, consider an executiohhe communication cost of a write opera-
tion in « is the sum of the communication costs of all the messagessgenthe point-to-point links on behalf
of the operation. The write communication cost of the exeout is the supremum of the costs of all the write

‘f_iStrictIy speaking, we neefdog, |V|] bits since the number of bits has to be an integer. We ignisedhnding error.
""'\We assume thaV > 2f, since correctness cannot be guaranteéd i 2 f [23].



operations inv. The write communication cost of the algorithm is the supremof the write communication
costs taken over all executions. The read communicationof@s algorithm is defined similarly.

2.5 Storage cost

Informally speaking, at any point of an execution of an alhon, thestorage costs the total number of bits
stored by the servers. Specifically, we assume that a seoder stores a set of triples with each triple of the
form (t,w, d), wheret € T, w depends on the value of the data object associated with tagld represents
additional metadata that is independent of the values&tdriée neglect the cost of storing the tags and the
metadata; so the cost of storing the triptew, d) is measured asg, [W)| bits. The storage cost of a server is
the sum of the storage costs of all the triples stored at tivesd-or a given shared memory algorithm, consider
an executiornv. The storage cost at a particular pointcofs the sum of the storage costs of all the non-failed
servers at that point. The storage cost of the executimthe supremum of the storage costs over all points of
a. The storage cost of an algorithm is the supremum of theggorasts over all executions of the algorithm.

3 Erasure Coding - Background

Erasure coding is a generalization of replication that feenlwidely studied for purposes of failure-tolerance
in storage systems (see [10]11],[21/26, 28]). The key ideaastiee coding involves splitting the data into
severalcoded elementseach of which is stored at a different server node. As long sgfficient number of
coded elements can be accessed, the original data can lvenextoInformally speaking, given two positive
integersm, k, k < m, an (m, k) Maximum Distance Separable (MDS) code magslangth vector to amn-
length vector, where the inpétlength vector can be recovered from angoordinates of the output-length
vector. This implies that arim, k) code, when used to storekdength vector onn server nodes - each server
node storing one of the: coordinates of the output - can tolergie — k) node failures in the absence of any
consistency requirements (for example, $ée [1]). We pbteeefine the notion of an MDS code formally.

Given an arbitrary finite setl and any sef C {1,2,...,m}, letwg denote thenatural projection mapping
from A™ onto the coordinates correspondingdoi.e., denotingS = {s1, s2,...,s|g}, wheres; < sz... <
5|/, the functionrs : A™ — AlSlis defined asts (21,29, . .., @) = (Tsy, Ty, - - - ,xs‘s‘).

Definition 3.1 (Maximum Distance Separable (MDS) codé&kt.4 denote any finite set. For positive integers
k,m such thatk < m, an (m, k) code overA is a map® : A* — A™. An(m, k) coded over A is said to
be Maximum Distance Separab{®DS) if, for everyS C {1,2,...,m} where|S| = k, there exists a function
Ot AR — AF suchthat:®g! (ms(P(x)) = x for everyx € A*, whererg is the natural projection mapping.

We refer to each of the: coordinates of the output of amn, k) code® as acoded elementClassical
m-way replication, where the input value is repeatetimes, is in fact arim, 1) MDS code. Another example
is the single parity code an (m,m — 1) MDS code overd = {0,1} which maps thegm — 1)-bit vector
T1,T9,...,Tm_1 tothem-bit vectorzy, zo,.... pm 1,21 T2 D ... D XTp_1.

We now review the use of an MDS code in the classical codiegtitic model, where a single version of
a data object with value € V is stored overV servers using af, k) MDS code. We assume that= W
for some finite se¥V and that an(N, k) MDS code® : W¥ — W/ exists ovenV (see AppendiXB for a
discussion). The value of the data object can be used as an inpub to get N coded elements ovéd/; each

of the NV servers, respectively, stores one of these coded elen&inte each coded element belongs to the set
- - logg [V
W, whose cardinality satisfidgV| = [V|1/F = 2 %, each coded element can be represented &%M

bit-vector, i.e., the number of bits in each coded elemeatf'raction% of the number of bits in the original
data object When we employ afiN, k) code in the context of storing multiple versions, the size ebded
element is closely related to communication and storages @osurred by our algorithms (see Theordms 4.10
and5.11).




write (value)
query: Send query messages to all servers asking for the highesittatabel ‘fin’; await responses from a quorum.

pre-write: Select the largest tag from tiqeieryphase; let its integer component he=orm a new tag as(z + 1, ‘id’), where id’
is the identifier of the client performing the operation. Apthe (IV, k) MDS code® (see Sed.]3) to the value to obtain code
elementsur, wo, . .., wn. Send(t, ws, ‘pre’) to servers for everys € A/. Await responses from a quorum.

o

finalize: Send dinalizemessagét, ‘null’, ‘fin’) to all servers. Terminate after receiving responses frommwoaum.

read
query: As in the writer protocol.

finalize: Send &finalize message with tag to all the servers requesting the associated coded elem@ntit responses from
a quorum. If at least servers include their locally stored coded elements irr tlesiponses, then obtain thelue from these
coded elements by invertinh (see Definitio 3J1) and terminate by returningue.

server
state variable:A variable that is a subset 6f x (WU {‘null'}) x {‘pre’, ‘fin’}

initial state: Store(to, wo,s, ‘fin’) wheres denotes the server andg,; is the coded element corresponding to sesvebtained
by apply® to the initial valueu,.

On receipt ofjuerymessage: Respond with the highest locally known tag thaa lesel fin’, i.e., the highestag such that the
triple (tag, *, ‘fin’) is at the server, wherecan be a coded element erull'.

On receipt ofpre-write message: If there is no record of the tag of the message iistie triples stored at the server, then add
the triple in the message to the list of stored triples; atfig ignore. Send acknowledgment.

On receipt ofinalizefrom a writer: Lett be the tag of the message. If a triple of the fdiyws, ‘pre’) exists in the list of stored
triples, then update it tét, ws, ‘fin’). Otherwise addt, ‘null’, ‘fin’) to list of stored triple¥'. Send acknowledgment. Sendl
‘gossip’ message with itenft, ‘fin’) to all other servers.

On receipt offinalizefrom a reader: Let be the tag of the message. If a triple of the foftws, %) exists in the list of stored
triples wherex can be pre’ or ‘ fin’, then update it td¢, ws, ‘fin’) and sendt, ws ) to the reader. Otherwise add ‘null’, ‘fin’)
to the list of triples at the server and send an acknowledgn®smd gossip’ message with itenf¢, ‘fin’) to all other servers.

On receipt of gossip’ message: Let be the tag of the message. If a triple of the fofinz, ) exists in the list of stored triples
wherex is ‘pre’ or ‘fin’ and x is a coded element ohull’, then update it tq¢, , ‘fin’). Otherwise addt, ‘null’, ‘fin’) to the
list of triples at the server.

Figure 1: Write, read, and server protocols of the CAS atgori

4 Coded Atomic Storage

We now present th€oded Atomic StoragéCAS) algorithm, which takes advantage of erasure codiob-te
nigues to reduce the communication cost for emulating at@hared memory. CAS is parameterized by an
integerk, 1 < k < N — 2f; we denote the algorithm with parameter valuby CAS(). CAS, like ABD and
LDR, is a quorum-based algorithm. Later, in Sdc. 5, we piteseariant of CAS that has efficient storage costs
as well (in addition to having the same communication cosSISAS).

Handling of incomplete writes is not as simple when erasodng is used because, unlike in replication
based techniques, no single server has a complete replitee oflue being written. In CAS, we solve this
problem byhiding ongoing write operations from reads until enough infororatihas been stored at servers.
Our approach essentially mimi¢s [12], projected to thersgtif crash failures. We describe CAS in detail next.
Quorum specification. We define our quorum systen®, to be the set of all subsets &f that have at least
[#1 elements (server nodes). We refer to the membeg, afs quorum sets. We show in Apppendix C that
Q satisfies the following property:

Lemma4.1. Suppose that < £k < N —2f. (i) If Q1,Q2 € Q, then|Q; N Q2| > k. (ii) If the number of failed
servers is at mosf, thenQ contains at least one quorum ggtof non-failed servers.

The CAS algorithm can, in fact, use any quorum system thesfigst propertiesif and (i) of Lemma4.1L.



4.1 Algorithm description

In CAS, we assume that tags are tuples of the fétmid’), wherez is an integer andid’ is an identifier of

a client node. The ordering on the set of tggss defined lexicographically, using the usual ordering an th
integers and a predefined ordering on the client identififs.add a gossip’ protocol to CAS, whereby each
server sends eadtemfrom 7 x {‘fin’} that it ever receives once (immediately) to every otheresenis a
consequence, in any fair execution, if a non-failed semiiates gossip’ or receives gossip’ message with
item (¢, fin’), then, every non-failed server receivesgassip’ message with this item at some point of the
execution. Figll contains a description of the read andevmriotocols, and the server actions of CAS. Here,
we provide an overview of the algorithm.

Each server node maintains a settfg, coded-element, label triples, where we specialize the meta-
data tolabel € {'pre’,‘fin’}. The different phases of the write and read protocols areuted sequentially.

In each phase, a client sends messages to servers to whictrttailed servers respond. Termination of each
phase depends on getting responses from at least one quorum.

The query phase is identical in both protocols and it allows clientgligcover a recenfinalized object
version i.e., a recent version with d&h’ tag. The goal of there-write phase of a write is to ensure that each
server gets a tag and a coded element with lahel'. Tags associated with labegbrte’ are not visible to the
readers, since the servers responduery messages only with finalized tags. Once a quorum,(3ay, has
acknowledged receipt of the coded elements to the pre-phidse, the writer proceeds tofisalizephase. In
this phase, it propagates a finalizéi(’) label with the tag and waits for a response from a quorumeo¥ess,
say @ r,- The purpose of propagating thén’ label is to record that the coded elements associated Wwéh t
tag have been propagated to a qudtlirin fact, when a tag appears anywhere in the system assbovittea
‘fin’ label, it means that the corresponding coded elementdheeba quorunt),,, with a ‘pre’ label at some
previous point. The operation of a writer in the two phasdkviong its query phasehelps overcome the
challenge of handling writer failures. In particular, matithat only tags with thefin’ label are visible to the
reader. This ensures that the reader gets at leasique coded elements from any quorum of non-failed nodes
in response to its finalize messages, because such a quosuam lirgersection of at leastnodes with( ..
Finally, the reader helps propagate the tag to a quorum rasiti¢lps complete possibly failed writes as well.

We note that the server gossip is not necessary for coreinleCAS. We usegossip’ in CAS mainly
because it simplifies the proof of atomicity of tB&ASGCalgorithm, which is presented in Sect{dn 5.

4.2 Statements and proofs of correctness
We next state the main result of this section.
Theorem 4.2. CAS emulates shared atomic read/write memaory.

To prove Theorern 412, we show atomicity, Lemimd 4.3, and éssnLemmfa4]9.

4.2.1 Atomicity
Lemma 4.3. CAS¢) is atomic.

The main idea of our proof of atomicity involves defining, twe bperations of any executighof CAS, a
partial order< that satisfies the sufficient conditions for atomicity désenl by Lemma 13.16 of [23]. We state
these sufficient conditions in Lemrmal.4 next.

Lemma 4.4(Paraphrased Lemma 13.16 [23]9uppose that the environment is well-behaved, meaninguthat
operation is invoked at a client only if no other operationsygerformed by the client, or the client received a

"‘_“The ‘null’ entry indicates that no coded element is stored; the séocagt associated storinghall coded element is negligible.
™|t is worth noting thatQ ., and@,., need not be the same quorum.



response to the last operation it initiated. Lgbe a (finite or infinite) execution of a read/write object, whe
S consists of invocations and responses of read and writeadipgis and where all operations terminate. Let
II be the set of all operations if.

Suppose thak is an irreflexive partial ordering of all the operations I, satisfying the following proper-
ties: (1) If the response fofr; precedes the invocation far, in 8, then it cannot be the case that < 7. (2)
If 71 is a write operation inll and 75 is any operation irll, then eitherr; < 75 or mo < m1. (3) The value
returned by each read operation is the value written by tts¢ fseceding write operation according to (or
vy, if there is no such write).

The following definition will be useful in defining a partiatder on operations in an execution of CAS that
satisfies the conditions of Lemrhald.4.

Definition 4.5. Consider an executiofi of CAS and consider an operatianthat terminates in3. Thetag of
operationr, denoted ag’(r), is defined as follows: i is a read, then?'(r) is the highest tag received in its
queryphase. Ifr is a write, thenT'(r) is the new tag formed in itgre-writephase.

We define our partial ordex as follows: In any executiofi of CAS, we order operations;, ms asm; < o
if (i) T(m1) < T(ma), or (i) T'(m) = T'(m2), m1 IS @ write andm, is a read. We next argue that the partial
ordering < satisfies the conditions 6f4.4. We first show in Lenima 4.6, timany execution3 of CAS, at
any point after an operation terminates, the ta@'(7) has been propagated with tHe' label to at least one
quorum of servers. Intuitively speaking, Lemmal4.6 meaas iften operationr terminates, the ta@'(r) is
visible to any operation that is invoked afterterminates. We crystallize this intuition in Lemial4.7, whe
we show that any operation that is invoked after an operatitgarminates acquires a tag that is at least as large
asT' (). Using Lemmd 4]7 we show Lemrha 4.8, which states that thedagir@d by each write operation
is unique. Then we show that Lemial4.7 and Lemima 4.8 implyitiond (1) and (2) of Lemma[4.%4. By
examination of the algorithm, we show that CAS also satisfeeslition(3) of Lemmd4.4.

Lemma 4.6. In any executiort of CAS, for an operatior that terminates i, there exists a quorur@ ¢, ()
such that the following is true at every point of the executiafter = terminates: Every server @j7,,(7) has
(t,*,'fin") in its set of stored triples, whereis either a coded element ontll’, and ¢t = T'(w).

Proof. The proof is the same whetheiis a read or a write operation. The operatioterminates after complet-
ing its finalize phase, during which it receives responses from a quorum@saym), to its finalize message.
This means that every servein Q s, () responded to thénalize message fromr at some point before the
point of termination ofr. From the server protocol, we can observe that every serirer) s, (m) stores the
triple (¢, x, ‘fin") at the point of responding to tHaalize message ofr, wherex is either a coded element or
‘null’. Furthermore, the server stores the triple at every point after the point of respogdm thefinalize
message of and hence at every point after the point of terminatiom .of O

Lemma 4.7. Consider any executiofi of CAS, and letr, o be two operations that terminate ih Suppose
that 7, returns beforers is invoked. Thefl’(w2) > T'(w1). Furthermore, ifry is a write, thenT'(mg) > T'(71).

Proof. To establish the lemma, it suffices to show that the tag aeduim thequery phase ofrs, denoted
asT'(my), is at least as big a&'(r;), that is, it suffices to show that(my) > T'(r;). This is because, by
examination of the client protocols, we can observe that ifs a read,T'(m2) = T(m3), and if y is a write,
T(7T2) > T(7T2). .

To show thatl’(my) > T'(m) we use Lemm&4l6. We denote the quorum of servers that respahe
gueryphase ofry asQ(wg). We now argue that every servein Q(TFQ) NQ f (1) responds to thqueryphase
of mp with a tag that is at least as largeBér). To see this, since is in Q ¢, (71), Lemma 4.6 implies that

s has a tagl’(m;) with label ‘fin’ at the point of termination ofr;. Sinces is in Q(x), it also responds to the



guerymessage of», and this happens at some point after the terminatian dfecausers is invoked afterr;

responds. From the server protocol, we infer that servesponds to thquerymessage of» with a tag that is
no smaller tharT'(m; ). Because of Lemnfad.1, there is at least one seriref) () N Q f,, (1) implying that
operationrs, receives at least one response imgiteryphase with a tag that is no smaller tHE(r ). Therefore

T(mwq) > T(m1). O
Lemma 4.8. Letr, o be write operations that terminate in an executidof CAS. Thef'(7;) # T'(w2).

Proof. Let 1, m2 be two write operations that terminate in executidni_et Cy, Co respectively indicate the
identifiers of the client nodes at which operationsm, are invoked. We consider two cases.

Case 1,041 # (5. From the write protocol, we note th&t(r;) = (z;,C;). SinceC; # (s, we have
T(my) # T(m2).

Case 2,07 = (' : Recall that operations at the same client follow a “handshalscipline, where a new
invocation awaits the response of a preceding invocationis means that one of the two operatians -
should complete before the other starts. Suppose thatputithss of generality, the write operatian com-
pletes before the write operation starts. Then, Lemna4.7 implies tHB{m2) > 7'(71). This implies that
T(ma) # T(m1). O O

Proof of Lemm&_4]3Recall that we define our ordering as follows: In any executiof¥ of CAS, we order
operationsry, my asmy < mo if (i) T'(71) < T'(ma), or (i) T'(71) = T (mw2), m1 IS @ write andr is a read.

We first verify that the above ordering is a partial ordert thaif 71 < w5, then it cannot be that, < ;.

We prove this by contradiction. Suppose that< 7 andw, < 7. Then, by definition of the ordering, we
have thatl'(r;) < T'(m2) and vice-versa, implying th&t(m;) = T'(m2). Sincer; < w2 andT'(wy) = T'(ma),
we have thatr; is a write andr, is a read. But a symmetric argument implies thais a write andr; is a read,
which is a contradiction. Therefore is a partial order.

With the ordering< defined as above, we now show that the three properties of ladfdnare satisfied.
For property(1), consider an executiofi and two distinct operations;, 7, in 3 such thatr; returns before
7o is invoked. Ifms is a read, then Lemnia4.7 implies thagrs) > T'(m ). By definition of the ordering, it
cannot be the case that < 7. If 71 is a write, then Lemmla 4.7 implies th&{my) > T'(71) and so;r; < 7.
Since< is a partial order, it cannot be the case that< ;.

Property(2) follows from the definition of the< in conjunction with Lemm&4]8.

Now we show property3): The value returned by each read operation is the valueenrhly the last
preceding write operation according +q or v if there is no such write. Note that every version of the data
object written in executior is uniquelyassociated with a write operation ih Lemmd4.8 implies that every
version of the data object being written can be uniquely @ased withtag. Therefore, to show that a read
7 returns the last preceding write, we only need to argue bteatead returns the value associated With).
From the write, read, and server protocols, it is clear thailae and/or its coded elements are always paired
together with the corresponding tags at every state of esemyponent of the system. In particular, the read
returns the value fromk coded elements by inverting the MDS codiethesek coded elements were obtained
at some previous point by applyinto the value associated wiffi(r). Therefore Definitio 3]1 implies that
the read returns the value associated With). O

4.2.2 Liveness

We now state the liveness condition satisfied by CAS.

Lemma 4.9 (Liveness) CAS¢) satisfies the followindivenesscondition: If 1 < k& < N — 2f, then every
non-failinﬂ operation terminates in every fair execution of CRSghere the number of server failures is no
bigger thanf .

*An operation is said to have failed if the client performihg bperation fails after its invocation but before its teration.
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Proof. By examination of the algorithm we observe that terminabbany operation depends on termination
of its phases. So, to show liveness, we need to show that dede mf each operation terminates. Let us
first examine thequery phase of a read/write operation; note that termination efgrery phase of a client
is contingent on receiving responses from a quorum. Everyfaitled server responds tocuery message
with the highest locally available tag markefth’. Since every server is initialized witfy, vo, ‘fin’), every
non-failed server has at least one tag associated with i ‘an’ and hence responds to the clientjgery
message. Since the client receives responses from evetfait@oh server, propertyii) of Lemmd4.1 ensures
that thequeryphase receives responses from at least one quorum, andtbemagates. We can similarly show
that thepre-write phase andinalize phase of a writer terminate. In particular, termination atte of these
phases is contingent on receiving responses from a quorheir fErmination is guaranteed from properiy (
of Lemma[4.1 in conjunction with the fact that every nonddikerver responds, at some point, fgrexwrite
message andfanalizemessage from a write with an acknowledgment.

It remains to show the termination of a readditmlize phase. By using propertyi) of Lemma4.1l, we
can show that a quorum, s&y;,, of servers responds to a readdirsalizemessage. For thinalize phase of
a read to terminate, there is an additional requirementahbgastk servers include coded elements in their
responses. To show that this requirement is satisfied, seppat the read acquired a tam its queryphase.
From examination of CAS, we infer that, at some point befbesoint of termination of the readigieryphase,
a writer propagated finalizemessage with tag Let us denote by),., (), the set of servers that responded to
this write’s pre-write phase. We argue that all serversip,,(t) N @ 1., respond to the readerfmalizemessage
with a coded element. To see this, 4die any server i, (1) NQ . Sinces isin Q. (t), the server protocol
for responding to gre-write message implies thathas a coded elementi;,, at the point where it responds
to that message. Siness in Q) ¢, it also responds to the readefisalize message, and this happens at some
point after it responds to thare-write message. So it responds with its coded elemenfrom Lemma4l, it
is clear thatQ,,.,(t) N Qf.,| > k implying that the reader receives at leastoded elements in ifénalizephase
and hence terminates. O

4.3 Cost Analysis

We analyze the communication costs of CAS in Theorem]4.1@ tfeorem implies that the read and write
communication costs can be made as smaﬂf%f log, | V| bits by choosing: = N — 2f.

Theorem 4.10. The write and read communication costs of the GA&(e equal toN/k log, |V| bits.

Proof. For either protocol, observe that messages carry codedeaterwhich have sizéogi—‘v‘ bits. More
formally, each message is an element fron W x {'pre’, ‘fin’ }, where,WW is a coded element corresponding
to one of theN outputs of the MDS codé@. As described in Se¢l 3og, |[W| = bg?—k'w. The only messages
that incur communication costs are the messages sent f@cliimt to the servers in th@e-write phase of a
write and the messages sent from the servers to a client ifinddeze phase of a read. It can be seen that the
total communication cost of read and write operations ofGA&S algorithm arelkX log, |V] bits, that is, they
are upper bounded by this quantity and the said costs arg@ucin certain worst-case executions. O

5 Storage-Optimized Variant of CAS

Although CAS is efficient in terms of communication costdniturs an infinite storage cost because servers
can store coded elements corresponding to an arbitrarge laumber of versions. We here present a variant of
the CAS algorithm calle€CAS with Garbage CollectiofCASGC), which has the same communication costs
as CAS and incurs a bounded storage cost under certain eddsaonditions. CASGC achieves a bounded
storage cost by usingarbage collectioni.e., by discarding coded elements with sufficiently srtefs at the
servers. CASGC is parametrized by two positive integer®tdehask andd, wherel < £ < N — 2f; we
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servers
state variable:A variable that is a subset 6f x (W U {'null’'}) x {'pre’, ‘fin’, (‘pre’, ‘gc’), (‘fin’, ‘gc’)}
initial state Same as in Fid.]1.
On receipt ofquerymessage: Similar to Fid.] 1, respond with the highest localilable tag labeledin’, i.e., respond with
the highestag such that the tripl€tag, z, ‘fin’) or (tag, ‘null’, (‘fin’, ‘gc’)) is at the server, where can be a coded element o
‘null’.
On receipt of apre-write message: Perform the actions as described in Eig. 1 exceptettiding of an acknowledgement,
Perform garbage collection. Then send an acknowledgement.

On receipt of dinalizefrom a writer: Lett be the tag of the message. If a triple of the fditnz, ‘fin’) or (¢, ‘null’, (‘fin’, ‘gc’)) is
stored in the set of locally stored triples wherean be a coded element anll’, then ignore the incoming message. Otherwis
if a triple of the form(¢, ws, ‘pre’) or (¢, ‘null’, (‘pre’, ‘gc’)) is stored, then upgrade it {6, ws, ‘fin’) or (¢, ‘null’, (‘fin’, ‘gc’)).
Otherwise, add a triple of the forift, ‘null’, ‘fin’) to the set of locally stored triples. Perform garbage ctibec Send gossip’
message with iterf, ‘fin’) to all other servers.

D

On receipt of dinalizemessage from a reader: Liebe the tag of the message. If a triple of the fdfimws, *) exists in the list
of stored triples where can be pre’ or ‘ fin’, then update it tq¢, ws, ‘fin’), perform garbage collection, and seftdw,) to the
reader. If(¢, ‘null’, (x, ‘gc’)) exists in the list of locally available triples whesecan be eitherfin’ or ‘ pre’, then update it to
(¢, 'null’, (‘fin’, ‘gc’)) and perform garbage collection, but dot send a response. Otherwise gddnull’, ‘fin’) to the list of
triples at the server, perform garbage collection, and senacknowledgment. Sengdssip’ message with itengt, ‘fin’) to all

other servers.

On receipt of agossip’ message: Let denote the tag of the message. If a triple of the fétm, ‘fin') or (¢, ‘null’, (‘fin’, ‘gc’))
is stored in the set of locally stored triples wherecan be a coded element afull’, then ignore the incoming message.
Otherwise, if a triple of the form(t, ws, ‘pre’) or (¢, 'null’, (‘pre’,‘gc’)) is stored, then upgrade it t¢,ws, ‘fin’) or
(t,'null’, (‘fin’, ‘gc’)). Otherwise, add a triple of the for(a, ‘null’, ‘fin’) to the set of locally stored triples. Perform garbag
collection.

[0}

garbage collection:If the total number of tags of the sét : (¢, z, *) is stored at the server, wherec W U {‘null’ } andx €
{fin’, (‘fin’, ‘gc’) }} is no bigger thad + 1, then return. Otherwise, let, t2, ... ts+1 denote the highest + 1 tags from the
set, sorted in descending order. Replace every elemeng @bt (', z, ) wheret’ is smaller tharts;1 by (¢, ‘null’, (, ‘gc’))
wherex can be eitherpre’ or ‘fin’andz € W U {'null' }.

Figure 2: Server Actions for CASGE(0).

denote the algorithm with parameter valdes by CASGC¢, o). Like CAS(k), we use ari N, k) MDS code in
CASGC, 0). The parameted is related to the number of coded elements stored at eackrserger “normal
conditions”, that is, if all operations terminate and thare no ongoing write operations.

5.1 Algorithm description

The CASGQk, ) algorithm is essentially the same as GAHwith an additional garbage collection step at
the servers. In particular, the only differences betweertwo algorithms lie in the server actions on receiving
a finalize message from a writer or a reader gpssip’. The server actions in the CASGC algorithm are
described in Fig.[]12. In CASGE(J), each server stores the latést- 1 triples with the fin’ label plus
the triples corresponding to later and intervening openatiwith the pre’ label. For the tags that are older
(smaller) than the latest + 1 finalized tags received by the server, it stores only the da¢ta not the data
itself. On receiving dinalizemessage either from a writer or a reader, the server perfamgasbage collection
step before responding to the client. The garbage collestiep checks whether the server has more éhan
triples with the fin’ label. If so, it replaces the triplé’, z, x) by (¢, ‘null’, (%, ‘gc’)) for every tagt’ that is
smaller than all thé + 1 highest tags labeledi’, wherex is ‘pre’ or ‘ fin’, and z can be a coded element or
‘null’. If a reader requests, throughfiaalize message, a coded element that is already garbage collduted,
server simply ignores this request.
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5.2 Statements and proofs of correctness

We next describe the correctness conditions satisfied by@&ASVe begin with a formal statement of atomicity.
Later, we describe the liveness properties of CASGC.

5.2.1 Atomicity
Theorem 5.1(Atomicity). CASGC is atomic.

To show the above theorem, we observe that, from the pergpetthe clients, the only difference between
CAS and CASGC is in the server response to a ref@ittdize message. In CASGC, when a coded element has
been garbage collected, a server ignores a rdmdiize message. Atomicity follows similarly to CAS, since,
in any execution of CASGC, operations acquire essentiaiysame tags as they would in an execution of CAS.
We show this formally next.

Proof (Sketch).Note that, formally, CAS is an I/O automaton formed by conipgghe automata of all the
nodes and communication channels in the system. We showiciipnm two steps. In the first step, we
construct a I/O automaton CA®hich differs from CAS in that some of the actions of the ses\ye CAS are
non-deterministic. However, we show that from the perspedif its external behavior (i.e., its invocations,
responses and failure events), any execution of ‘Ga8 be extended to an execution of CAS implying that
CAS satisfies atomicity. In the second step, we will show that GESimulates CAS These two steps suffice
to show that CASGC satisfies atomicity.

We now describe CASThe CAS automaton is identical to CAS with respect to the clientardj and to
the server actions on receipt gliery and pre-write messages anfthalize messages from writers. A server’s
response to éinalize message from a read operation can be different in‘G&Sompared to CAS. In CAS
at the point of the receipt of tHenalize message at the server, the server could respond eitherheittoded
element, or not respond at all (even if it has the coded el&é® server performsgbssip’ in CAS’ as in
CAS.

We note that CAS'simulates” CAS. Formally speaking, for every executigof CAS), there is a natural
corresponding execution of CAS with an identical sequence of actions of all the congm® with one ex-
ception; when a server ignores a reditislize message im’, we assume that the corresponding message in
is indefinitely delayed. Therefore, from the perspectiveliEnt actions, for any executiom’ of CAS/, there
is ana of CAS with the same set of external actions. Since CAS sadisttomicity,a has atomic behavior.
Thereforea’ is atomic, and implying that CASatisfies atomicity.

Now, we show that CASGC “simulates” CASThat is, for every executiong. of CASGC, we construct
a corresponding executiad of CAS' such that’ has the same external behavior (i.e., the same invocations,
responses and failure events) as thatgf We first describe the executier step-by-step, that is, we consider
a step ofagc and describe the corresponding stepndf We then show that the executieri that we have
constructed is consistent with the CA&itomaton.

We construct’ as follows. We first set the initial states of all the compdseaio’ to be the same as they
are inagc. At every step, the states of the client nodes and the messagag system in’ are the same as
the states of the corresponding components in the corrdsmpstep ofage. A server’s responses on receipt
of a message is the samedh as that of the corresponding server’s responsegin In particular, we note
that a server’s external responses are the samg:ianda’ even on receipt of a readefimalizemessage, that
is, if a server ignores a reader’s finalize messageyin it ignores the reader’s finalize messagexras well.
Similarly, if a server sends a message as a parg@kip’ in agc, it sends a message diri as well. The only
difference betweeig: andco’ is in the change to the server’s internal state at a point a#ipe of afinalize
message from a reader or a writer. At such a point, the seragmp@rform garbage collection in,c, whereas it
does not perform garbage collectiondh Note that the initial state, the server’s response, andlibet states
at every step of’ are the same as the corresponding stepgef Also note that a server that fails at a step of
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agc fails at the corresponding step of (even though the server states could be different in gebeduse of
the garbage collection). Hence, at every step, the exteetavior ofa’ andagc are the same. This implies
that the external behavior of the entire executidis the same as the external behaviong.

We complete the proof by noting that executi@hconsistent with the CASautomaton. In particular, since
the initial states of all the components are the same in th& @Ad CASGC algorithms, the initial state of
o’ is consistent with the CASutomaton. Also, every step of is consistent with CAS Therefore, CASGC
simulates CAS Since CASis atomic,agc has atomic behavior. So CASGC is atomic.

O

5.2.2 Liveness

Showing operation termination in CASGC is more complicdteah CAS. This is because, in CASGC, when
a reader requests a coded element, the server may have g@adikegted it. The liveness property we show
essentially articulates conditions under which read djmrs terminate in spite of the garbage collection. In-
formally speaking, we show that CASGC satisfies the follgnlimeness property: every operation terminates
in an execution where the number of failed servers is no bitga / and the number of writesoncurrentwith
aread is bounded hy+ 1. Before we proceed to formally state our liveness conditiove give a formal defi-
nition of the notion of concurrent operations in an executdb CASGC. For any operatiom that completes its
query phase, the tag of the operatibfr) is defined as in Definition 4.5. We begin with defining #rel-point

of an operation.

Definition 5.2 (End-point of a write operation)in an executiorB of CASGC, the end point of a write operation
min S is defined to be

(a) the first point ofs at which a quorum of servers that do not fail fhhas tag7’(7) with the fin’ label,
whereT () is the tag of the operation, if such a point exists,
(b) the point of failure of operatiom, if operationr fails and (a) is not satisfied.

Note that if neither condition (a) nor (b) is satisfied, thiea tvrite operation has no end-point.

Definition 5.3 (End-point of a read operatianThe end point of a read operation fhis defined to be the point
of termination if the read returns ig. The end-point of a failed read operation is defined to be thiatppf
failure.

A read that does not fail or terminate has no end-point.

Definition 5.4 (Concurrent OperationsOne operation is defined to be concurrent with another openaf it
is not the case that the end point of either of the two opematis before the point of invocation of the other
operation.

Note that if both operations do not have end points, then #reyconcurrent with each other. We next
describe the liveness property satisfied by CASGC.

Theorem 5.5(Liveness) Letl < k < N —2f. Consider a fair executiof of CASGCk, §) where the number
of write operations concurrent to any read operation is atsto and the number of server node failures is at
mostf. Then, every non-failing operation terminatessin

The main challenge in proving Theorém]5.5 lies in showingteation of read operations. In Leminals.6,
we show that if aead operation does not terminatean execution of CASGG( ¢), then the number of write
operations that are concurrent with the read is larger éhade then use the lemma to show Theofen 5.5 later
in this section. We begin by stating and proving Leniméa 5.6.
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Lemma5.6. Letl < k < N — 2f. Consider any fair executiofi of CASGCk, §) where the number of server
failures is upper bounded bjf. Letw be a non-failing read operation if# that does not terminate. Then, the
number of writes that are concurrent withis at leasty + 1.

To prove Lemma’l6, we prove Lemnias]|5.7 5.8. Lemma 5.7aslat in a fair execution where the
number of server failures is bounded fyif a non-failing server receives a finalize message coomdipg to a
tag at some point, then the write operation correspondiriigatibtag has an end-point in the execution. We note
that the server gossip plays a crucial role in showing Lemia\#e then show Lemnia .8 which states that
in an execution, if a write operation has an end-point, then every operation that begins aftezriigpoint of
7 acquires a tag that is at least as large as the tag oing Lemmag5]7 arid 5.8, we then show Lerima 5.6.

Lemmab5.7. Letl < k < N —2f. Consider any fair executiofi of CASGCk, §) where the number of server
failures is no bigger tharf. Consider a write operation that acquires tag. If at some point of, at least one
non-failing server has a triple of the forfa, z, ‘fin’) or (¢, ‘null’, (‘fin’, ‘gc’)) wherex € W U {'null' }, then
operations has an end-point if.

Proof. Notice that every server that receive$iralize message with tag invokes the gossip’ protocol. If a
non-failing servers stores tag with the ‘fin’ label at some point of}, then from the server protocol we infer
that it received dinalizemessage with tagfrom a client or another server at some previous point. Sseceer

s receives thdinalize message with tag, everynon-failing server also receivesfmalize message with tag

at some point of the execution becausegfssip’. Since a server that receivedinalize message with tag
stores thefin’ label after receiving the message, and the server doesatetedhe label associated with the tag
at any point, eventually, evenon-failing servestores thefin’ label with the tagt. Since the number of server
failures is no bigger thaffi, there is a quorum of non-failing servers that storeg taigh the ‘fin’ label at some
point of 5. Therefore, operatiom has an end-point i@, with the end-point being the first point gfwhere a
quorum of non-failing servers have the tagith the ‘fin’ label. O

Lemma 5.8. Consider any executiofi of CASGQk, ). If write operations with tag¢ has an end-point ir,
then the tag of any operation that begins after the end pdintie at least as large as

Proof. Consider a write operation that has an end-point id. By definition, at the end-point of, there
exists at least one quoru@}(m) of non-failing servers such that each server has the teigh the ‘fin’ label.
Furthermore, from the server protocol, we infer that eackiesen quorum@ (=) has the tag with the ‘fin’
label at every point after the end point of the operation
Now, suppose operatiox is invoked after the end point af. We show that the tag acquired by operation

7’ is at least as large a@s Denote the quorum of servers that respond togihery phase ofr’ asQ(x’). We
now argue that every serverin Q(w) N Q(x') responds to thgueryphase ofr’ with a tag that is at least as
large ag. To see this, sinceis in Q(r), it has a tag with label ‘fin’ at the end-point ofr. Sinces is in Q(7'),

it also responds to thguerymessage of’, and this happens at some point after the end-point liécauser’

is invoked after the end-point of. Therefore serveg responds with a tag that is at least as large. ahis
completes the proof. O

Proof of Lemm&abl6Note that the termination of the query phase of the read isirggent on receiving a
guorum of responses. By noting that every non-failing sergsponds to the read’s query message, we infer
from Lemmd 4.1l that the query phase terminalie®emains to consider termination of the read’s finalizeggha
Consider an operation whose finalize phase does not terminate. We argue that theeet lzasts + 1 write
operations that are concurrent with

Lett be the tag acquired by operatian By property {i) of Lemmé&4.1, we infer that a quorum, s@y.,
of non-failing servers receives the readisalizemessage. There are only two possibilities.

(i) There is no serves in Q) f,, such that, at the point of receipt of the read’s finalize mgssd serves, a
triple of the form(¢, ‘null’, (x, ‘gc’)) exists at the server.
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(ii) There is at least one servein Q y,, such that, at the point of receipt of the read’s finalize mgssd
servers, a triple of the form(z, ‘null’, (%, ‘gc’)) exists at the server.

In case(i), we argue in a manner that is similar to Lemimd 4.9 that the reeglves responses to its finalize
message from quoruig ;,, of which at leask responses include coded elemehé repeat the argument here
for completeness. From examination of CASGC, we infer tabsome point before the point of termination
of the read'squeryphase, a writer propagatedinalize message with tag Let us denote by),,(t), the set
of servers that responded to this writgie-write phase. We argue that all serversi®,,(t) N Q@ s, respond
to the reader'dinalizemessage with a coded element. To see thisy'lbé any server i), (t) N Q f,,. Since
s"isin Quw(t), the server protocol for responding tgee-write message implies that has a coded element,
wy, at the point where it responds to that message. Sihisein Q ., it does not contain an element of the
form (¢, ‘null’, (%, ‘gc’)) implying that it has not garbage collected the coded elemtthte point of receipt of
the reader’s finalize message. Therefore, it responds te#uer'sfinalizemessage, and this happens at some
point after it responds to thare-write message. So it responds with its coded elenagnt From Lemma 41,
it is clear that|@Q,.(t) N Qfw| > k implying that the reader receives at leastoded elements in itinalize
phase and hence terminates. Therefore the finalize phaséesohinates, contradicting our assumption that it
does not. Therefor@) is impossible.

We next argue that in cagéi), there are at least + 1 write operations that are concurrent with the read
operationr. In case(ii), from the server protocol of CASGC, we infer that at the poirreceipt of the reader’s
finalize message at serverthere exist tagg,, o, . . . , t511, €ach bigger than, such that a triple of the form
(t;,z,'fin") or (¢;, ‘null’, (*fin’, ‘gc’)) exists at the server. We infer from the write and server palothat, for
everyiin {1,2,...,0+1}, awrite operation, say;, must have committed to tagin its pre-write phase before
this point in3. Becauses is non-failing in3, we infer from Lemma 517 that operatian has an end-point in
g for everyi € {1,2,...,0 + 1}. Sincet < t; for everyi € {1,2,...,d + 1}, we infer from Lemma5I8
that the end point of write operatior is after the point of invocation of operation Therefore operations
T, o, ..., Tsrq are concurrent with read operatian

O

A proof of Theoren{ 55 follows from Lemnia 5.6 in a manner thsasimilar to Lemma_419. We briefly
sketch the argument here.

Proof Sketch of Theorem 5.5By examination of the algorithm we observe that terminatibany operation
depends on termination of its phases. So, to show livenesgead to show that each phase of each operation
terminates. We first consider a write operation. Note thamitgation of thequeryphase of a write operation

is contingent on receiving responses from a quorum. Everyfaited server responds toquery message
with the highest locally available tag markeith'. Since every server is initialized witfty, vo, ‘fin’), every
non-failed server has at least one tag associated with biet fan’ and hence responds to the writegsery
message. Since the writer receives responses from evetaited server, propertyii) of Lemmd4.1 ensures
that thequeryphase receives responses from at least one quorum, andtbemagates. We can similarly show
that thepre-write phase andinalizephase of a writer terminate.

It remains to consider the termination of a read operatiarpp8se that a non-failing read operation does
not terminate. Then, from Lemma 5.6, we infer that there aleasts + 1 writes that are concurrent with the
read. This contradicts our assumption that the number @aéwperations that are concurrent with a read is no
bigger thary. Therefore every non-failing read operation terminates. O

5.3 Bound on storage cost

We bound the storage cost of an execution of CASGC by prayidibound on the number of coded elements
stored at a server any particular poinbf the execution. In particular, in Lemrha 5110, we descrieditions
under which coded elements corresponding to the value ofita mperation are garbage collectedaditthe
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servers. Lemmia’.10 naturally leadsatstorage cost bound in Theorém 3.11. We begin with a defingfan
w-supersededvrite operationfor a point in an executigrfor a positive integet.

Definition 5.9 (w-superseded write operationhn an executions of CASGC, consider a write operatian
that completes its query phase. [#tr) denote the tag of the write. Then, the write operation is saide
w-superseded at a poinf® of the execution ithere are at leastv terminating write operations, each with a
tag that is bigger tharT'(7), such that every message on behalf of each of these operétichsling ‘gossip’
messages) has been delivered by péint

We show in Lemm&a5.10 that in an execution of CASB@), if a write operation igd + 1)-supersededt
a point, then, no server stores a coded element corresgptalthe operation at that point because of garbage
collection. We state and prove Lemma$5.10 next. We then usenat5.10 to describe a bound on the storage
cost of any execution of CASGE(0) in Theoren{ 5.111.

Lemma 5.10. Consider an executiod of CASGCE, ¢) and consider any poinP of 5. If a write operationt
is (0 + 1)-supersedea@t point P, then no non-failed server has a coded element correspgrtdithe value of
the write operationr at point P.

Proof. Consider an executiofiof CASGC, ¢) and a pointP in 5. Consider a write operationthat is(6+1)-
supersededt point P. Consider an arbitrary servetthat has not failed at poirfe. We show that serverdoes
not have a coded element corresponding to operatiahpoint P. Since operatiorr is (6 + 1)-supersededt
point P, there exist at least+ 1 write operationsry, s, . .., w511 such that, for every € {1,2,...,0 + 1},

e Operationm; terminates ing,
e the tag7'(m;) acquired by operation; is larger thari’(r), and
e every message on behalf of operatigris delivered by pointP.

Since operationr; terminates, it completes ifsalize phase where it sends a finalize message witl/tag)
to servers. Furthermore, théinalizemessage with ta@'(;) arrives at serves by point P. Therefore, by point
P, servers has received at least+ 1 finalize messages, one from each operatiofwin: i = 1,2,...,0 + 1}.
The garbage collection executed by the server on the reckipe last of these finalize messages ensures that
the coded element corresponding to T&gr) does not exist at serverat point P. This completes the proof.
O

Theorem 5.11. Consider an executiod of CASGCE, §) such that, at any point of the executigdhe number
of writes that have completed their query phase by that paidt are not(d + 1)-superseded at that point is
upper bounded by. The storage cost of the execution is at nfé@g{logQ V.

Proof. Consider an executiofi where at any point of the execution, the number of writes tiaate completed
their query phase by that point and are (bt 1)-superseded at that point is upper boundedvbyConsider
an arbitrary point? of the executions, and consider a serverthat is non-failed at poinP. We infer from the
write and server protocols that, at poifif servers does not store a coded element corresponding to any write
operation that has not completed its query phase by gaite also infer from Lemmia5.10 that servetdoes
not store a coded element corresponding to an operationsti@t+ 1)-superseded at poirft. Therefore, if
servers stores a coded element corresponding to a write operatipoirit P, we infer that the write operation
has completed its query phase but is (ot 1)-superseded by poiri?. By assumption on the executigh the
number of coded elements at point Paoét servers is upper bounded by. Since each coded element has a
size of% log, |V bits and we considered an arbitrary servethe storage cost at poift, summed over all the
non-failed servers, is upper boundedﬂe}§’¢ log, |V bits. Since we considered an arbitrary pathtthe storage
cost of the execution is upper bounded¥ log, V| bits. O
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write (value
query. Same as in CAS{ — 2f).
pre-write Select the largest tag from tlg@eryphase; form a new tagby incrementing integer by 1 and adding its ‘id’. Apply an
(N, N — f) MDS code® to valueand obtain coded elementis, ..., wxy. Send(t, ws, ‘pre’) to every serves. Await responses
from a quorum.
finalize Same as in CAS{ — 2f).

read
query. Same as in CAS{ — 2f).
finalize Select largest tagfrom the query phase. Sefidalizemessagét, ‘null’, ‘fin’) to all servers requesting the associated
coded elements. Await responses with coded elements fromoaugp. Obtain thesalue by inverting ®, and terminate by
returningualue.

server
state variablesState is a subset af x (W U {'null'}) x {‘pre’, ‘fin’} x 2.
initial state (to, wo,s, ‘fin’, {}).
Response tquery. Send highest locally known tag that has lalfel
Response tpre-write If the tagt of the message is not available in the locally stored setmégy add the tuplé, ws, ‘pre’, {})
to the locally stored set. Ift, ‘null’, ‘fin’, Cy) exists in the locally stored set of tuple for some set of ¢ti€f, then send¢, ws)
to every client inCo and modify the locally stored tuple t@, ws, ‘fin’, {}). Send acknowledgement to the writer.
Response ttinalizeof write: Lett denote the tag of the message(tlfws, ‘pre’, {}) exists in the locally stored set of tuple wher:
* can be pre’ or ‘fin’, update to(t, ws, ‘fin’, {}). If no tuple exists in the locally stored set with tagadd(¢, ‘null’, ‘fin’, {}) to
the locally stored set. Send acknowledgement.
Response tdinalize of read: Lett denote the tag of the message aiide C denote the identifier of the client sending th
message. Ift, ws,,Co) exists in the locally stored set, update the tuple(iass, ‘fin’, Co) and sendt, ws) to reader. If
(¢, 'null’, 'fin’, Cy) exists at the server, update it@s'null’, ‘fin’, Co U {C'}). Otherwise, add¢, ‘null’, ‘fin’, {C}) to the list of
locally stored tags.

7%

14

Figure 3: The CCOAS algorithm. We denote the (possibly ité)réet of clients by. The notatior2¢ denotes
the power set of the set of clienfs

We note that Theorem 5111 can be used to obtain a bourtte storage cost of executions in terms of
various parameters of the system components. For instdre#ieorem can be used to obtain a bound on the
storage cost in terms of an upper bound on the delay of evesgage, the number of steps for the nodes to take
actions, the rate of write operations, and the rate of faillin particular, the above parameters can be used to
bound the number of writes that are 1iét+ 1)-superseded, which can then be used to bound the storage cost

6 Communication Cost Optimal Algorithm

A natural question is whether one might be able to prove alldsand to show that communication costs of
CAS and CASGC are optimal. Here, we describe a hesunterexample algorithmtalled Communication
Cost Optimal Atomic StorageCCOAS) algorithm, which shows that such a lower bound cabeoproved.
We show in Theorerh 6.5 that CCOAS has write and read commntignceosts ofNL_f log, | V| bits, which

is smaller than the communication costs of CAS and CASGCaBsx elementary coding theoretic bounds
imply that these costs can be no smaller tb@i\_@v log, | V| bits, CCOAS is optimal from the perspective of
communication costs. CCOAS, however, is infeasible intimadecause of certain drawbacks described later
in this section.

6.1 Algorithm description

CCOAS resembles CAS in its structure. Like CAS{ 2f), its quorum@ consists of the set of all subsets of

N that have at leasiV — f elements. We also use terms “query”, “pre-write”, and “fireil for the various
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phases of operations. We provide a formal description of B8 Fig.[3. Here, we informally describe the
differences between CAS and CCOAS.

e In CCOAS, the writer uses afiv, N — f) MDS code to generate coded elements. Note the contrast
with CAS(k) which uses ariV, k) code, where the parameteiis at mostN — 2f. Because we use an

(N, N — f) code in CCOAS, the size of each coded element is eqd%%éﬁ bits, and as a consequence,

the read and write communication costs are equgﬁ? log, |V| bits.

e In CCOAS, a reader requir€$ — f responses with coded elements for termination of its fieghzase.
In CAS, in general, at mosY — 2f responses with coded elements are required.

e In CCOAS, the servers respond to finalize messages from avitadoded elements only. This is unlike
CAS, where a server that does not have a coded element comcisp to the tag of a reader’s finalize
message at the point of reception responds simply with anaadkedgement. In CCOAS, if a server
does not have a coded element corresponding to the dé@ reader’s finalize message at the point of
reception, then, in addition to adding a triple of the foftrinull’, ‘fin’) to its local storage, the server
registers this read along with tagn its logs. When the corresponding coded element with tagves at
a later point, the server, in addition to storing the codednelnt, sends it to every reader that is registered
with tagt. We show in our proofs of correctness that, in CCOAS, everyfading server responds to a
finalize message from a read with a coded element at some point

6.2 Proof of correctness and communication cost

We next describe a formal proof of the correctness of CCOAS.

6.2.1 Atomicity

Theorem 6.1. CCOAS emulates shared atomic read/write memory.

The main challenge in showing Theoréml6.1 lies in showinmitestion of read operations, specifically
to show that every non-failing server sends a coded elemer@sponse to a reader’s finalize message. The
theorem follows from Lemmads 8.3 ahd 6.2, which are statetl nex

Lemma 6.2. The CCOAS algorithm satisfies atomicity.

Proof. Atomicity can be shown via a simulation relation with CAS. Wevide a brief informal sketch of the
relation here. We argue that for every executibof CCOAS, there is an executigh of CAS with the same
trace. To see this, we note that the write protocol of CCOA&seentially identical to the write protocol in
CAS, with the only difference between the two algorithmagehe erasure code used in the pre-write phase.
Similarly, the query phase of the read protocols of both rdtlgms are the same. Also note that the server
responses to messages from a writer and query messages ffeaahes. are identical in both CAS and CCOAS.
The main differences between CCOAS and CAS in the servasretiThe first difference is that, in CCOAS,
the servers do not perforngdssip’. The second difference is that in CCOAS, if the server doaishave a
coded element corresponding to the tag of the reader'sZmaliessage, then the server does not respond at this
point. Instead, the server sends a coded element to therratatihe point of receipt of the pre-write message
with this tag. We essentially creaf# from 5 by delaying all messagegdssip’ messages indefinitely, and
delaying reader’s finalize messages so that they arrivecat ®=rver at the point of, or after the receipt of the
corresponding pre-write message by the server. This dwjagmsures that the server actions are identical in
both 3 andf’.

Specifically, we creatg’ as follows. In3’ the points of

e invocations of operations,
e sending and receipt of messages between writers and servers
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e sending and receipt of query messages between readersraasse
e and sending of finalize messages from the readers

are identical to3. The servergossip’ messages i’ are delayed indefinitely. A crucial difference between
B and 3’ lies in the points of receipt of reader’s finalize messagabetervers. Consider a read operation
that acquired tag in 5 and letP denote the point of receipt of a reader’s finalize messagert@ss. Let P’
denote the point of receipt of a pre-write message with t@gservers in 3. Now, consider the corresponding
read operation that acquired tagn 3’. Now, if P precedes”’ in 3, then the reader’s finalize message with
tagt arrives at serveg at P’ in 3/, else, it arrives at poinP in 3. This implies that serves responds to
reader’s finalize messages at the same pointsand3’. Finally, we complete our specification 6f by letting

a server’s response to the reader’s finalize message artive alient at the same point j§f as inj3.

Note that if an operation acquires tagn 3, the corresponding operation it also acquires tag Also
note that the points of invocation, responses of operatimusthe values returned by read operations are the
same in both3 and 5’. Therefore, there exists an executiBhof CAS with the same trace as an arbitrary
execution of CCOAS. Since CAS is atomi¢i has atomic behavior, and so dogs Therefore, CCOAS
satisfies atomicity. O

6.2.2 Liveness

We next state the liveness condition of CCOAS.

Lemma 6.3. CCOAS satisfies the liveness condition: in every fair exacwthere the number of failed servers
is no bigger thanf, every non-failing operation terminates.

To show Lemma 613, we first state and prove Lenima 6.4. Infdynsaleaking, Lemma 614 implies that
every non-failing server responds to a reader’s finalizesamps with a coded element. As a consequence, every
read operation getd — f coded elements in response to its finalize messages. Theiltfdinalize phase
implying that the operation returns implying Lemfal6.3. Westfstate and prove Lemrha b.4. Then we prove
Lemmd®.3B.

Lemma 6.4. Consider any fair execution. of CCOAS and a server that does not fail i. Then, for any
read operation ina with tag ¢, the servers responds to the read’s finalize message with the coded etemen
corresponding to tag at some point of.

Proof sketch.Consider a serverthat does not fail irv and consider the poin® of & where serves receives a
finalize message with tagrom a reader. Since the read operation at the reader addagg from examination
of the algorithm we can infer that a write with tagcompleted its pre-write phase at some pointvofFrom
the write protocol, note that this implies that the writentsa coded element with tagto every server in its
pre-write phase. In particular, the writer sent coded efgmg to servers. Since the channels are reliable and
sinces does not fail in, this means that at some poiRt of «, the servers receives the coded element.
There are only two possible scenarios. Fifstprecedes” in «, and secondP precedes”’. To complete the
proof, we show that, in the first scenario the server resptmtise reader’s finalize message with at point
P, and in the second scenﬂ,cthe server responds to the reader’s finalize messageuwwiét point P’.

In the first scenario, note that the server has a coded elemesait the pointP. By examining the server
protocol, we observe that serveresponds to the reader’s finalize message with a coded elemen

In the second second scenario, paititcomes after” in «. Because of the server protocol on receipt of
the reader’s finalize message, servadds a tuple of the forrft, ‘null’, ‘fin’, Cy), whereC' € Cy, to the local
state at point”. Also, note that, at poin’, the server stores a tuple of the fo‘null’, ‘fin’, C; ), where

XINote that in this second scenario, the server does not rdspith a coded element in CAS, where the server only sends an
acknowledgement. In contrast to the proof here, the livepesof of CAS involved showing that at ledsservers satisfy the condition
imposed by the first scenario.
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C € (C;. Finally, based on the server protocol on receipt of a préewriessage, we note that at paifft the
server sendss; to all the clients irC; including clientC'. This completes the proof. O

We next prove Lemmia§.3.

Proof of Lemm&®6]3To prove liveness, it suffices to show that in any fair exeruti where at mosy servers
fail, every phase of every operation terminates. The préd€mnination of a write operation, and the query
phase of a read operation is similar to CAS and omitted heier&vity. Here, we present a proof of termination
of the finalize phase of a read in any fair executiowhere at mosy servers fail.

To show the termination of a read, note from Lemimad 6.4 thaixatetiona, every non-failed serves
responds to a reader’s finalize message with a coded eleBerduse the number of servers that faikiis at
most f, this implies that reader obtains at ledst- f messages with coded elements in response to its finalize
message. From the read protocol, we observe that this suficeéermination of the finalize phase of a read.
This completes the proof. O

6.2.3 Communication cost

We next state the communication cost of CCOAS.
Theorem 6.5. The write and read communication costs of CCOAS are bothl&q% log |V].

The proof of Theorer 615 is similar to the proof of TheofenD4ahd is omitted here for brevity.

6.3 Drawbacks of CCOAS

CCOAS incurs a smaller communication cost mainly becauseghder acquiredy — f coded elements, thus
allowing the writer to use afiN, N — f) MDS code. Since a write operation returns after gettingarses
from some quorum, there are executions of our algorithm gtarthe point of termination of a write operation,
only a quorum@,,, containing/N — f servers have received its pre-write messages. Now, if otleeaervers

in @, fails after the termination of the write, then, since a reatiat intends to acquire the value written
requiresN — f coded elements, it is important that at least one of the piewessages sent by the writer to
a server outside af),,, reaches the server. In other words, it is crucial for livenafsread operations that the
pre-write messages sent by the write operation are defiverevery non-failing server, even if some of these
messages have not been delivered at the point of terminattithre write. We use this assumption implicitly in
the proof of correctness of CCOAS.

Although, in our model, channels deliver messages of ojpasthat have terminated, the dependence of
liveness on this assumption is a significant drawback of C&Oe modeling assumption of reliable channels
is often an implicit abstraction of a lossy channel and aredgihg primitive that retransmits lost messages
until they are delivered. From a practical point of view, lewer, it is not well-motivated to assume that this
underlying primitive retransmits lost messages corregjpanto operations that have terminated, especially if
the client performing the operation faild/e note that CAS and CASGC do not share this drawback of CCOAS.
An interesting future exercise is to generalize CAS and CB83&lossy channel models (see, for example, the
model used in[13]).

7 Conclusions

We have proposed low-cost algorithms for atomic shared mgeraulation in asynchronous message-passing
systems. We also contribute to this body of work throughriags definitions and analysis of (worst-case) com-
munication and storage costs. We show that our algorithres Hasirable properties in terms of the amount
of communication and storage costs. There are severahralélow up research directions in this topic. An
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interesting question is whether the storage cost can beeddinrough a more sophisticated coding strategy,
for instance, using the code constructiond of [32]. We rwde when erasure coding is used for shared memory
emulation, the communication and storage costs of varilggsitnms seem to depend on the number of parallel
operations in the system. For instance, in all the erasudimgebased algorithms, servers store coded elements
corresponding to multiple versions at the servers. Silgjlart ORCAS-B and HGR, servers send coded ele-
ments corresponding to multiple versions to the reader. tArabquestion is whether there exist fundamental
lower bounds that capture this behavior, or whether theist algorithms that can achieve low communication
and storage costs whido not growwith the extent of parallelism in the system. Among the remimg ques-
tions, we emphasize the need for generalizing of CAS and GA&Gossy channels, and to dynamic settings
possibly through modifications of RAMBQ [1L7].
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A Descriptions of the ABD and LDR Algorithms

As baselines for our work we use the MWMR versions of the ABEd &DR algorithms [[7], 14]. Here, we
describe the ABD and LDR algorithms, and evaluate their campation and storage costs. We present the
ABD and LDR algorithms in Fig.[14 and Figl] 5 respectively. Thests of these algorithms are stated in
Theorem§ Al and Al2.

write (value)
get: Send query request to all servers, avwaily) responses from a majority of server nodes. Select the lataygdet its integer
component be. Form a new tag as(z + 1, ‘id’), where id’ is the identifier of the client performing the operation.

put: Send the paift, value) to all servers, await acknowledgment from a majority of senodes, and then terminate.

read
get: Send query request to all servers, awaity, value) responses from a majority. Select a tuple with the largestsay(t, v).

put: Send(t, v) to all servers, await acknowledgment from a majority, arehtterminate by returning the value

server
state variable:A variable which contains an elementpfx V
initial state: Store the defaulftag, value) pair (to, vo).

On receipt ofget message from a read: Respond with the locally availélale, value) pair.
On receipt ofget message from a write: Respond with the locally available

On receipt ofput message: If the tag of the message is higher than the loocadiiable tag, store thétag, value) pair of the
message at the server. In any case, send an acknowledgment.

Figure 4: Write, read, and server protocols of the ABD aldyoni.

Theorem A.1. The write and read communication costs of ABD are respdgtigqual to NV log |V| and
2N log |V| bits. The storage cost is equal 10 log, |V| bits.

The LDR algorithm divides its servers intbrectory serverdhat store metadata, ameplica serverghat
store object values. The write protocol of LDR involves teading of object values tf + 1 replica servers.
The read protocol is less taxing since in the worst-casaydives retrieving the data object values frgm- 1
replica servers. We state the communication costs of LDR (fiexformal proof, see AppendixIA.)

Theorem A.2. In LDR, the write communication cost (8f + 1) log, [V| bits, and the read communication
costis(f + 1) log, | V| bits.

In the LDR algorithm, each replica server stores every wvarsif the data object it receitds Therefore,
the (worst-case) storage cost of the LDR algorithm is unbedn
Communication and Storage costs of ABD and LDR algorithms.
Proof of Theoreni_Al1We first present arguments that upper bound the communicatid storage cost for
every execution of the ABD algorithm. The ABD algorithm peated here is fitted to our model. Specifically
in [[7,[22] there is no clear cut separation between clientissenvers. However, this separation does not change
the costs of the algorithm. Then we present worst-case @gasuthat incur the costs as stated in the theorem.
Upper bounds:First consider the write protocol. It has two phasgstandput The get phase of a write
involves transfer of a tag, but not of actual data, and tloeecias negligible communication cost. In fnat
phase of a write, the client sends a value from thé/sgt)’ to every server node; the total communication cost
of this phase is at mosY log, |V| bits. Therefore the total write communication cost is atdsog, |V| bits.
In the get phase of the read protocol, the message from the client teetheers contains only metadata, and
therefore has negligible communication cost. Howeverhis phase, each of thi¥ servers could respond to

XiThis is unlike ABD where the servers store only the latessioerof the data object received.
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write (value)
get-metadataSend query request to directory servers, and afaif, location) responses from a majority of directory servers.
Select the largest tag; let its integer component.béorm a new tag as(z + 1, ‘id’), where id’ represents the identifier of the
client performing the operation.

put: Send(¢, value) to 2f + 1 replica servers, await acknowledgment frgm+ 1. Record identifiers of the first + 1 replica
servers that respond, call this set of identifi§rs

put-metadataSend(¢, S) to all directory servers, await acknowledgment from a mgjoand then terminate.

read
get-metadataSend query request to directory servers, and await, {ocation) responses from a majority of directory servers.
Choose atfag, location) pair with the largest tag, let this pair ifg S).

put-metadataSend(¢, S) to all directory servers, await acknowledgment from a migjor

get: Sendget objectrequest to anyf + 1 replica servers recorded i for tagt. Await a single response and terminate by
returning a value.

replica server
state variable:A variable that is subset f x V

initial state: Store the defaulftag, value) pair (to, vo).

On receipt ofput message: Add th&ag, value) pair in the message to the set of locally available pairs d$enacknowledg-
ment.

On receipt ofget message: If the value associated with the requested taglie iset of pairs stored locally, respond with th
value. Otherwise ignore.

[}

directory server
state variable:A variable that is an element 6F x 2% where2” is the set of all subsets ®.

initial state: Store(to, R), whereR is the set of all replica servers.
On receipt ofget-metadatanessage: Send tiiéag, S) be the pair stored locally.

On receipt ofput-metadatanessage: Lett, S) be the incoming message. At the point of reception of the agesdet(tag, S1)
be the pair stored locally at the servert I§ equal to theag stored locally, then storg, S U S1) locally. If ¢ is bigger thartag
and if|S| > f + 1, then storgt, S) locally. Send an acknowledgment.

Figure 5: Write, read, and server protocols of the LDR atgani

the client with a message froffh x V; therefore the total communication cost of the messagedvied in the
getphase is upper bounded B¥log, |V| bits. In theput phase of the read protocol, the read sends an element
of 7 x V to N servers. Therefore, this phase incurs a communicationoastmostN log, |V| bits. The total
communication cost of a read is therefore upper boundetl\bivg, | V| bits.

The storage cost of ABD is no bigger thahlog, |V| bits because each server stores at most one value -
the latest value it receives.

Worst-case executiongnformally speaking, due to asynchrony and the possibdityailures, clients always
send requests to all servers and in the worst case, all samgpond. Therefore the upper bounds described
above are tight.

For the write protocol, the client sends the value ta\ahodes in itgut phase. So the write communication
cost in an execution where at least one write terminatéélisz, |V| bits. For the read protocol, consider the
following execution, where there is one read operation, @mel write operation that is concurrent with this
read. We will assume that none of thé servers fail in this execution. Suppose that the writer deisp its
get phase, and commits to a tag\Note thatt is the highest tag in the system at this point. Suppose thahgm
the N messages that the writer sends in its put phase with the ealdd¢agt, Now the writer begins its put
phase where it send§ messages with the value and tagAt least one of these messages, say the message
to serverl, arrives.the remaining messages are delayed, i.e., tbegsaumed to reach after the portion of the
execution segment described here. At this point, the reathtipn begins and receivéiaig, value) pairs from
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all the N server nodes in its get phase. Of thééanessages, at least one message contains theatad)the
corresponding value. Note thais the highest tag it receives. Therefore, the put phasecafethd has to sends
N messages with the tagand the corresponding value - one message to each dVtkervers that which
responded to the read in the get phase with an older tag.

The read protocol has two phases. The cost of a read operatam execution is the sum of the com-
munication costs of the messages sent igésphase and those sent in figt phase. Thegetphase involves
communication ofV messages frorfi’ x V), one message from each server to the client, and therefouesin
a communication cost oV log, |V| bits provided that every server is active. Ting phase involves the com-
munication of a message i x V from the client to every server thereby incurring a commaition cost of
N log, | V| bits as well. Therefore, in any execution wherelélservers are active, the communication cost of
a read operation i8N log, | V| bits and therefore the upper bound is tight.

The storage cost is equal ¥ log, |V/| bits since each of th& servers store exactly one value fram O
Proof of Theorerh Al 2.

Upper boundsin LDR servers are divided into two groupdirectory servers used to manage object metadata,
andreplication servers used for object replication. Read and write prd¢olcave three sequentially executed
phases. Thget-metadatandput-metadatgphases incur negligible communication cost since only data

is sent over the message-passing system. Iptiiehase, the writer sends its messages, each of which is an
element from7 x V, to 2f + 1 replica servers and awaifs+ 1 responses; since the responses have negligible
communication cost, this phase incurs a total communieat@st of at most2f + 1) log, |V| bits. The read
protocol is less taxing, where the reader duringgbegphase querieg + 1 replica servers and in the worst case,
all respond with a message containing an element ffom)’ thereby incurring a total communication cost of
at most(f + 1) log, |V| bits.

Worst-case executiondt is clear that in every execution where at least one wrégeminates, the writer sends
out (2f + 1) messages to replica servers that contain the value, thugimg a write communication cost of
(2f + 1)log, |V bits. Similarly, for a read, in certain executions, @l+ 1) replica servers that are selected
in the put phaseof the read respond to tlgetrequest from the client. So the upper bounds derived ab@ve ar
tight. O

B Discussion on Erasure Codes

For an(N, k) code, the ratio%f - also known as theedundancy factoof the code - represents the storage
cost overhead in the classical erasure coding model. Mtetfature in coding theory involves the design of
(N, k) codes for which the redundancy fa¢tircan be made as small as possible. In the classical erasure
coding model, the extent to which the redundancy factor earetluced depends g+ the maximum number
of server failures that are to be tolerated. In particular /&, ) MDS code, when employed to store the value
of the data object, tolerat€$ — k server node failures; this is because the definition of an M&& implies
that the data can be recovered from angurviving nodes. Thus, for aiV-server system that uses an MDS
code, we must have < N — f, meaning that the redundancy factor is at Iejg%%. It is well known [28]
that, givenN and f, the parametek cannot be made larger thav — f so that the redundancy factor is lower
bounded byNL_f for anycode even if itis not an MDS code; In fact, an MDS code can edeintly be defined
as one which attains this lower bound on the redundancyrfdcteoding theory, this lower bound is known as
the Singleton bound [28]. Given parametéésk, the question of whether gV, k) MDS code exists depends
on the alphabet of codd’. We next discuss some of the relevant assumptions that wadi¢itty) make in this
paper to enable the use of &N, k) MDS code in our algorithms.

Xii | jterature in coding theory literature often studies the % of a code, which is the reciprocal of the redundancy facter, the
rate of an(V, k) code is%. In this paper, we use the redundancy factor in our discussomte it enables a somewhat more intuitive
connection with the costs of our algorithms in Theorémd A2, [£.T0[5.11.
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Assumption on|V| due to Erasure Coding

Recall that, in our model, each valueof a data object belongs to a finite 3ét In our system, for the use of

coding, we assume that = W* for some finite se¥V and that® : W* — W is an MDS code. Here we

refine these assumptions using classical results fromrerasding theory. In particular, the following result is
useful.

Theorem B.1. Consider a finite setV such thai)V| > N. Then, for any integek < N, there exists afV, k)
MDS coded : WF — W,

One proof for the above in coding theory literature is cangive. Specifically, it is well known that when
[W| > N, then® can be constructed using the Reed-Solomon code constrf2iii® 7, 28]. The above theorem
implies that, to employ a Reed-Solomon code over our systenshall need the following two assumptions:

e kdivideslog, |V|, and
e logy |V|/k > logy N.

Thus all our results are applicable under the above assonspti
In fact, the first assumption above can be replaced by a éiffterssumption with only a negligible effect on
the communication and storage costs. Specificallygif |V| were not a multiple of: then, one could pad the

value With([%mlk — log, M) “dummy” bits, all set to 0, to ensure that the (padded) oljasta size that

is multiple ofk; note that this padding is an overhead. The size of the paolojedt would be{lo%‘v‘} k bits and

the size of each coded element would[ 582111 bits. If we assume thabg, [V| > k then, [ V)] ~ o]V
meaning that the padding overhead can be neglected. Cargggthe first assumption can be replaced by the
assumption thdbg, |V| > k with only a negligible effect on the communication and steraosts.

C Proof of Lemmal4.1

Proof of propertyi): By the definition, eacl) € Q has cardinality at IeasﬁtNT“ﬂ. Therefore, foQ1, Q2 € Q,
we have

Q1NQ2| = Q1]+ Q2] —[Q1U Q2]

N +k
> 2[7-‘ — Q1 U Q2]
(@)
> Q[NTM“ —N >k,

where we have used the fact th@y U Q2| < N in (a).

Proof of propertyif): Let 5 be the set of all the server nodes that fail in an executioere/l3| < f. We need to
show that there exists at least one quoruntset Q such that) C A — B, that is, at least one quorum survives.
To show this, because of the definition of our quorum systesuffices to show that\ — B| > [YFET. we

show this as follows:

b _
N-B > N—f(z)N—{N ""J - [NT“ﬂ

~ ‘

where, (b) follows becausé < N — 2f implies thatf < [25%].
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