
ar
X

iv
:1

40
7.

32
86

v1
 [

cs
.D

C
]

 1
1

Ju
l 2

01
4

Solvability-Based Comparison of Failure Detectors

Srikanth Sastry Josef Widder
Google, Inc. TU Wien

Abstract

Failure detectors are oracles that have been introduced to provide processes in asyn-
chronous systems with information about faults. This information can then be used
to solve problems otherwise unsolvable in asynchronous systems. A natural question is
on the “minimum amount of information” a failure detector has to provide for a given
problem. This question is classically addressed using a relation that states that a failure
detector D is stronger (that is, provides “more, or better, information”) than a failure
detector D′ if D can be used to implement D′. It has recently been shown that this clas-
sic implementability relation has some drawbacks. To overcome this, different relations
have been defined, one of which states that a failure detector D is stronger than D′ if
D can solve all the time-free problems solvable by D′. In this paper we compare the
implementability-based hierarchy of failure detectors to the hierarchy based on solvabil-
ity. This is done by introducing a new proof technique for establishing the solvability
relation. We apply this technique to known failure detectors from the literature and
demonstrate significant differences between the hierarchies.

1 Introduction

Failure detectors [CT96] provide an oracular mechanism to circumvent the impossibility of
several problems in fault-prone asynchronous systems [FLP85, FR03]. Intuitively, the idea
is to enrich asynchronous systems with information about failures that may be useful to
overcome the difficulties posed by process crashes. Chandra and Toueg [CT96] and Chandra,
Hadzilacos, and Toueg [CHT96] demonstrated landmark results relating to failure detectors:
the results in [CT96] demonstrated the use of failure detectors to solve consensus and other
related problems, while the results in [CHT96] showed that any failure detector that can be
used to solve consensus can also be used to implement a failure detector called Ω. Since Ω
is also sufficient to solve consensus, it is the weakest failure detector to solve consensus. To
arrive at these important results, [CT96] and [CHT96] introduced a relation to compare
the “power” of failure detectors: denoted by D �CT D′, a failure detector D to said to be
stronger than D′, if D can be used to implement D′.

Since [CHT96], the relation �CT has been used to prove similar results for several other
problems and has motivated the view that failure detectors could be used as “computability
benchmark” [FGK11]; that is, an answer to the question on the weakest failure detector
to solve a problem P is said to provide the minimal synchrony assumptions necessary
to solve P in fault-prone systems [CHT96, FGK11]. This viewpoint is based on several
implicit assumptions, one of which is that the hierarchy of failure detectors induced by the
relation �CT is similar to hierarchies induced by other natural relations, in other words,
that it is robust.

In the work presented here, we focus on this assumption and explore the nature of
relations that compare failure detectors. Incidentally, the robustness of the �CT relation

1

http://arxiv.org/abs/1407.3286v1

has been challenged in recent work [JT08, CBHW10, CLS12, CLS13], where it was observed
that the relation has several drawbacks; for instance, �CT is not reflexive. To overcome the
drawbacks of the �CT relation, new relations have been proposed in [JT08] and [CBHW10].

Jayanti and Toueg introduced a new relation in [JT08], which we denote �JT , with a
different notion of what it means to implement a failure detector. The new relation �JT

extends �CT and avoids several drawbacks of the �CT relation1. Based on the �JT

relation, Jayanti and Toueg then demonstrate that every problem has a weakest failure
detector. The results in [JT08] actually holds true for a specific class of problems, and
in fact, later work by Bhatt and Jayanti [BJ09] shows that there exist a different class of
problems that do not have a weakest failure detector. The apparent contradiction2 between
[JT08] and [BJ09] regarding the existence of weakest failure detectors demonstrates the
significant dependence of weakest failure detector results on the definition of a “problem”
and choice of the failure detector comparison relation.

In [CBHW10], Charron-Bost et al. advocate a new comparison relation denoted by �s.
By definition, D �s D′ if every (time-free) problem solvable by D′ is also solvable by D.
In contrast to the �CT and �JT relations, which are based on implementing one failure
detector using another, the �s relation depends on the set of problems solvable by each
failure detector. If D �CT D′, or D �JT D′, then any problem solvable with D′ can be solved
using D. Consequently, it is straightforward that �s extends �CT and �JT . However,
given two failure detectors D and D′, [CBHW10] provides no mechanism for demonstrating
D �s D′ without having to establish D �CT D′ or D �JT D′. In effect, it is not clear how
the �s relation differs from the �CT and �JT relations.

Summary of results. In this paper, we address the aforementioned issues by providing
a new proof technique to establish the �s relation. Our approach is based on algorithm
transformations, and to our knowledge, we are first to do so in the context of failure detector
comparison. Although, from a technical viewpoint, the proofs are similar to existing proofs
that establish �CT and �JT relations, the relationships resulting from our proof technique
differ significantly from existing relationships among some failure detectors.

In order to illustrate the difference between �CT and �s, we consider three families of
failure detectors: the perfect failure detector P [CT96], the Marabout failure detector M
[Gue01], and the Pk sequence [BJ09].3

The results in [Gue01] established that M 6�CT P and P 6�CT M. In contrast, we show
that M may be used to solve all the problems solvable using P, and furthermore, there are
problems that are solvable using M but not solvable using P. In other words, we show that
M �s P and P 6�s M.

The results in [BJ09] show that Pk �CT Pk+1 and Pk+1 6�CT Pk. In contrast, we show
that Pk and Pk+1 can be used to solve the same set of problems, that is, for any k, the
failure detectors Pk and Pk+1 are equivalent with respect to the �s relation.

The results in [Gue01] and [BJ09] employ the �CT relation4 to prove that certain failure
detectors cannot be the weakest ones to solve the given problem. In contrast, our results
show that these conclusions drawn in [Gue01] and [BJ09] do not hold if the failure detectors
are compared using the �s relation. Thus, different natural relations to compare failure
detectors lead to significantly different results.

1We provide detailed descriptions of the �CT and �JT relations in Section 4.
2There is no real contradiction here. The reconciliation between [JT08] and [BJ09] is explained in [BJ09].
3We describe these failure detectors in detail and give their definitions in Section 6.
4Using arguments similar to the ones presented in [Gue01] and [BJ09], one can easily show that M and P

are incomparable and Pk is strictly stronger than Pk+1 with respect to the �JT relation as well.

2

2 The failure detector model

We recall the basic definitions of the failure detector model [CT96]. Informally, it consists
of a set of crash-prone processes that are connected via reliable asynchronous links and
have access to a failure-detector oracle that provides information. In this paper, we only
consider failure detectors where this information has the form of a subset of the processes
in the system.

More formally, the system consists of a finite set of processes Π. We assume that each
process pi in Π has a link l(i,j) to every process pj in Π over which messages can be sent.
There is a discrete global time base T , and for simplicity we assume its range of values is
the natural numbers N.

Failures and failure patterns. A failure pattern is a function F : T → 2Π. This means
that if pi ∈ F (t) then pi has failed by time t. We consider crash faults only, and so
F (t) ⊆ F (t+ 1), for all times t. We say that pi is live at time t if pi 6∈ F (t), and define the
set of live processes at time t as live(F, t) = Π \ F (t). A process pi is correct in F if pi is
always live, that is, pi ∈ correct(F) =

⋂
t∈T live(F, t). We say processes that are not correct

are faulty—or crashed—and we abbreviate faulty(F) = Π \ correct(F). An environment E
is defined as a non-empty set of failure patterns. In this paper, we consider the environment
that consists of all failure patterns for Π.

Failure detectors. A failure detector history H is a function H : Π × T → 2Π.5 If H
denotes the set of all possible histories, then a failure detector is a function D : E → 2H \ ∅.

States and configurations. Each process is modeled as a (possibly infinite) state ma-
chine Ai over the set of states Qi for each process pi ∈ Π. An algorithm A is a collection of
all such state machines (Ai)pi∈Π. There exists a non-empty set of states Q̂i ⊆ Qi that are
the initial states of pi.

Each communication link l(i,j) is also represented by a set of states, and the state of
each link l(i,j), denoted s(i,j) is the set of messages in transit from pi to pj. The state of a
link with no messages in transit is said to be the initial state of the link.

The configuration of a system is a vector C = (s0, . . . , sn−1, s(0,0), s(0,1), . . . , s(n−1,n−1))
where si is the state of pi and s(i,j) is the state of the link l(i,j). Then a configuration in
which all the processes and links are in initial states is called an initial configuration. The
set of all configurations of a system is denoted C and the set of all initial configurations is
denoted I. The notation C|i denotes the state of pi in configuration C, and C|Π denotes
the vector of states of the processes in Π in configuration C. Similarly, the notation C|(i,j)
denotes the state of the link l(i,j) in configuration C.

Steps. Each transition of the state machine Ai—or step of the process pi—takes as input
the current state s of the process, zero or one message mr (the “received” message), and an
output d from the failure detector; it produces as output a new state s′ for the process and
may send a message ms to another process pk via the corresponding communication link
(the “sent” message). Incidentally, the receipt of a message by a process pi from pj removes
the message from the link l(j,i) and the sending of a message by pi to pk adds the message
to the link l(i,k); this step can then be identified by the tuple (pi, s,m, d, s′,m′), where m

5The failure detectors considered in this paper always output a set of processes. So we do not need the
more general original definition [CT96] here.

3

is ⊥ if no message is received and (pj ,mr) otherwise, and similarly, m′ is ⊥ if no message
is sent and (pk,ms) otherwise.

Schedules. A schedule Φ of an algorithm A is a sequence of steps taken by processes
executing A; the ℓth step of Φ is denoted Φ[ℓ]. A projection of a schedule Φ over a process pi
is the subsequence of Φ consisting of only the steps executed by pi and is denoted Φ|i.

Time-Sequences. A time-sequence T is a sequence of increasing values in T ; the ℓth
element in T is denoted T [ℓ] (which represents the time at which the step Φ[ℓ] occurs).
Again, we define a projection of a time-sequence T over a process pi as a subsequence of T
consisting of only the times at which pi executes steps and is denoted T |i.

Runs. A run R of an algorithm A using a failure detector D is a tuple 〈F,H, I,Φ, T 〉,
where F is a failure pattern, H ∈ D(F) is a failure detector history, I ∈ I is an initial
configuration of A, Φ is a schedule of A, and T is a time-sequence. Run R is valid for A—
or just valid for short— if correct processes take an infinite number of steps and if for each
ℓ ≥ 1, the step Φ[ℓ] ≡ (pi, s,m, d, s′,m′) satisfies the following properties.

• The process pi is live at time T [ℓ]; that is, pi /∈ F (T [ℓ]).

• d is an output of the failure detector D at time T [ℓ]; formally, d = H(pi, T [ℓ]).

• There are no spurious messages, that is, if m is of the form (pj ,mr), then there exists
some k < ℓ such that mr is a message that was sent by pj to pi in step Φ[k] identified
by (pj, ∗, ∗, ∗, ∗, (pi ,mr)).

• Message transmission is reliable, that is, if m′ is of the form (pj,ms), then there is at
most one k > ℓ such that step Φ[k] is of the form (pj, ∗, (pi,ms), ∗, ∗, ∗). Furthermore,
if pj is correct, then there is exactly one such step.

• If Φ[ℓ] is the first step of process in pi in run R, then s = I|i.

• The state of a process does not change between consecutive steps by that process;
that is, if pi takes another step, then the first step of pi after Φ[ℓ] is of the form
(pi, s

′, ∗, ∗, ∗, ∗).

Configuration sequences induced by runs. Given a run R = 〈F,H, I,Φ, T 〉, the
configuration of the system after k steps are taken is given by γ(I,Φ, k). The sequence
γ(I,Φ, 0), γ(I,Φ, 1), . . . is the configuration sequence of run R. The state of process pi
after pi takes k steps in the run is given by γi(I,Φ, k); if process pi crashes and takes only k
steps, then we use the convention that γi(I,Φ, ℓ) = γi(I,Φ, k) for ℓ ≥ k.

Note that if two runs share the same I and Φ (but differ, for instance, at the times steps
are taken), then they induce the same configuration sequence.

3 Solving problems

We now define the notion of a problem and what it means to solve a problem. Problems
traditionally depend on initial values (as in consensus [FLP85]) and transitions to certain
states depending on the initial values. So we have to define a problem by referring to problem
states. Problems also depend on the correctness of processes. For instance, faulty processes

4

are not required to make progress. In the failure-detector model, faults are modeled by
failure patterns, which define after what time faulty processes must not take steps. However,
before that, processes need not take steps. As we want to get rid of all time dependencies
in the problem definition, it is hence natural to restrict problems by the set of processes
that appear in the failure pattern rather than restricting the problems by the times at
which processes appear in the failure pattern. This is done in the crash time independence
property described later.

Moreover, as we define problems to be solvable in asynchronous systems, we have to
consider the nature of runs in such systems. Since message delays and process speeds are
unconstrained in asynchronous systems, processes may take finitely many idempotent or
no-op steps while waiting for a message, or while waiting on some local predicate to become
true. To reflect this, we require that problems are tolerant to finite stuttering which is
described after the following preliminary definitions.

We start by defining σ as a set of problem states. By σ̂ we denote the set of initial
problem states, with σ̂ ⊆ σ. A problem configuration Σ for a system of size n is an n-
dimensional vector of problem states. We denote by Σ|i, the problem state associated with
process pi in the problem configuration Σ. A problem configuration consisting only of initial
problem states is called an initial problem configuration Σ̂. We denote Σ⋆ to be the set of
all possible problem configurations, and we denote Σ̂⋆ to be the set of all possible initial
problem configurations; note that Σ̂⋆ ⊆ Σ⋆. We denote W (Σ̂⋆,Σ⋆) to be the set of all
sequences of problem configurations that start with an initial problem configuration.

Further, let wpre be a finite problem configuration sequence starting with an initial
problem configuration, let wsuff be a problem configuration sequence, and let Σ and Σ′ be
two problem configurations. Let Σmid be any problem configuration such that for each
process pi, either Σmid|i = Σ|i or Σmid|i = Σ′|i. Then, for any problem configuration
sequence w = wpre · Σ · Σ′ · wsuff, the sequence w′ = wpre · Σ · Σmid · Σ

′ · wsuff is a 1-stutter
of w denoted by w ⊏1 w

′. Inductively for each n > 1, we define w′ to be an n-stutter of w,
denoted by w ⊏n w′, if there is a sequence v such that w ⊏n−1 v ∧ v ⊏1 w′. Further,
we define w′ to be a stutter of w, denoted by w ⊑ w′, if either w = w′ or there is an n,
0 < n < ∞, such that w ⊏n w′.

Problems. Briefly, a problem is a predicate over a problem configuration sequence that
starts with an initial problem configuration, and a fault pattern. More precisely, a time-
free problem P over W (Σ̂⋆,Σ⋆) in fault environment E —or just problem for short— is a
predicate P on W (Σ̂⋆,Σ⋆)× E with the following properties:

• Crash time independence. For all failure patterns F and F ′ in E and for all w
in W (Σ̂⋆,Σ⋆), correct(F) = correct(F ′) implies P (w,F) = P (w,F ′).

• Finite stuttering. For any failure pattern F , and any two problem configuration
sequences w and w′ in W (Σ̂⋆,Σ⋆), w ⊑ w′ implies P (w,F) = P (w′, F).

Solving a problem Let A be an algorithm, and let a problem P be defined for W (Σ̂⋆,Σ⋆)
and E . Let an interpretation Vi be a function that maps the states Qi of A to σ (the prob-
lem states that constitute W (Σ̂⋆,Σ⋆)), such that the initial states of the algorithm Q̂i

are mapped onto σ̂ (surjective). This naturally extends to a function VΠ that maps con-
figurations C|Π to problem configurations. An interpreted run is a sequence of prob-
lem configurations obtained by applying VΠ to the configuration sequence of a valid run
R = 〈F,H, I,Φ, T 〉 of A; it is denoted by ir(R,VΠ). Further, the set of all interpreted runs of
algorithm A using D with failure pattern F interpreted by VΠ is denoted by IR(A,F,D, VΠ).

5

Algorithm A solves a problem P using failure detector D in environment E , if there is
a function VΠ such that for all F in E and any w ∈ IR(A,F,D, VΠ), the predicate P (w,F)
holds. If there is an algorithm that solves problem P using failure detector D we say that
failure detector D can be used to solve P , or in other words P is solvable using D.

The definition of a problem encompasses many common problems in distributed com-
puting, including classic agreement problems. The set of problem states of consensus, for
instance, can be defined as σ = {(p, d) : p ∈ {0, 1} ∧ d ∈ {⊥, 0, 1}}. A problem state (p, d)
at process pi signifies a state where a process pi has p as its proposed initial value, and d
is its decision; if pi has not yet decided, then d = ⊥, and otherwise d is pi’s final decision.
The set of initial problem configurations Σ̂⋆ is the set of all n-element vectors where each
i-th element is a problem state of pi and is of the form (p,⊥) ∈ σ. One can then natu-
rally define the consensus properties agreement, termination, and validity as predicates on
problem configuration sequences, and consensus as the conjunction of these predicates.

4 Comparison relations

Chandra-Toueg relation. We recall from [CT96, CHT96] that D �CT D′ is defined
via failure detector transformation as follows. An algorithm TD→D′ uses D to maintain a
variable outi at every process pi. This variable emulates the output of D′ at pi. Let OR be
the history of all the outi variables in run R, that is, OR(pi, t) is the value of outi at time t
in run R. Algorithm TD→D′ transforms D into D′ if for every valid run R = 〈F,H, I,Φ, T 〉
of TD→D′ using D, OR ∈ D′(F). If such an algorithm A exists, then D �CT D′.

Jayanti-Toueg relation. The relation �JT , introduced in [JT08], differs from �CT in
that the notion of what it means to transform a failure detector is different from the one
used in [CT96]; partly by changing the computational model. Instead of using the failure
detector value at the time the step occurs, the “query mechanism” is modeled via a query
to the failure detector at time t and a response from the failure detector at some time
t′ > t. Specifically, an algorithm TD→D′ uses D and transforms D to D′ if and only if,
for every valid run of TD→D′, there exists a history H of D′ under the failure pattern of
the run such that the following is true. For each process pi, and for each query by pi to
TD→D′ which happens at some time t, TD→D′ responds with an output out at some time
t′ ≥ t, and out ∈ {H(pi, s) : s ∈ [t, t′]}. Hence, the definition of transformation does not
require maintaining a variable outi but rather requires ensuring consistency of the query
and response events.

Solvability relation. The relation �s, introduced in [CBHW10], states that a failure
detector D is stronger than D′ with respect to the solvability relation, denoted D �s D′,
if D can be used to solve any problem solvable using D′.

The definitions of �CT and �JT provide a straightforward proof technique to demon-
strate the claims D �CT D′ and D �JT D′. In order to prove D �CT D′ or D �JT D′ one
has to provide an algorithm TD→D′ that has the properties described above.

If D �CT D′ then every problem solvable with D′ is solvable with D [CT96, CHT96]
and thus �s extends �CT . Similarly, one sees that �s extends �JT as well. However, if
D 6�CT D′, no proof technique has been given so far to establish D �s D′.

6

5 New technique for proving the solvability relation

Our approach is based on the following idea. If a problem P is solvable using D′, then
there exists an algorithm A that uses D′ and solves P . If we can transform A to another
algorithm Ã such that Ã uses D and solves P , then we have shown that problem P is
also solvable using D. Furthermore, if we demonstrate the aforementioned result for every
problem solvable using D′, then we have shown that D �s D′.

More generally, the proof technique focuses on defining a transformation function F

whose domain is the set of all algorithms that use D′ and whose range is the set of algorithms
that use D such that if algorithm A uses D′ to solve P , then F(A) uses D and solves P .

In order to prove that the function F actually has this desired property, we consider
an arbitrary problem P solvable using D′. We do so by considering an algorithm A that
solves P using D′. By definition, such an algorithm must exist. Moreover, there is a
function VΠ which maps configurations of each valid run R of A using D′ to a sequence of
problem configurations that satisfy P . Using VΠ, we define a new function ṼΠ that maps
the configurations of F(A) to problem configurations. We then have to show that for any
interpreted run w ∈ IR(F(A), F,D, ṼΠ), the predicate P (w,F) holds.

6 Failure detectors under consideration

6.1 Definitions

In this section we define the three kinds of failure detectors that we are going to use in
this paper. The perfect failure detector P was originally proposed in [CT96]. Informally, P
eventually and permanently suspects crashed processes and never suspects live processes.
More precisely, P is defined to ensure strong completeness:

∀F ∈ E , ∀H ∈ P(F), ∀pj ∈ faulty(F), ∀pi ∈ correct(F), ∃t′ ∈ T , ∀t > t′ : pj ∈ H(pi, t),

and strong accuracy :

∀F ∈ E , ∀H ∈ P(F), ∀t ∈ T , ∀pi, pj ∈ live(F, t) : pj 6∈ H(pi, t).

The Marabout failure detector M was introduced in [Gue01]6, and it always outputs the
set of faulty processes. It is defined as:

∀F ∈ E , ∀H ∈ M(F), ∀t ∈ T , ∀pi ∈ live(F, t) : H(pi, t) = faulty(F).

The Pk failure detector was introduced in [BJ09] (using the notation “Dk” which we
find somewhat inconsistent with the rest of our notations). Informally, Pk can provide
arbitrary information about processes that crash before or at time k. For correct processes
and processes that crash after time k, Pk never suspects these processes before they crash,
and Pk eventually and permanently suspects these processes after they crash. Formally, Pk

satisfies the properties k-Completeness:

∀F ∈ E , ∀H ∈ Pk(F), ∀pi, pj ∈ Π, ∃t′ ∈ T , ∀t > t′ :

(pj ∈ live(F, k) ∧ pj ∈ faulty(F) ∧ pi ∈ correct(F)) ⇒ pj ∈ H(pi, t),

6Although the definition printed in [Gue01] is slightly different (only failure detector outputs of correct
processes instead of live processes are restricted), we claim that actually the definition given here is used in
the proof sketches in [Gue01]. Otherwise, for instance, the proof sketch of [Gue01, Proposition 3.3] would
fail; one could easily construct a case where a process that is going to crash in the future decides differently
from a correct process.

7

and k-Accuracy:

∀F ∈ E , ∀H ∈ Pk(F), ∀pi, pj ∈ Π, ∀t ∈ T : (pj ∈ live(F, k) ∧ pj /∈ F (t)) ⇒ pj /∈ H(pi, t).

6.2 Comparing M and P.

In [Gue01] it was shown that P andM are not comparable with respect to �CT . Informally,
the arguments for the result are as follows. No algorithm can tell by message exchange or
from looking at the output of P at a certain time which processes will eventually crash
(in the future), therefore P 6�CT M. For showing M 6�CT P, note that faulty processes
should not be put into the set of suspected processes too early by P, as this would violate
strong accuracy. However, by strong completeness of P, crashed processes have to be
added to the set eventually. The outputs of M do not allow us to reconcile these two
requirements. Hence, no algorithm that queries M can implement P; in other words,
M 6�CT P. Similar arguments also apply to the �JT relation, and it can be shown that
M and P are incomparable with respect to the �JT relation as well.

In this paper, we show for the solvability relation, that P 6�s M and M �s P. Demon-
strating P 6�s M is straightforward. It is sufficient to give a problem solvable using M and
not solvable using P. Consider the following variant of consensus, called strong consensus,
which requires that all the correct processes have to output the input value of some unique
correct process in the system, if there is a correct process, and otherwise output anything.

Solving this problem using M is straightforward. Each process sends its input to all
the processes and waits for inputs from the set of processes not suspected by M. Since
the processes not suspected by M are the correct processes, if each process decides on the
input of the correct process with the smallest ID, the problem is solved. However, as P
does not provide information on process crashes in the future, we can show that there is no
algorithm that solves strong consensus using P. So we conclude that P 6�s M.

In order to establish thatM is strictly stronger than P, it remains to show thatM �s P.
We shall do so in Section 7 in which we introduce a general transformation Stall-on-Suspect
that transforms any algorithm A using P into an algorithm Ã using M. Intuitively, Stall-
on-Suspect ensures that faulty processes do not participate in the algorithm. Given an
algorithm A, each process first queries M to determine whether it is correct or faulty. If
a process pi queries M and discovers that it is faulty, then pi stops participating in the
algorithm by performing only no-op steps and sends no messages until it crashes. Otherwise,
process pi follows the original algorithm A faithfully. We show in Section 7 that each
valid run of the modified algorithm using M is indistinguishable from some valid run of
the original algorithm using P where faulty processes crash initially, at time 0. Since, by
assumption, the original algorithm solves the problem using P, the same problem is solvable
by M as well. Thus, we show that every problem solvable by P is also solvable by M.

6.3 Comparing Pk failure detectors

In [BJ09], the series of Pk failure detectors were proposed to solve FCFS mutual exclusion.
Note that various values of k instantiate different failure detectors, and it was shown in
[BJ09] for all k ≥ 0 that Pk �CT Pk+1 and Pk+1 6�

CT Pk. The proof of the former is based
on the observation that the trivial transformation (namely, at each step, write the current
failure detector output into outi) is sufficient to implement Pk+1 using Pk; intuitively,
correctness follows because the histories of Pk are a strict subset of the histories of Pk+1.

7

7This argument is in general not sufficient to prove �CT as shown in [CBHW10]. It works in this case,
as Pk belongs to the class of failure detectors called “time-free” in [CBHW10]; they allow finite stuttering.

8

The latter (Pk+1 6�CT Pk) is established by showing that no algorithm that queries
Pk+1 can reliably detect if some process has crashed at time k + 1, which is a necessary
requirement to implement Pk. Similar arguments show for all k ≥ 0 that (Pk �JT Pk+1)
and (Pk+1 6�

JT Pk)
In this paper, we show for all k ≥ 0 that (Pk �s Pk+1) ∧ (Pk+1 �

s Pk). Demonstrating
Pk �s Pk+1 is straightforward and it follows from the result Pk �CT Pk+1 from [BJ09] and
the observation that �s extends �CT [CT96].

Therefore, it remains to be shown that Pk+1 �s Pk. We do so in Section 8 using a
general transformation Delay-a-Step which just adds a no-op step at the beginning of each
execution for each algorithm. Given an algorithm A that solves some problem P using
failure detector Pk, in the delay-a-step transformation, each process pi first executes a
no-op step in which pi neither receives nor sends any message; thereafter, pi executes the
algorithm A but queries Pk+1 instead of Pk. We show in Section 8 that each valid run of the
modified algorithm using Pk+1 induces an interpreted run that is also an interpreted run
(with “shifted” failure pattern) of the original algorithm using Pk. Since, by assumption,
the original algorithm solves P using Pk, problem P is solvable by Pk+1 as well. Thus, we
show that every problem solvable by Pk is also solvable by Pk+1.

7 Every problem solvable using P is solvable using M

7.1 Algorithmic transformation: Stall-on-Suspect

Informally, the Stall-on-Suspect transformation (SoS) converts an algorithm A to an algo-
rithm Ã such that Ã at a process pi behaves exactly like A if the failure detector at pi does
not suspect itself initially. Otherwise, Ã goes into a special stall state in which it remains
for the remainder of the execution.

More precisely, the SoS transformation is defined by a function FSoS(A) that maps
an algorithm A = (Ai)∀pi∈Π that uses a failure detector that outputs a list of suspected

processes to a new algorithm Ã = (Ãi)∀pi∈Π. The new algorithm Ã is constructed as

follows. First, for each process pi, we add a new set of states S†
i to the states of Ai, such

that |S†
i | = |Q̂i|. The states in S†

i are not initial states in Ãi. We define a bijective function

stalli : Q̂i → S†
i that maps the initial states of process pi to states in S†

i .

The state transitions in Ãi differ only in the transitions from initial states: If a process pi
of Ãi is in state q ∈ Q̂i, and if the failure detector output of a step of pi contains pi, then pi
sends no message and goes into state stalli(q). Otherwise, pi’s step is the one specified

by Ai. If a process pi of Ãi is in s ∈ S†
i , then pi sends no message and remains in state s in

each step.

7.2 Solving P using FSoS(A)

Consider the algorithm Ã = FSoS(A). Let R̃ = 〈F,H, I, Φ̃, T̃ 〉 be an arbitrary valid run
of Ã using M. Let Φ and T be the schedule and time sequence obtained by removing the
entries corresponding to steps of processes in faulty(F) from Φ̃ and T̃ , respectively.

Proposition 7.1. If R̃ = 〈F,H, I, Φ̃, T̃ 〉 is a valid run of Ã using failure detector M, then
R = 〈F,H, I,Φ, T 〉 is a valid run of A using M where no faulty process takes a step.

Proof. To show this proposition, one has to check that the consistency requirements of a
valid run from Section 2 are met in R. Since the output of M at a faulty process always

9

suspects itself, in the first step of a faulty process in Ã, the process transitions to a state
in S† and never sends a message. Therefore, faulty processes do not send messages in run R̃
of Ã. Since correct processes never suspect themselves, they take the same steps in R and R̃
by construction. Consequently, R does not contain any steps in which a message from a
faulty process is received. Apart from this, the consistency of R follows from the consistency
of R̃.

Given a failure pattern F , let F 0 be the initial crash scenario, that is, the failure pattern
where F 0(0) = faulty(F) and for any t > 0, F 0(t) = F 0(0).

Proposition 7.2. If R = 〈F,H, I,Φ, T 〉 is a valid run of A using M where no faulty process
takes a step, then R0 = 〈F 0,H, I,Φ, T 〉 is a valid run of A using M.

Proof. We prove this proposition by showing that R0 satisfies the consistency conditions
of a valid run as specified in Section 2. Note that in R0 all faulty processes crash at
time 0; therefore, no faulty process takes a steps in R0. Since correct(F) = correct(F 0),
the history H is a valid history of M for fault pattern F 0. Since R and R0 share the same
schedule Φ and R is a valid run of A using M, remaining consistency conditions for R0

follows from the consistency of R.

From the definition of M and P one observes that in initial crash scenarios, the history
of M is in the set of allowed histories of P, and therefore we find:

Proposition 7.3. If R0 = 〈F 0,H, I,Φ, T 〉 is a valid run of A using M, then R0 is a valid
run of A using P.

From the three propositions above we infer

Theorem 7.4. For any valid run R̃ = 〈F,H, I, Φ̃, T̃ 〉 of Ã using M there is a valid run
R0 = 〈F 0,H, I,Φ, T 〉 of A using P.

Next, we argue that if algorithm A solves problem P using P, then Ã solves P using M.
Assuming that A solves P , there is an interpretation VΠ such that for all F in E and any
w ∈ IR(A,F,D, VΠ), the predicate P (w,F) holds. As any interpreted run of A using P
satisfies the problem, and since by Theorem 7.4 every valid run of Ã using M can be
mapped to a valid run of A using P, we have to show that the mapping from Φ̃ to Φ ensures
that Ã also solves the problem using M.

To this end, we obtain ṼΠ by defining for each process pi a new function Ṽi as a mapping
of each state of pi in Ã to a problem state: for states s ∈ S†

i we define Ṽi(s) = Vi(stall
−1
i (s)),

and for all other states s of pi we define Ṽi(s) = Vi(s).
As faulty(F) = faulty(F 0), we just speak of faulty (or correct) processes in the following,

as no confusion may occur.

Proposition 7.5. If R̃ = 〈F,H, I, Φ̃, T̃ 〉 is valid run of Ã using failure detector M and
if R0 = 〈F 0,H, I,Φ, T 〉 is a valid run of A using P, then for any correct process pi and for
any index ℓ ≥ 0:

Ṽi(γi(I, Φ̃, ℓ)) = Vi(γi(I,Φ, ℓ)).

Proof. Since, Φ is constructed from Φ̃ by deleting the no-op steps taken by faulty processes,
we know that each correct process pi follows the same sequence of states in Φ̃ and Φ. That
is, γi(I, Φ̃, ℓ) = γi(I,Φ, ℓ). Since pi is correct, pi is never suspected by both M and P.
Therefore, in R̃, pi is never in any state in S†. Hence, for each state s that pi is in R̃,
Ṽi(s) = Vi(s). In other words, Ṽi(γi(I, Φ̃, ℓ)) = Vi(γi(I,Φ, ℓ)).

10

Proposition 7.6. If R̃ = 〈F,H, I, Φ̃, T̃ 〉 is valid run of Ã using failure detector M and
if R0 = 〈F 0,H, I,Φ, T 〉 is a valid run of A using P, then for any faulty process pi and for
any index ℓ ≥ 0:

Ṽi(γi(I, Φ̃, ℓ)) = Vi(γi(I,Φ, ℓ)).

Proof. Since faulty processes do not take any steps in R0, we know that for each faulty
process pi, and each index ℓ ≥ 0 in run R0, γi(I,Φ, ℓ) = I|i.

In run R̃, we know from the construction of algorithm Ã that each faulty process pi,
initially, in state q̂i ∈ Q̂i, enters a state s†i ∈ S†

i in its first step where s†i = stall(q̂i), and
remains there until it crashes. Therefore, for each faulty process pi, and each index ℓ ≥ 0
in run R̃, γi(I,Φ, ℓ) ∈ {q̂i, s

†
i}.

From the definition of Ṽi, we know that Ṽi(q̂i) = Vi(q̂i), and Ṽi(s
†
i) = Vi(stall

−1
i (s)). As

s†i = stall(q̂i), we obtain Ṽi(s
†
i) = Vi(q̂i). Therefore, for each faulty process pi, and each

index ℓ ≥ 0 in run R̃, Ṽi(γi(I,Φ, ℓ)) = Vi(q̂i).
Since each process pi is in the same initial state in R̃ and R0, we have q̂i = I|i. Therefore,

Ṽi(γi(I,Φ, ℓ)) = Vi(q̂i) = Vi(γi(I,Φ, ℓ)).

Theorem 7.7. If A solves P using P then Ã = FSoS(A) solves P using M.

Proof. Since A solves P using P, we know that there exists a function VΠ such that for any
w ∈ IR(A,F,P, VΠ), the predicate P (w,F) is true.

Let Ã = FSoS(A), and let R̃ = 〈F,H, I, Φ̃, T̃ 〉 be an arbitrary valid run of Ã using M.
Let R0 = 〈F 0,H, I,Φ, T 〉 be a valid run of A using P where ∀t ∈ T : F 0(t) = faulty(F),
Φ and T are obtained by deleting the entries associated with faulty processes in Φ̃ and T̃ ,
respectively. From Propositions 7.1, 7.2 and 7.3, we know that R0 is a valid run of A using
P. Therefore, each w ∈ IR(A,F 0,P, VΠ) satisfies P (w,F 0).

Let ṼΠ be a function derived from VΠ as described earlier in this section. From Propo-
sitions 7.5 and 7.6, we conclude that for all processes pi and all indexes ℓ in runs R̃ and R0,
Ṽi(γi(I,Φ, ℓ)) = Vi(γi(I,Φ, ℓ)). Note that there is no re-ordering of steps of correct processes
between Φ and Φ̃; however, steps of faulty processes may be missing in R0. Thus, we infer
ir(R0, VΠ) ⊑ ir(R̃, VΠ). From the finite stuttering property of problems and Theorem 7.4,
we conclude that if A solves P using P then Ã = FSoS(A) solves P using M.

Corollary 7.8. M �s P and P 6�s M.

8 Equivalence among Pk failure detectors

8.1 Algorithmic transformation: Delay-a-Step

Informally, the Delay-a-Step transformation (DaS) converts an algorithm A to an algo-
rithm Ã such that in Ã each process pi first executes a single no-op step, and subsequently pi
behaves exactly like it does in A. We define a transformation function FDaS that maps an
algorithm A = (Ai)∀pi∈Π to a new algorithm Ã = (Ãi)∀pi∈Π. The new state space of Ã is
constructed as follows. For each process pi, we add a new set of states S⋆

i , which are the

initial states of Ãi, such that |S⋆
i | = |Q̂i|, to obtain the set of states for Ãi. This implies that

the states in Q̂i are not initial states of Ãi. We define a bijective function delayi : S
⋆
i → Q̂i.

The state transitions of Ã are the state transition of A and the following rules for initial
states S⋆

i : if a process pi is in state s ∈ S⋆
i when it takes a step, then pi neither receives nor

sends messages and goes into state delayi(s).

11

8.2 Showing Pk+1 is at least as strong as Pk

Let A be an algorithm that solves some problem P using a failure detector Pk, and let
Ã = FDaS(A). The remainder of this section shows that Ã solves P using the failure
detector Pk+1.

Let R̃ = 〈F̃ , H̃, Ĩ, Φ̃, T̃ 〉 be a valid run of Ã using Pk+1. In the following, we construct
(in several steps) a new initial configuration I, a new schedule Φ, a new time-sequence T , a
new failure pattern F , and a new history H such that the run R = 〈F,H, I,Φ, T 〉 is a valid
run of A using the failure detector Pk. We then show that if R is a valid run of A using Pk,
then Ã solves problem P using Pk+1.

First, we construct the initial configuration I as follows. For each process pi, I|i =
delayi(Ĩ |i).

Next, we construct the new schedule Φ and a new time-sequence T ′ as follows. For each
process pi ∈ Π, let no-op(i) denote the index of the first entry of the form (pi, ∗, ∗, ∗, ∗, ∗)
in Φ̃. The schedule Φ is obtained by deleting for each process pi the step Φ̃[no-op(i)] from Φ̃.
A time-sequence T ′ is obtained by deleting for each process pi the entry T̃ [no-op(i)] from T̃ .

Proposition 8.1. If R̃ = 〈F̃ , H̃, Ĩ, Φ̃, T̃ 〉 is a valid run of Ã using Pk+1 then R′ =
〈F̃ , H̃, I,Φ, T ′〉 is a valid run of A using Pk+1.

Proof. By construction, the first step of each process pi in Ã is of the form (pi, ∗,⊥, d, ∗,⊥),
and all the subsequent steps of pi are the same as in A. Since Φ̃ is a schedule of Ã, we see
that for each process pi, Φ̃[no-op(i)] is the first step of pi executing Ãi, and is therefore a
no-op step of the form (pi, ∗,⊥, d, ∗,⊥). Also, note that upon executing a no-op step from
state Ĩ|i, process pi transitions to state delayi(Ĩ|i) which, by construction, is equal to the
state I|i.

Hence, by deleting the Φ̃[no-op(i)] step for each process pi from Φ̃, we obtain a valid
schedule for A; that is, Φ is a valid schedule for a run of A. Similarly, by deleting the
times at which the Φ̃[no-op(i)] step occurred for each process pi from T̃ , we obtain a valid
time-sequence for A; that is, T ′ is a valid time-sequence for the schedule Φ in a run of A.
The proposition follows.

Then we define the new failure pattern F by F (t) = F̃ (t+1), for t ∈ T . Intuitively, each
faulty process crashes one time unit earlier in F than in F̃ . Similarly, the new history H is
defined by H(pi, t) = H̃(pi, t+ 1), for all pi ∈ Π and t ∈ T .

Proposition 8.2. If H̃ ∈ Pk+1(F̃) then H ∈ Pk(F).

Proof. Since H̃ ∈ Pk+1(F̃), it follows from k-Accuracy that

∀pi, pj ∈ Π, ∀t ∈ T : (pj /∈ F̃ (k + 1) ∧ pj ∈ H̃(pi, t+ 1)) ⇒ pj ∈ F̃ (t+ 1), (1)

and from k-Completeness

∀pi, pj ∈ Π, ∃t′ ∈ T , ∀t > t′ :

(pj /∈ F̃ (k + 1) ∧ pj /∈ correct(F̃) ∧ pi ∈ correct(F̃)) ⇒ pj ∈ H̃(pi, t). (2)

Since ∀t ∈ T : F (t) = F̃ (t+1), and ∀pi ∈ Π,∀t ∈ T : H(pi, t) = H̃(pi, t+1), substituting
these functions in Equations (1) and (2) we obtain

∀pi, pj ∈ Π, ∀t ∈ T : (pj /∈ F (k) ∧ pj ∈ H(pi, t)) ⇒ pj ∈ F (t), (3)

12

and since correct(F) = correct(F̃),

∀pi, pj ∈ Π, ∃t′ ∈ T , ∀t > t′ :

(pj /∈ F (k) ∧ pj /∈ correct(F) ∧ pi ∈ correct(F)) ⇒ pj ∈ H(pi, t). (4)

We observe that the failure detector whose histories are as described in Equations (3) and (4)
satisfies k-Accuracy and k-Completeness.

Because T ′ is obtained by removing the time of the first step of each process, it follows
that for any ℓ, T ′[ℓ] > 0. We may thus define the new time-sequence T as T [ℓ] = T ′[ℓ] − 1
with ℓ ∈ N.

Proposition 8.3. If R′ = 〈F̃ , H̃, I,Φ, T ′〉 is a valid run of A using Pk+1, then R =
〈F,H, I,Φ, T 〉 is a valid run of A using Pk.

Proof. From the construction of T , we know that in run R, each process pi takes the same
steps as in R′, but each step taken at time t in R′ is taken at time t − 1 in R. From the
construction of H, we see that the output of the failure detector queried in run R′ at a time t
is identical to the output of the failure detector queried in run R at time t− 1. Similarly,
in the failure pattern F , each process that crashes at time t in F̃ crashes at time t − 1
in F . Therefore, the run R is the run R′ after every step and the associated failure detector
output in R′ is moved earlier in time by 1 unit.

Also, recall that H ∈ Pk(F), from Proposition 8.2. Therefore, if R′ is a valid run of A
using failure detector Pk+1, then R is a valid run of A using Pk.

As A solves P using Pk, for each process pi there exists a function Vi that maps each
state of pi to a problem state. For each process pi we define a new function Ṽi as follows. For
each (initial) state s ∈ S⋆

i , Ṽi(s) = Vi(delayi(s)), and for each state s /∈ S⋆
i , Ṽi(s) = Vi(s).

Theorem 8.4. If A solves problem P using failure detector Pk, then Algorithm Ã solves
problem P using failure detector Pk+1.

Proof. Let R̃ = 〈F̃ , H̃, Ĩ, Φ̃, T̃ 〉 be a valid, run of Ã using Pk+1. Applying Propositions 8.1,
8.2, and 8.3, we see that from R̃ we can construct a unique run R = 〈F,H, I,Φ, T 〉 that is
a valid run of A using Pk.

Note that by assumption A solves problem P using failure detector Pk. Hence there
is an interpretation VΠ which ensures that P (ir(R,VΠ), F) holds. Since correct(F) =
correct(F̃), applying the crash time independence property from Section 3, we obtain that
P (ir(R,VΠ), F̃) is true.

Note that for each process pi, pi is never is a state si ∈ S⋆
i in run R, and for each state

s /∈ S⋆
i , Ṽi(s) = Vi(s). Therefore, ir(R,VΠ) = ir(R, ṼΠ).

Also, note that for each process pi, for each state s ∈ S⋆
i , Ṽi(s) = Vi(delayi(s)), and

delayi(s) ∈ Q̂i; therefore, Ṽi(delayi(s)) = Vi(delayi(s)). In effect, ir(R, ṼΠ) ⊑ ir(R̃, ṼΠ). So
we apply the finite stutter property from Section 3 and see that since P (ir(R,VΠ), F) is
true, P (ir(R̃, ṼΠ), F̃) is also true.

We thus have shown that for any interpreted run w ∈ IR(Ã, F̃ ,Pk+1, ṼΠ), the predicate
P (w, F̃) holds. In other words, Ã solves P using failure detector Pk+1.

Corollary 8.5. Pk �s Pk+1 and Pk+1 �
s Pk.

13

9 Conclusion

In this paper, we introduced a new proof technique that compares failure detectors and does
not depend on the ability of one failure detector to implement another. Instead, we propose
a novel approach which is based on algorithm transformation so that for every algorithm A
that solves some problem using failure detector D′ we derive a new algorithm Ã which solves
the same problem using D instead, and thus we show D �s D′, where �s is the solvability
relation introduced in [CBHW10].

We demonstrated the utility of the new proof technique by presenting two new results.
First, we showed that the P and M failure detectors, which are incomparable with respect
to the �CT and �JT relations, are strictly ordered with respect to the �s relation; M is
strictly stronger than P. Second, we showed that the Pk series of failure detectors (denoted
by Dk in [BJ09]), which were shown to be strictly ordered as Pk �CT Pk+1 for all k, are
equivalent to each other with respect to the �s relation.

Significance. The primary motivation for the introduction of the M failure detector in
[Gue01] was to show that P is not the weakest failure detector for certain problems such
as non-blocking atomic commitment or terminating reliable broadcast. This was done by
showing that M and P, despite being incomparable with respect to �CT , can be used to
solve the aforementioned problems under consideration. However, we have shown that M
and P can be strictly ordered with respect to �s. This shows that the reasoning used in
[Gue01] is limited only to the �CT relation.8

Similarly, the Pk sequence of failure detectors was introduced in [BJ09] in order to
demonstrate that FCFS mutual exclusion does not have a weakest failure detector. The
proof relies on the fact that for any k, Pk is strictly stronger than Pk+1 with respect to �CT

while every such Pk is sufficient to solve FCFS mutual exclusion. However, we have shown
that all the Pk failure detectors are equivalent with respect to �s and, therefore, these
failure detectors solve the same set of time-free problems.

The above two examples show that some results on weakest failure detectors based on
the �CT and �JT relation do not carry over to the �s relation. This, in conjunction
with the seemingly contradictory results regarding the (non)existence of weakest failure
detectors in [JT08] and [BJ09], leaves open the possibility that the use of failure detectors
as “computability benchmark” [FGK11] may not be appropriate until we have resolved the
question of the “right” comparison relation to order failure detectors.

Comparison to standard proofs. From a technical viewpoint, our new proof technique
is quite similar to proofs that establish the �CT relation. In both, one argues about an
algorithm using some failure detector. In �CT proofs, one usually gives an algorithm more
or less explicitly, while we give an algorithm Ã as function of another algorithm A. In �CT

proofs, one shows that the states the algorithm goes through are related to histories of the
implemented failure detector. In our �s proofs, we show that the states the algorithm goes
through are related to problem configuration sequences.

The differences in the comparison relations discussed above then come from the fact
that we relate to a schedule of algorithm A which is within the world of asynchronous runs,

8It was later shown in [Lar03] that failure detectors that are weaker with respect to �CT than both M

and P are sufficient to solve non-blocking atomic commitment and terminating reliable broadcast. However,
our motivation was not to find a weakest failure detector for a given problem, but rather to make explicit
that certain proofs are limited to the �CT relation.

14

while �CT proofs relate to a failure detector history, which is defined with respect to time,
and is hence outside the world of asynchronous runs.

Future Work. Our results are preliminary and provide multiple avenues for future work.
We present two such open questions. First, note that the proof technique introduced here
does not necessarily characterize the �s relation completely. That is, there might be other
proof techniques which establish the �s relation between two failure detectors in the cases
where our proposed technique does not lead to the required result. Thus, there is scope
for complete characterization of the �s relation. Second, since different comparison rela-
tions establish different relationships among various failure detectors, an obvious question
presents itself: is there a “right” comparison relation for failure detectors? If yes, which
one is it?

Acknowledgement. We would like to thank Jennifer Welch and Martin Hutle for their
comments, suggestions, and criticisms that greatly helped improve this article.

References

[BJ09] Vibhor Bhatt and Prasad Jayanti. On the existence of weakest failure detectors
for mutual exclusion and k-exclusion. In Proceedings of the 23rd International
Symposium on Distributed Computing, pages 311–325, 2009.

[CBHW10] Bernadette Charron-Bost, Martin Hutle, and Josef Widder. In search of lost
time. Information Processing Letters, 110(21), 2010.

[CHT96] Tushar Deepak Chandra, Vassos Hadzilacos, and Sam Toueg. The weakest
failure detector for solving consensus. Journal of the ACM, 43(4):685–722,
1996.

[CLS12] Alejandro Cornejo, Nancy Lynch, and Srikanth Sastry. Asynchronous failure
detectors. In Proceedings of the 2012 ACM symposium on Principles of Dis-
tributed Computing, pages 243–252, 2012.

[CLS13] Alejandro Cornejo, Nancy Lynch, and Srikanth Sastry. Asynchronous failure
detectors. Technical Report MIT-CSAIL-TR-2013-025, CSAIL, MIT, 2013.

[CT96] Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for reliable
distributed systems. J. ACM, 43(2):225–267, 1996.

[FGK11] Felix C. Freiling, Rachid Guerraoui, and Petr Kuznetsov. The failure detector
abstraction. ACM Comput. Surv., 43:9:1–9:40, February 2011.

[FLP85] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of
distributed consensus with one faulty process. Journal of the ACM, 32(2):374–
382, 1985.

[FR03] Faith Fich and Eric Ruppert. Hundreds of impossibility results for distributed
computing. Distributed Computing, 16(2-3):121–163, 2003.

[Gue01] Rachid Guerraoui. On the hardness of failure-sensitive agreement problems.
Information Processing Letters, 79(2):99–104, 2001.

15

[JT08] Prasad Jayanti and Sam Toueg. Every problem has a weakest failure detector. In
Proceedings of the 27th ACM symposium on Principles of distributed computing
(PODC), pages 75–84, 2008.

[Lar03] Mikel Larrea. On the weakest failure detector for hard agreement problems.
Journal of Systems Architecture, 49(7-9):345 – 353, 2003.

16

	1 Introduction
	2 The failure detector model
	3 Solving problems
	4 Comparison relations
	5 New technique for proving the solvability relation
	6 Failure detectors under consideration
	6.1 Definitions
	6.2 Comparing M and P.
	6.3 Comparing Pk failure detectors

	7 Every problem solvable using P is solvable using M
	7.1 Algorithmic transformation: Stall-on-Suspect
	7.2 Solving P using FSoS(A)

	8 Equivalence among Pk failure detectors
	8.1 Algorithmic transformation: Delay-a-Step
	8.2 Showing Pk+1 is at least as strong as Pk

	9 Conclusion

