
MANETs Monitoring with a Distributed Hybrid Architecture

Jose Alvarez and Stephane Maag
SAMOVAR, Telecom SudParis, Université Paris-Saclay

9 Rue Charles Fourier, 91000, Evry, FR
{jose alfredo.alvarez aldana,

stephane.maag}@telecom-sudparis.eu

Fatiha Zaı̈di
LRI-CNRS, Université Paris Sud, Université Paris-Saclay

15 Rue Georges Clemenceau, 91400, Orsay, FR
Fatiha.Zaidi@lri.fr

Abstract—Monitoring techniques have been deeply studied in
wired networks using gossip and hierarchical approaches.
However, when applied to a MANET, several problematics
arise. We present a hybrid distributed monitoring architecture
for MANETs. We get inspired of gossip-based and hierarchical-
based algorithms for query dissemination and data aggrega-
tion. We define gossip-based mechanisms that help our virtual
hierarchical topology to complete the data aggregation, and
then ensure the stability and robustness of our approach in
dynamic environments. We propose a fully distributed monitor-
ing protocol that ease the nodes communications. We evaluate
our approach by using NS3 and Docker.

1. Introduction

Network monitoring have been deeply studied in P2P,
DTN and others using gossip-based or hierarchical-based
approaches. However, when it is applied to a wireless
mobile ad hoc network (MANET), new problematics arise
mainly due to the absence of a centralized administration,
the inherent MANETs properties and the node mobility.
Some approaches propose a coordinator, nevertheless, due
to energy efficiency, infrastructure or other parameters, these
solutions are not always applicable.

While studying the monitoring of a network, the most
common and intuitive approach is to define a central node as
a coordinator for storage and processing of the observations.
This is notably proposed by [1], where the author surveys the
different communication mechanisms. These centralized ar-
chitectures might be efficient for certain type of topologies,
but become critical when considering dynamic topologies.
This is why there has been a lot of efforts on decentralized
monitoring. Gossip-based approaches show an extraordinary
robustness and stability in dynamic scenarios and changing
topologies. Nonetheless, depending on the scalability, the
cost and performance can be impacted. On the other side,
hierarchical approaches show an efficient performance, cost
and scalability, although the robustness and stability may de-
crease in dynamic scenarios. This shows that the two major
categories perform very good under different characteristics,
requirements and constraints of a network [7].

The main contribution of this paper is the proposal of a
hybrid algorithm for decentralized monitoring of MANETs.

We define an architecture combining gossip-based and
hierarchical-based algorithms for query dissemination and
data aggregation. We perform the gossip-based approach
to disseminate the query and in the process to build a
virtual hierarchical topology (VHT) for a time window.
Once the query is disseminated through all the network, with
the support of the VHT, a hierarchical-based aggregation
takes place. The second contribution of this paper is the
definition of a monitoring protocol that aims at helping a
decentralized monitoring process. Our expectation is not just
to provide a structure but also a mathematical background
for further model checking and testing. Our protocol has
been successfully assessed using NS3 and Docker.

The remaining of our paper is as it follows. In Section
2, we present our hybrid algorithm. In Section 3, we present
our implementation, with a semi-formal support for our
protocol. Next, in Section 4, we present some interesting
related works from which we got inspired. Finally, we
conclude and give some perspectives in Section 5.

2. Hybrid Monitoring Approach

Network monitoring can be described as “A number of
observers making observations, and wish to work together to
compute a function of the combination of all their observa-
tions” [1]. The goal is that all the nodes in the network
compute a value t 7→ f(t) [R+∗ → X , X being the
domain targeted by f] in a given instant of time t in a
collaborative way. For our purposes, f is a linear and non-
complex function (e.g., the average CPU).

Our hybrid algorithm architecture consists in two net-
work states, the “query state” and the “aggregate state”.
The idea is to combine a gossip approach and a hierarchical
approach to achieve the monitoring of a property of the
network. The communication between the nodes to achieve
the monitoring of the network will be achieved through a
package previously defined. The idea is that a start node will
start the monitoring process by propagating a monitoring
query in a gossip approach. The approach chosen will be
described as epidemic. Each hop, the nodes will exchange
information creating a virtual hierarchical topology (VHT)
which will be valid only during the monitoring process.
Then based on this topology, the nodes will start aggregating

978-1-5090-3216-7/16/$31.00 c©2016 European Union

ar
X

iv
:1

80
5.

02
71

7v
1

 [
cs

.N
I]

 7
 M

ay
 2

01
8

the information by sending their results to the parent node.
Once the aggregation is done and has reached the start node,
there will be a global view of the measured property and the
VHT will no longer be usable. If the process starts again, a
new VHT will be derived. The purpose is to establish a VHT
during one time window, duration of the monitoring process,
to ease the analysis and the global view of the property.

2.1. Hybrid Architecture

2.1.1. Query State. The query state refers to the process of
propagating in an epidemic way the monitoring packet. This
state goal is to disseminate the query and the VHT layout to
allow the nodes in the network to do an accurate and efficient
aggregation in the next state. This query will be forwarded
in an epidemic approach to the nodes in the relay set. The
packet is explained in depth in Section 3, containing the
query itself but also the information to generate the VHT.
This will communicate all the network information to create
the VHT, which is the foundation of the following state of
the network. This process will go on until a node on the
edge of the network is reached.

Along this state, there are some specific challenges to
discuss. (i) The first challenge is if a node receives more
than one monitoring packet once it is already in a monitoring
state. For this, the node will take the first monitoring packet
and will discard all the subsequent monitoring packets.
(ii) The second challenge is, what if the propagation of
the query is interrupted by a node that remains in a cyclic
state. For this, we introduce a timeout for the packet to
avoid these problems. The idea is to provide a mechanism
to avoid loops in the communications. For this problem,
the timeout will be triggered and once reached, this node
will start the aggregation process by sending its result to
the parent node. (iii) The third challenge is the broadcast of
the packet itself. Due to the nature of the simple epidemic
dissemination approach, a packet will be forwarded to the
next hop of nodes but also to the parent node. We decided
that this will work as an acknowledgment of the child node
to the parent node. This way, the parent node will receive n
acknowledgments and he will know how many packets he
should wait for before changing to the aggregate state.

2.1.2. Aggregate State. Once the data is disseminated up
to the edge of the network, the edge nodes will change from
query state to aggregate state and will start sending recur-
sively their information to their parent up to the start node.
This process will be an aggregation of all the data of a node
and his children in order to collect the monitored values. The
aggregation will be computed in a hierarchical manner with
a combination when required of a gossip approach. A node
will compute based on his own observations the result of
the function f(x) that received from the query state. This
information will be aggregated with the same child nodes
information. In the edge nodes cases, where this state starts,
it will be done only with information from themselves.

Along this state, there are some specific challenges to
discuss. (i) The first challenge is when a parent node and

Initial Q1

Q2

A1A2A3

startMonitoring()/
SNDQuery

RCV Query/
SNDQuery

RCV QueryACK/
acc(ACK IP)

timeout()/
SNDAggregate

RCV QueryACK/
acc(ACK IP)

RCV Aggregate/
SNDAggregate

timeout()/
SNDAggregateRoute

timeout()/
SNDAggregateForward

timeout()/
AggregateForward

RCV AggregateACK/
done()

emptyForwards()/
error()

RCV AggregateACK/
done()

RCV AggregateACK/
done()

Figure 1: State machine definition of our protocol

a corresponding child node goes out of range from when
they first met. When the child node sends an aggregate
type of message and receives no acknowledgment it will
trigger a forward packet to the corresponding node. For this,
we will rely on the routing protocol of the network. This
makes our approach dependent on the routing layer of the
network and we will consider our own opportunistic routing
mechanism in forthcoming works. (ii) The second challenge
is when a parent node is off line. For this, we propose
that in the query state, a set of nodes are communicated
to every child node for them to have an alternative path.
Since the child node will have the relay set of the parent
node, he will fall back into one of these nodes to send
the information. Since it is a hierarchical approach, the
parent will send the information about his parents in the
VHT. (iii) The third challenge is when a node receives a
grandchild node aggregate information. For this, the node
will assume that the child node is off line and that he
will be aggregating that information. Given that the node
does not know the information of how many grandchild will
send information, he will also rely on the timeout before he
sends his own aggregate information. For every grandchild
packet he receives, he will restart the timeout to give time
for additional packages. If the timeout is reached, he will
continue with his aggregation process.

3. Experiments

3.1. Protocol Definition

The protocol definition, depicted in Figure 1, shows the
expected behavior of the protocol to support as base ground
for the hybrid monitoring architecture. The set of states is
Q = (Initial,Q1, Q2, A1, A3, A3). Where Initial is the
initial state. The states Q1 and Q2 refer to the query states of
the network. And the states A1, A2 and A3 refer to the ag-
gregate states of the network. The internal operations of the
automaton are startMonitoring(), acc(IP), timeout(), done()
and error(). The startMonitoring() refers to the process of
starting the monitoring. The acc(IP) refers to the process
of the node of accumulating the IP of the acknowledgment

messages source. This is used to identify while the query
is propagating if there are child nodes available for a given
node. If a node does not receive any acknowledgment, he
will continue the monitoring process by using a timeout.
The timeout() refers to the process of counting time since
the last package received. The done() refers to the restart
of the state of the node. Meanwhile, error() refers to the
process of not being able to send a message, which if it
happens, it means that the node itself is out of the network
range or a major outage is happening with the network. The
input and output operations of the automaton are determined
by sending (SND) and receiving (RCV) messages. The
possible messages to be sent or received are the query, query
ack, aggregate, aggregate ack, agregate route and aggregate
forward. The query message refers to the query itself and the
base ground of the query state. For simplicity purposes, in
the automaton, there is a distinction between the query and
the query ack message. But in reality, they are meant to be
the same package but received by a different node. This is
discussed in Section 2.1.1. The aggregate messages refer to
the aggregation process and the same principle applies as the
query messages. The aggregate ack message is an aggregate
message but received by a different node. Then we also
have two extra messages which are the aggregate route and
aggregate forward. The aggregate route message refers to the
process of routing a message through the network to the cor-
responding parent node in the VHT. As explained in Section
2.1.2, the idea is to make the hierarchical aggregation more
robust through the addition of a gossip routing approach to
route the package to the corresponding root node on the fly.
And finally, the aggregate forward message, which in the
case that the parent node is not found, probably because
the parent node went offline due to an outage or something
similar. In this case, the message will be forwarded to one of
the nodes defined in the relay set, which will be populated
by the grandparents and siblings.

3.2. Packet Definition

In order for the communication to be successful, we
need to define the monitoring packet. The packet will work
equally in both states of the network, query and aggregate
states, but different information will be sent depending on
the state containing a set of common properties. It needs
to contain some basic information in order to be useful
for the following nodes and hops. The definition of such
packet will be done using json. For each state of the nodes,
there will be a set of properties transmitted. There will be
a set of global properties that will always be transmitted.
These global properties are: 1) Type: the type of message
being sent, the set of values is listed in 3.1. 2) Parent: the
IP address of the parent node. 3) Source: the IP address
of the node sending the message. 4) Timeout: the timeout
value in milliseconds. For the query state the properties
transmitted are: 1) Function: the function f to compute.
2) Relay Set: the list of IPs for alternative paths, with at most
three items. For the aggregate state the properties transmitted
are: 1) Result: the result of the aggregation of the function f .

TABLE 1: Scenario 1 & 2 parameters
Scenario 1 Scenario 2

Number of nodes 10, 20, 25, 40, 50,
60, 75, 80 and 100 25

Network Space 500x500, 800x800
and 1,000x1,000 500x500

Network Positioning Grid (100m apart) Random
Running time 80s (init time 60s) 80s (init time 60s)
Emulation times 200 40
Mobility - RWP
Mobility Speed - 2m/s and 5m/s

2) Destination: the destination IP that should be the parent
IP for most of the cases, unless the parent node is off line,
then it will be a relay set IP. 3) Observations: the number of
aggregated observations. The json definition of the complete
package is the following:

{"type": "<type>", "parent": "<parent IP>", "source": "<source IP>",
"timeout": <ms>,
"query":{ "function": "<f(t)>", "relaySet": ["<IP list relay set>"] },
"aggregate":{ "outcome": "<monitoring result>", "destination": <destination IP>,
"observations": <number of observations> } }

3.3. Results

We evaluate our proposal using an emulator built in-
house based on DOCKEMU [9]. This emulator is a com-
bination between Docker and NS3, which allows to con-
duct highly scalable, replicable and robust experiments. The
testbed consisted in an implementation of the protocol in
the language Go, that was deployed on our emulator. The
idea was to determine the convergence time, by which we
mean the time it took from the moment that the monitoring
started by the root node, to the moment that the root node
was able to return a verdict. We defined two scenarios, one
scenario with no mobility and another with low mobility.
For this study, we are testing the implementation without the
mobility support. This means we do not consider states A2
and A3 of Figure 1. Scenario 1 and scenario 2 consider the
parameters of Table 1. For both scenarios the Mac Protocol
is 802.11a with a data rate of 54Mbps. Each node had
a range of ≈125m. Scenario 1 was designed to test the
convergence time, the scenario 2 to prove that due to the
high performance of the algorithm, we may monitor in a
mobile environment without the mobility support.

The emulator was running on top of an Amazon EC2
t2.large instance and Ubuntu 16.04. Versions in use were
Docker 1.12.1, NS3.25 and Go 1.6.2. The containers were
running as a base Ubuntu 16.04 LTS and IPv4.

3.3.1. Scenario 1. For our first scenario, we collected the
convergence time using a different root node as a starting
point in each run. We decided to use different root node se-
lected randomly to prove that it will work independently of
who the root node is. The results are summarized in Figure
2. We can point out that there is a clear relationship between
the number of nodes and the time it takes to converge. With
50 nodes to 100 nodes, the average value seems to stabilize
in around ≈2.15s. About the number of packets sent, we
empirically assumed that for the static environments, the
number would be twice the number of nodes. This can be
deducted because everyone will send their query message

Figure 2: Scenario 1 convergence results
TABLE 2: Scenario 2 results

Speed 2m/s Speed 5m/s
Average convergence time (ms) 2018.06 2123.63
Average observations (# nodes) 22.68 21.25
Success rate 0.8 0.4

one time and their aggregate message one time as well. The
variability of the nodes will occur when the mobility support
is added. For N nodes, the messages sent are 2∗N for static
environments. The average message size is ≈151 bytes.

3.3.2. Scenario 2. For the second scenario, we collected
the convergence time but also the amount of observations
collected by the root node at the end of each run. The results
are summarized in Table 2. We can observe that the nodes
converge about the same amount of time that they do in
a static environment. We observed that it would converge
but without all the possible observations on the network.
And on top of that, between the more the speed of the
nodes the lower the success rate would be. By success rate,
we define if the monitoring process was able to converge.
The algorithm has proved in static environments that is
capable of converging really fast, even though is not using
the mobility support, suggesting promising future results.

4. Related Works

MANET monitoring has been studied for many objec-
tives like their performances [2], to test them [3], their
security [4] and more recently their energetic efficiency [5].

Gossipico [10] is an algorithm to calculate the average,
the sum or the count of node values in a large dynamic
network. The foundation of the algorithm is through two
parts: count and beacon. The combination of these two
mechanisms provides the advantage for counting the nodes
inside a network in an efficient and quick way. Mobi-G
[8] is designed for urban outdoor areas with a focus on
pedestrian that moves around. The idea is to create the global
view of an attribute incorporating all the nodes in the net-
work. Nevertheless the accuracy decreases for an increasing
spatial network size. On the hierarchical categorization, we
can mention BlockTree [6], which is a fully decentralized
location-aware monitoring mechanism for MANETs. The
idea is to divide the network in proximity-based clusters,

which are arranged hierarchical. This approach scales with
the spatial network size and provides accurate results. In [7],
the main key points in architectural description for decen-
tralized monitoring mechanisms are depicted. However, it is
difficult to determine a better performer since both perform
better in diverse scenarios and workloads.

5. Conclusions
We have presented in this paper a hybrid algorithm for

monitoring decentralized networks that consists on the com-
bination of gossip-based and hierarchical-based algorithms.
The gossip-based approach is applied to disseminate the
query and the hierarchical approach is applied to aggregate
the data. Besides, with the help of a time-based hierarchical
approach, the computation of a global property is achieved.
We designed a scalable and configurable testbed using NS3
and Docker, based on DOCKEMU [9]. Our methodology
and results seem promising for a wide set of scenarios.

As future works, we intend to study the selection of the
root node. It could be based on location, energy, computing
power and other parameters, or to be an autonomous pro-
cess, proactively or reactively, or a manual process. Besides
we plan to introduce the mobility support and enhance the
testbeds to this specific cases. We also intend to consider
more complex functions in monitoring the MANETs inter-
operability. For this we need to define an optimal solution
to propagate a more complex function through our query
mechanism.

References
[1] G. Cormode. The continuous distributed monitoring model. ACM

SIGMOD Record, 2013.
[2] A. Mehrotra, A. Saxena, and M. Tolani. Performance comparison of

different routing protocols for traffic monitoring application. Inter-
national Journal of Computer Applications, 92(4), 2014.

[3] K. Merouane, C. Grepet, and S. Maag. A methodology for interop-
erability testing of a manet routing protocol. In 3rd Int. Conference
on Wireless and Mobile Communications, pages 5–5, 2007.

[4] A. Nadeem and M. P. Howarth. A survey of manet intrusion
detection & prevention approaches for network layer attacks. IEEE
communications surveys & tutorials, 15(4):2027–2045, 2013.

[5] S. Palaniappan and K. Chellan. Energy-efficient stable routing using
qos monitoring agents in manet. EURASIP Journal on Wireless
Communications and Networking, 2015(1):1, 2015.

[6] D. Stingl, C. Gross, L. Nobach, R. Steinmetz, and D. Hausheer.
Blocktree: Location-aware decentralized monitoring in mobile ad hoc
networks. In Local Computer Networks (LCN), 2013 IEEE 38th
Conference on, pages 373–381. IEEE, 2013.

[7] D. Stingl, C. Gross, K. Saller, S. Kaune, and R. Steinmetz. Bench-
marking decentralized monitoring mechanisms in peer-to-peer sys-
tems. In Proceedings of the 3rd ACM/SPEC International Conference
on Performance Engineering, pages 193–204. ACM, 2012.

[8] D. Stingl, R. Retz, B. Richerzhagen, C. Gross, and R. Steinmetz.
Mobi-g: Gossip-based monitoring in manets. In IEEE Network
Operations and Management Symposium (NOMS), pages 1–9, 2014.

[9] M. A. To, M. Cano, and P. Biba. Dockemu–a network emulation
tool. In IEEE 29th International Conference on Advanced Information
Networking and Applications Workshops, pages 593–598, 2015.

[10] R. Van De Bovenkamp, F. Kuipers, and P. Van Mieghem. Gossip-
based counting in dynamic networks. In International Conference on
Research in Networking, pages 404–417. Springer, 2012.

	1 Introduction
	2 Hybrid Monitoring Approach
	2.1 Hybrid Architecture
	2.1.1 Query State
	2.1.2 Aggregate State

	3 Experiments
	3.1 Protocol Definition
	3.2 Packet Definition
	3.3 Results
	3.3.1 Scenario 1
	3.3.2 Scenario 2

	4 Related Works
	5 Conclusions
	References

