
Sustainable Blockchain through Proof of eXercise
Internal Draft

Ali Shoker
HASLab, INESC TEC & Minho University

Braga, Portugal
ali.shoker@inesctec.pt

Abstract—Cryptocurrency and blockchain technologies are
recently gaining wide adoption since the introduction of Bitcoin,
being distributed, authority-free, and secure. Proof of Work
(PoW) is at the heart of blockchain’s security, asset generation,
and maintenance. Although simple and secure, a hash-based PoW
like Bitcoin’s puzzle is often referred to as “useless”, and the
used intensive computations are considered “waste” of energy. A
myriad of Proof of “something” alternatives have been proposed
to mitigate energy consumption; however, they either introduced
new security threats and limitations, or the “work” remained
far from being really “useful”. In this work, we introduce Proof
of eXercise (PoX): a sustainable alternative to PoW where an
eXercise is a real world matrix-based scientific computation
problem. We provide a novel study of the properties of Bitcoin’s
PoW, the challenges of a more “rational” solution as PoX, and
we suggest a comprehensive approach for PoX.

Index Terms—Cryptocurrency; Blockchain; Bitcoin; Dis-
tributed Systems;

I. INTRODUCTION

Since the introduction of Bitcoin [37], cryptocurrency is
increasingly drawing the attention of business, industry, and
academia [8], [24], [11], [3], [26], [49], and the exchange
rate of Bitcoin currency is still going steep1. The concept
is based on using cryptographic tamper-proof public ledger,
called blockchain, to protect the generation and transfer of
“digital” money in a fully distributed peer-to-peer (P2P)
fashion. The goals of cyrptocurrenices are mainly to avoid
central authorities (like banks), reduce transaction delays and
fees, and preserve the real value of money by backing the
currency with some “work”, done through mining — to the
contrary of gold-backed or fiat currencies (e.g., USD, Euro,
etc.). At the heart of blockchain, mining maintains the security
and correctness of the system and generates (a.k.a., mines)
money as a reward for the miner’s work, namely, adding
new blocks (of transactions) to the blockchain, and verifying
the protocol’s invariants [44]. Being a critical part of these
systems, the “work” is made credible through providing a
tamper-proof Proof of Work (PoW). The properties of PoW
are discussed further in Sections II and III.

In most cryptocurrencies, and mainly Bitcoin, the “work”
a miner must do is to solve a cryptographic puzzle: to

The author is supported by SMILES track of TEC4Growth project
(NORTE-01-0145-FEDER-000020), and the EU H2020 LightKone project
(732505).

1According to https://www.coindesk.com/, one Bitcoin is worth 3600 USD
— by the time of writing this paper.

find a random nonce that once (cryptographically) hashed
with a perspective block header, returns a 32 Bytes num-
ber having a leading pre-defined number of zeros (called
difficulty) [50]. This puzzle represents the PoW, and lives
forever in the blockchain (together with the block), allowing
for future verifications. Unfortunately, solving the puzzle is
a very computation-hungry process that manifests in very
high energy consumption, controversial to the recent trend
and demands of sustainable and environment-friendly tech-
nology [25], [41]. For instance, recent studies have shown
that the annual electricity consumption of Bitcoin system is
equivalent to that of Ireland in 2014 [38], and is expected to be
similar to that of Denmark in 2020 [14]. This raised the voices
referring to Bitcoin’s hash-based puzzle as “useless” work;
whereas, Bitcoin proponents consider this a legitimate price
for maintaining the system. The latter claim being (partially)
sound, we argue that the work can be more rational if the
puzzle itself is useful, rather than being random. Therefore,
we propose an approach to replace the hash-based puzzle with
solving scientific computation problems [39], [40].

In the same direction as ours, several attempts have been
made to reduce the “wasted” energy following two main
approaches. (We omit Byzantine Fault Tolerance approaches
being not scalable in public settings [49].). The first is to
introduce new forms of mining proofs like Proof of Stake
(PoS) and its variants [30], [33], [45], [6]. Creating blocks
in PoS is based on coin age: a function of coin balance
and earning time. The proposal is often criticized that coin
age accumulates even when the node is not connected to
the network, and being non-democratic solution — biased
to wealthy peers. The other variants like Delegated Proof-of-
Stake [33] and Proof of Stake Velocity [45] tried to address
each issue aside, leaving the other open and inducing new
limitations or security threats [48]; whereas, Proof of Activity
(PoA) [6] is a hybrid solution of PoS and PoW, where
computation is still considered wasted on a useless nonce.

The second class tried to simply replace the puzzle with
a more useful real world problem, as we do. However,
the proposals fall short at addressing a wide range of real
interesting problems. For instance, Primecoin [29] suggested
finding prime numbers instead of a random useless nonce;
Permacoin [35] tried to use have the miners to invest on the
system’s storage and memory through Proof of Retrievability;
while PieceWork [42] tried to outsource work like spam

1

2

3

4
5

7

8

6

9

10

11 12

13

Employer Blockchain

XBoard

Miner

Shuffler

Shuffler

XDB2

XDB1

Fig. 1. The workflow of PoX without verification. Verification occurs in a
similar manner to the steps from 5 through 13 on a verified instance. Refer
to Section V for more details.

deterrence and Denial of Service defense.
In this work, we introduce Proof of eXercise (PoX), an

approach to rationalize mining in cryptocurrencies — focusing
on Bitcoin — through solving a real eXercise: a scientific
computation matrix-based problem. The choice behind matrix-
based problems is two-fold: (1) matrices have interesting
composability properties that help in tuning difficulty, col-
laborative verification, and pool-mining (see later); and (2)
matrix-based problems span a wide range of useful real world
problems, being a principle abstraction for most scientific com-
putation problems, among them: DNA and RNA sequencing
and data comparison [1], [7], protein structure analysis, im-
age comparison, object superposition, surface matching [15],
[2], collaborative-filtering recommendation, data mining [28],
computational geometry [19], face detection, image compar-
ison, object superposition, surface matching [15], and many
others [28], [40].

To emphasize on the challenges we faced in PoX, we adopt
a down-top presentation approach: we first drive a novel and
comprehensive analysis on the properties of Bitcoin’s hash-
based PoW (in Section III). Confronted with PoW’s properties,
we then show that the challenges facing a real puzzle like
eXercise is indeed far beyond that of PoW due to: (1) the
lack of tunable hardness and easy verification methods, (2)
required commitments to solve and maintain an eXercise and
its solution, (3) preventing collude, etc. We analyze these
challenges in Section IV and propose corresponding solutions.
After that, we make use of the discussed solutions to build a
comprehensive Proof of eXercise solution in Section V.

In a nutshell, the workflow of PoX (shown in Fig. I) is as
follows: an employer has an eXercise (e.g., a huge matrix-
based scientific problem) to solve in Bitcoin; it stores it in
a highly available store and keeps a hash digest and access
details. It then deposits some credit in a blockchain transaction
to guarantee the availability of eXercise until the process ends.
The hash digest is then shuffled (i.e., randomized) before being
presented on a public board (XBoard) for miners bidding,
which occurs randomly (to avoid collude). A miner commits to
solve eXercise (also through a blockchain deposit transaction)
to be granted access details to its storage place. Once the miner
solves eXercise, it stores the solution and provides access
guarantees (as before), and publishes the (shuffled) digest to
verifiers (to avoid collude).

Similarly, verifiers also commit to verify an eXercise (before
access rights are granted) and to store the verified data instance
(for further audit). Verifiers use a probabilistic verification
scheme to collaboratively verify — possibly different — parts
of the solution. Once a sufficiently high number of verifiers
approve the solution, it becomes valid, and the PoX is created
based on all the signed verifications as well as the block
header digest (to prevent using this PoX for many blocks).
The PoX lives forever with the block, but can no longer be
verified once the stored eXercise, the solution, and the verified
instance become unavailable. This is arguably sufficiently safe
given the tradeoff of probabilistic verification, i.e., to reduce
the huge storage overhead of scientific data — more details
in Sections IV and V.

To get the reader more familiar with the subject, we
overview Bitcoin in Section II, and we postpone related works
to Section VI, just before the conclusion (Section VII).

II. BACKGROUND ON BITCOIN

As defined by Satoshi Nakamoto — an anonymous author
— in the Bitcoin seminal paper [37], Bitcoin is a peer-
to-peer (P2P) electronic cash system often referred to as a
cryptocurrency [8], [6], [32], [29], [35]. The currency itself
(i.e., the asset) is made of digital bits secured via intensive
cryptographic techniques making it extremely hard to invent
“bit-coins” out of thin air, steal them, or modify confirmed
transfers. Being P2P, Bitcoin brings many advantages over
classical banking-based currencies: no authorities are needed
to make transfers, transfers are faster and cheaper, trans-
parency, credible smart contracts, and others [43].

Bitcoin payments, transfers, and smart contracts are im-
plemented though transactions. To transfer money (a.k.a.,
Bitcoins) from a spender to a receiver, the corresponding
transaction must include the sources of the money transferred,
i.e., hash digests (representing unique identifiers) of previous
transactions through which the current spender earned the Bit-
coins earlier. Transactions are digitally signed by the spender
to prevent masquerade and ensure that transactions are issued
by their owner, and are protected by the public key of the
receiver to guarantee that only the true receiver can spend the
money later.

However, given the underlying distributed model, deprived
from central authorities, the described cryptographically pro-
tected P2P transaction scheme cannot prevent the spender
from creating two “concurrent” transactions to spend the same
amount (that refers to the same source transactions) twice, a
problem known as double spending. Consequently, transac-
tions are usually collected in a chain of blocks, representing a
public ledger, i.e., the blockchain. Block creation is carefully
tuned (see later) to enforce global consensus on the order of
blocks across the entire Bitcoin network. Blocks are chained
together in a similar fashion to transactions, ensuring that no
block can get squeezed through previously confirmed blocks
— the current design unfortunately allows for some forks in
the blockchain when two blocks are created at “the same time”,
which leads to adopting the “longer” chain.

The order of blocks in the chain is globally defined by
challenging block-creators, called miners, through solving a
very hard cryptographic puzzle: search for a random nonce
that once hashed with the digest of the block header generates
a hash of a predefined number of leading zeros (see details
in Section III). This hard “work” has two main roles. The
first is to stand as a Proof of Work to generate, i.e., mine,
Bitcoins as a reward to miners for maintaining the blockchain
and verifying the protocol’s correctness. The second is to
tune the rate of creating blocks by forcing a global consensus
through periodically calibrating the hardness of the puzzle —
by simply changing the required number of leading zeros in
the hash. The rate of Bitcoin’s block creation is usually tuned
to around six blocks per hour.

The interesting properties of Bitcoin’s PoW, i.e., being hard
to solve and easy to verify (among others discussed next),
come at the price of high computation demands, reflected
as a steep energy consumption similar to the electricity con-
sumption of entire countries [38], [14]. Consequently, despite
the essential guarantees that Bitcoin’s PoW provides, like
security and maintaining the blockchain, many researchers
consider finding the nonce a waste of energy being “useless”.
This motivated more sustainable alternatives like Proof of
Stake [30], Proof of Activity [6], Proof of Retrievability [35],
and Proofs of Useful Work [5].

III. BITCOIN’S POW PROPERTIES AND CHALLENGES

The several attempts to make the hash-based PoW in [30],
[6], [35], [5], [33], [42] were either limited to a narrow
range of concrete “useful work” or introduced new undesired
properties. Importantly, the proposed solutions are often based
on meta-data that may be retrieved from the system in a secure
and efficient way, keeping the challenges somehow close to
those of the current Bitcoin’s hash-based PoW (follow next).
Indeed, addressing concrete scientific problems incurs new
significant challenges — that are not thoroughly studied by the
community — like efficiency, commitment, anonymity, etc.,
which require non-trivial solutions and trade-offs. To identify
these challenges and address them, we need a reference
baseline properties to compare against. Since we are unaware
of such a comprehensive study, we found it intuitive to first

analyze the properties of Bitcoin’s PoW first, and try to meet
them in our solution (in the following sections).

To analyze the properties of current hash-based PoW in
Bitcoin, we need to understand the structure and the role of
PoW in more details. As described in Section II, the miner
collects the transactions (usually paid by the spender) to be
included in the prospective block it is trying to commit, and
it constructs the block header. The block header at this stage
is not complete as it retains information about the included
transactions — together with a digest of the previous block,
current difficulty, timestamp, protocol’s version — but missing
the nonce. We refer to the block header prior to adding the
nonce as Bh. Then, the miner tries to solve a cryptographic
puzzle that is composed of Bh and a random n ∈ N such that:

HBh
(n) = SHA-2562(Bh | n) ≤ τ

where H is a SHA-256 [52] hashing function that once
applied twice to the concatenation of Bh with the nonce n,
returns a positive integer not greater than a predefined target
τ . The role of the miner is to find the nonce n that satisfies
this inequation, which leads to the first property:

(P1) Puzzle Hardness Solving the puzzle must have a notion
of hardness that manifests in the PoW itself.

Hardness in PoW is crucial for security reasons: it deters
the adversary from constructing new blocks to possibly incur
conflicting transactions and succeed in double spending. In
Bitcoin, the creation of a block (i.e., solving the puzzle) is
rewarded by Bitcoins, which is believed to be an incentive for
an adversary to solve the puzzle and provide the corresponding
PoW, rather than attacking the system. Therefore, the hardness
must be reflected in the PoW.

Indeed, cryptographic hashing is interesting as the inverse
function H−1Bh

does not exist. Consequently, to find the nonce
n, miners keep incrementing it until the function HBh

(n) ≤ τ
holds true. Since n is implemented as a 32 Byte (i.e., 256
bits) integer in Bitcoin, the possible values of n are 2256

which is an extremely huge number to cover in a short time.
(Given the current difficulty τ ≈ 1012, specialized hardware
having a hash rate of Terahashs/s [51] need several years to
solve the puzzle [50].) Despite the fact that this randomness
my lead to finding the nonce quickly, on average, a single
miner will not often succeed in solving the puzzle in 10
minutes, which is the typical maintained time to create a
new block by the entire network — and thus the miner
has to restart the process from scratch as Bh will change.
Maintaining this time frame is guaranteed by modifying τ ;
and here comes the second property:

(P2) Tunable Hardness The hardness of the work must be
deterministically tunable.

Tuning the hardness of the work is required for two reasons:
a business reason that ensures transactions are being commit-
ted within acceptable delays, and a technical reason which
helps reaching consensus, i.e., by inducing an explicit delay

required to enforce a global order on the blockchain. Con-
sequently, τ is a tradeoff between the business and technical
demands. In fact, it is clearly desirable to commit transactions
faster from a business perspective (which is a main reason
behind using cryptocurrencies), but unfortunately, doing this
makes it almost impossible to construct a single chain of
blocks. Indeed, despite maintaining a 10-minutes interval, the
blockchain is still subject to forks, which can be resolved by
adopting the longer chain2. This comes at the price of waiting
more time once higher security, called confirmation level, is
required [44].

In addition, tuning hardness must be deterministic across all
nodes for correctness (i.e., to impose a fixed delay of mining
rate) and fairness. In particular, tuning hardness in Bitcoin is
done in a deterministic way by increasing/decreasing τ every
2,016 blocks. This is done by using the block’s timestamps
to calculate the number of seconds elapsed between the
generation of the first and the last of those recent 2,016 blocks.
The target is to maintain an approximate of two weeks rate
(which leads to an average creating six blocks per hour).

Another form of tuning the difficulty of a problem is
to break it down to smaller sub-problems, leading to the
following property:

(P3) Embarrassing Parallelization The work shall easily be
broken down into smaller (i.e., easier) problems.

This property is not essential for PoW’s correctness, but it
is rather important for business reasons (i.e., pool mining).
Indeed, a puzzle may require years to solve by a miner,
yielding delays in the expected profit, and most likely losing
mining efforts if the difficulty τ got higher or the transactions
got committed in another block. Consequently, it is crucial
for miners to join forces and solve the puzzle faster. In a
manner similar to parallel computing, the puzzle should be
easily divided into embarrassingly parallel [23] sub-problems
where miners in a mining pool [44] can work in parallel to
solve the puzzle. Indeed, a hash-based PoW is embarrassingly
parallel as different miners can search for the nonce within
different sub-domains.

On the other hand, despite tunable hardness and
parallelization, the PoW must be easy to verify, and
thence the next property:

(P4) Easy Verification The PoW must be “easy” to verify.
The entire Bitcoin’s protocol and underlying invariants must

be verified by the peers themselves, otherwise the entire
system and the currency will be untrustful. Consequently, the
verification must be easy otherwise peers will likely avoid it
and try to solve a new puzzle instead (which is rewarding).
We do not accurately specify how easy verification is, but in
principle, it must be orders of magnitude easier than solving
the puzzle to be able to verify the always-growing blockchain
(that is estimated by 2,016 every two weeks). Bitcoin’s PoW

2The term “longer chain” is misleading as it refers to the longer work (in
time) done rather than the number of blocks in the fork.

is interestingly very easy to verify; it only requires verifying if
HBh

(n) ≤ τ holds, knowing that n is already known by now
(and remember that the hash rate of current mining hardware
is several Terahashs/s).

Notice that we did not explain the use of Bh in HBh
so

far, which is crucial for the fifth property:

(P5) Block Sensitivity The PoW must be sensitive to the
committed block.

A PoW must correspond to a particular block otherwise
one can simply use the same puzzle to commit two blocks
in the blockchain, thus creating a double spending attack. In
Bitcoin, this is prevented by having Bh tight to the current
block. Indeed, the structure of Bh in HBh

(n) is as follows:

Bh = [V | Bhashprev |MTreetxns | utime | τ]

which guarantees that the PoW exactly corresponds to the
block of: protocol version V , exact predecessor block hash
Bhashprev , exact set and order (i.e., Merkle tree hash) of
transactions MTreetxns, at Unix epoch time utime, and with
a predefined difficulty τ . Given all these details, it is almost
impossible to associate the PoW to another block.

IV. PROOF OF EXERCISE (POX)

We now define the eXercise problem and discuss the
challenges to build a PoX by addressing the aforementioned
properties P1-5, and proposing corresponding potential solu-
tions. At the end, we introduce a comprehensive solution for
PoX based on these suggestions. (We adopt this down-top
presentation style to emphasize on the challenges).

A. Matrix, as an eXercise

In PoX, we try to solve computation-intensive scientific
problems [39], [40], [57], in contrast to hash-based puzzle
in PoWs. A nice observation is that many scientific problems
can typically be reduced to matrix-solving problems (matrix
product, determinant, eigen vectors, orthogonal vectors, etc.)
as in DNA and RNA sequencing and data comparison [1], [7],
protein structure analysis, image comparison, object superpo-
sition, surface matching [15], [2], collaborative-filtering rec-
ommendation, data mining [28], computational geometry [19],
etc. Consequently, devising a matrix-based PoX can address a
wide spectrum of scientific problems. Now, we formulate the
problem as follows.

Consider a number of matrices X1, X2, . . . , Xp and Y such
that:

X1 ◦X2 ◦ · · · ◦Xp = Y

where ◦ is a matrix operator, e.g., product, sum, Schur product,
etc. (Although this can be generalized further to include
more complex combination of operators, we opt to keep the
presentation easier.) Since an eXercise is supposed to be hard
to solve, we require the matrices Xi, as well as Y , to have
a very high dimension (e.g., an order of millions or more),
and all matrices Xi not to be highly sparse (further discussion
later).

A miner is assigned an eXercise X1 ◦ X2 ◦ · · · ◦ Xp to
solve, and return Y ′. The role of the PoX is to prove that
X1 ◦ X2 ◦ · · · ◦ Xp = Y ′ holds, and importantly, that the
exact miner (or mining pool) has solved it. This raises several
challenges we address in the following.

For ease of presentation, and without loss of generality, we
reduce the eXercise to a matrix product AB of two square
matrices A and B of dimension n, where:

ABij =

n∑
k=1

Aik ×Bkj

B. The Challenges of PoX

Now we discuss the challenges of PoX by referring to the
five properties P1-5 of hash-based PoWs. Our analysis shows
that PoX does not naturally guarantee the aforementioned
properties, and it thus requires special techniques, we
introduce, to satisfy them. Some of these techniques will
be used later to assemble a comprehensive PoX solution.
Furthermore, considering PoX allowed us to observe salient
properties for hash-based PoWs that were not explicitly
mentioned in literature.

1) Proof of hardness: Solving the matrix product is known
to be O(n3). Although more efficient algorithms of O(2. 373)
were recently found in theory, current implementations are
less efficient than the naive solution [54]; and thus we don’t
consider them here for simplicity. In computational science,
the matrix dimension n can grow up to Billions [57], [36], [7],
[28], and thus a petaflops machine may take several months
to solve the matrix product, which may serve as an PoX
for cryptocurrencies. However, unfortunately, the algorithm’s
hardness is not accurate in reality once the values of the matrix
are considered. For instance, a sparse matrix can be solved
faster than a dense one [55], and the matrix product of the
identity matrix In×n is trivial.

Consequently, the hardness of PoX should be instance-
based and not algorithm-based. In other terms, it should
be eXercise-based rather than matrix-product-based, which
requires including a “proof of hardness” (PoH) in each
PoX eXercise considered. In the case of matrix product, a
PoH can be a computationally efficient script to estimate
the sparseness or structure of a given matrix [34]; whereas
different methods may be required once the eXercise is not
matrix product. The PoH must be associated with the PoX
eXercise which is only accepted (by miners) as valid eXercise
if the sparseness level exceeds a pre-defined threshold. Since
this paper focuses on the technical challenges of PoX, an
interesting complementary research is to precisely identify
what factors may affect problem hardness in each eXercise,
and what efficient scripts can be included within PoH to
guarantee a certain level of PoX eXercise hardness.

2) Hardness tuning through batching: Tuning hardness is
not as simple as in hash-based PoW since the eXercise may
not be modified, being the main target. In some cases [5],

[53], a matrix can be modified or extended with fake numbers
to increase the difficulty accordingly, whereas in others, as in
our matrix product eXercise, the result will be irrelevant. To
address this, it can be useful to use compositions of matrix
problems, batched in a single eXercise. We envision two
methods. The first can be to add N complete fake matrices Fk

where the miner is required to solve all binary matrix product
combinations. For example, the product of two matrices A
and B can be transformed into multiple binary product of all
matrices A, B, F1, F2, . . . , FN . In this scheme, the product AB
is the only interesting combination for an employer (the entity
who proposes an eXercise). This literally means some work is
being wasted — a bit against the soul of “rational” work —
and can be mitigated if the matrices Fk are real meaningful
problems as well.

A second more interesting scenario is to batch different
eXercises in a single one to achieve a required hardness
level. The batched eXercise is then solved by miners through
providing corresponding solutions for all embedded individual
problems (whose number can be pre-defined a priori). Only
in the case where all batched problems are verified (see later),
a PoX is considered correct, and a corresponding block can
be committed. Notice that batching can also be used in the
current hash-based PoW through dividing Bh into m parts
and finding m nonces to commit the block.

Reducing the difficulty is however intuitive since matrix
product is naturally parallizable via divide and conquer [23].
Therefore, the hardness of a matrix product can be reduced
by transforming it into a block matrix product where each
block product stands as an independent eXercise (assembled
latter by the employer).

3) Parallelization through Map-Reduce: Parallelization in
PoX is straightforward as matrices are natively parallizable.
In fact, matrix-based algorithms are the typical use-cases for
map-reduce parallel computing [23], [57]. For our matrix
product example, in a mining pool, a pool operator can map
the matrix product AB into n different AiB matrices (where
Ai is a row matrix), and thus assigning them to available
miners in the pool. We do not address the pool mining problem
in details in this paper, but it would be interesting to discuss
if some guarantees as those in Byzantine fault-tolerant Map-
Reduce [12] can be provided. The operator can then reduce
the maps and commit the block. In the case of PoX batching,
the operator can simply assign miners individual problems in
the batch. The challenge here is that the pool operator doesn’t
necessarily — and should not — trust the solutions provided
by pool miners, which requires an efficient way to verify
correctness (and obviously not re-solving the eXercise itself).
A possible solution is to use a “probabilistic verification”
method as described next; nevertheless, we believe that this
problem requires further research, and it’s recently a hot
research topic in mathematics and cryptography [53], [5], [48].

4) Probabilistic verification: PoX verification is considered
the most challenging aspect due to the lack of a fast, e.g.,

O(n), and accurate formula, as SHA-256, that guarantees
the solution uniqueness (i.e., multiple inputs can return the
same output). The problem is that even if such a formula
exists, e.g., based on the matrix properties or structure, the
miner may find it easier to “guess” the values that satisfy the
formula, rather than solving the eXercise itself. This urged
finding probabilistic alternatives as in holographic proofs [4],
[53], [5], in which multivariate expressions are efficiently
expressed as univariate ones. In this scheme, a matrix problem
can be transformed into a probabilistic univariate polynomial,
making it hard (but possible) to construct the polynomial. To
make it even harder to guess, the authors in [5] proposed
inducing random fake numbers through an interactive protocol
to make sure that the eXercise was really solved using the
exact expected algorithm. Again, this unfortunately comes at
the price of additional wasteful work by the miner.

The most credible way to verify an eXercise, as in matrix
product, is to simply recompute the eXercise itself only a pre-
defined number of times (e.g., by solving the entire eXercise
again), and attach them as proofs within the same PoX.
This means that the eXercise shall not be verified forever,
as currently done in Bitcoin, which is also required due to
eXercise storage and availability reasons as described next.
(In principle, even in current Bitcoin PoW, it is unreasonable
to keep verifying the old PoWs over and over for the entire
blockchain; however, this is indistinguishable and cheap since
the PoW is simply the block header hash that is used to verify
the subsequence of blocks in the chain.) We believe that this
tradeoff is reasonable as long as the eXercise is sufficiently
verified. This verification scheme can be done by assigning
the same eXercise to several miners such that the first PoX is
empowered by the consecutive ones. For fairness and to avoid
collude, miners that solve the same eXercise must share the
rewarded Bitcoins (otherwise one miner may sell the solutions
to others).

Again, this may look impractical being costly, and since
the same work is being done several times, a bit controversial
to the idea of “rational” PoWs. A more viable solution is to
use a probabilistic verification method in which verifiers can
compute random parts of the matrix product. In particular, a
verifier can choose r < n random vector products Ai × Bj

to compute a single entry Aij , and check if these values
exist in the solution. Assuming that v random verifications
are required per eXercise, the fraction of verified entries
in the solution matrix AB is less than v×r

n2 (since different
verifications may overlap). If the r entries are completely
random, e.g., based on SHA-256(time) mod n2, and
different (for simplicity), the chance that the miner can fool a
single verifier is 1

n2r . Depending on whether verifiers chose
different entries or not, the chance that the miner can generate
a valid PoX is very low: between 1

n2r and 1
n2pr . As long as

the miner cannot tamper with his provided solution (ensured
by disclosing the corresponding hash digest beforehand), he
will simply refrain from cheating at a high risk of being
caught.

5) PoX commitments: The main target of a miner is to
commit a block and win the reward through the coinbase
transaction of a mined block [44]. However, the miner in
Bitcoin’s PoW can give up solving a specific puzzle (e.g., to
increase the number of transactions in a block) since this very
miner is the sole owner and creator of the puzzle. In contrast,
this is no longer true in the case of PoX since the employer
is basically interested in the solution of the eXercise itself,
correct and timely. Therefore, there should be a commitment
from the miner to solve the eXercise before a given time t
(sufficiently long, but not infinite), and importantly, make it
available and accessible, e.g., by storing it in a highly available
storage service (at some cost), and provide the needed access
details.

To guarantee this, the miner has to deposit a hostage credit,
e.g., a smart contract similar to Micropayment Channels or
Arbitrated Contracts [44], that can be claimed once the PoX
is verified before the deadline t, otherwise the deposit is lost.
The deposit amount (1) must be greater than the reward in the
coinbase and the storage cost to enforce the commitment, and
(2) must not be destined to a specific peer to avoid collude
(the employer and the miner can simply be the same entity).
Similarly, the miner needs to guarantee that during and after
solving the eXercise, the employer guarantees the availability
and accessibility to the eXercise, otherwise it may lose the
work done. For this reason, the employer also deposits a
hostage credit as above; but this time, with an amount greater
than the storage cost. Furthermore, verifiers must also commit
to store the verified instance values for further potential audit
in a similar way (see next section for details).

6) Shuffling eXercises: Once again, due to the dependency
of the eXercise and its solution, collude can easily occur
between the employer and the miner, or the miner and the
verifier. Consequently, the assignment of an eXercise must
be completely randomized and anonymous. To do this, a
hash digest of the eXercise (similarly, the solution, or the
verified instance) is shuffled before getting published for
miners’ “bidding”. Shuffling can be done via a shuffling
service that can be implemented as an onion routing [21]
service on Bitcoin’s network peers themselves, or using
an external service like TOR [16]. After that, the miner
or verifier commits (through the deposit transaction) to
a randomly chosen eXercise before it knows any details
about it or its owner. Once this information is unveiled, the
miner will no longer withdraw at the risk of losing his deposit.

7) Block-sensitive eXercises: Analogous to property P5 of
hash-based PoW, PoX must also be sensitive to a unique block,
i.e., a PoX shall not be used to commit two blocks. In the case
of hash-based PoW, this is not problematic since the puzzle’s
solution itself, i.e., the nonce, has no meaning beyond solving
the puzzle, and can thus be completely randomized to match
Bh. In contrast, the very solution of an eXercise in PoX is what
the employer really cares about. Consequently, the eXercise
cannot be simply modified to match the block via Bh. Instead,

this can be solved by tying the eXercise to a specific block
through imposing a random selection criteria based on the
block header. In particular, a miner that already computed a
hash of Bh, gets (randomly) assigned the unsolved eXercise
whose hash is “matching”. The matching criteria can be a
minimum number of consecutive matching characters, or a
hash with certain property similar to the notion of difficulty in
Bitcoin. To avoid matching — possibly many — old eXercise,
a time window for matching, based on the timestamp in the
block header, must be respected.

V. POX: ALL PUT TOGETHER

Now, we introduce a comprehensive solution for PoX, based
on the above discussion, and briefly shown in Fig. I.

1) Task proposals: Consider an employer E having a scien-
tific problem, a.k.a., an eXercise X, that requires computing
a matrix product. E stores X in a highly available database
XDB, and gets the corresponding credentials and hash digest
H(X). For simplicity, assume that XDB is an external paid
DB service. Then, E creates an eXercise Transaction XT that
comprises the PoX version, H(X), meta-data about X, e.g.,
“type:matrix product; Proof of Hardness: OK; dimension: 1
Billion, etc”. Then, it deposits a credit (in Bitcoins) for a
tolerated period of time after which E can give up (i.e., E is
only interested in the solution before that time expires). This
guarantees the availability and correctness of X, otherwise the
miner may lose (part of) his work. This credit may only be
claimed once the eXercise X is solved and verified or the
tolerated time has expired.

After that, E computes a hash digest H(XT) and submits it
to a shuffling service (discussed in Section IV) that shuffles
H(XT) several times to make it impossible to relate H(XT)
to E, and thus prevent collude. The shuffling service then
publishes SH(XT), i.e., the shuffled H(XT), to the eXercise
Board (XBoard). Only SH(XT)s that were published for a
predefined time (e.g., one day) may be selected by miners
to avoid forks in XBoard — which will require expensive
handling as in the blockchain — since delays are not critical
at this level.

2) eXercise bidding and mining: On the other side, a miner
M collects a set of (paid) transactions to be committed and
added to the blockchain. To do so, M needs to solve an
eXercise chosen from the XBoard and provide a corresponding
PoX. To prevent collude, M gets assigned an eXercise X in a
random way, e.g., through matching the hash of block header
H(Bh) to the eXercises in XBoard. (Matching can succeed
via a pre-defined size of a matching string, or using the hash
of H(Bh) and hash digests in XBoard in a similar scheme to
Bitcoin’s difficulty.)

At this stage, M promises to solve X in the eXercise
Transaction XT’ through creating a Deal Transaction (DT)
that contains: PoX version, SH(XT’), and H(Bh); and then
deposits a credit (in Bitcoin’s) for a defined period of time —
sufficiently long enough — to guarantee its commitment to
solve the assigned eXercise. In a similar way to the employer

E, the miner M can claim the credit in case the eXercise X
is incorrect or became unaccessible. Once the DT is issued,
the shuffling service uncovers the onion such that M and E
know each other. Consequently, E unveils the meta-data of
the eXercise in XT’ and gives the credentials of X in the
XDB to start working on it.

3) PoX Audit: Once the miner M finds Y’, i.e., the solution
of X, it follows the same process of the eXercise proposing
above, making it available for verifiers, called Auditors. In
particular, M stores Y’ in highly available store, e.g., XDB,
and gets a corresponding hash digest H(Y’) and access cre-
dentials; it creates a corresponding Verify eXercise Transaction
(VXT’) which is similar to XT, but without requiring a credit
this time since M has already deposited a credit through
Deal Transaction above. The auditor submits the VXT’ to
a shuffling service which publishes SH(VXT’) — a shuffled
version of VXT’ to be verified. Again, this is required to
remove any bias in verification.

Auditors follow the same bidding procedure as well to
choose a random solution Y” to verify, retrieve access details
from M and E after the SH(VXT’) onion is unshielded, and
start auditing Y” through the probabilistic verification scheme
— described in the previous section. If the verification
Passed, the auditor submits a Passed Report through creating
an Audit Transaction (AT) that includes the (random)
verification instance this auditor used for its report, otherwise
a Failed Report is submitted. The verification instance is
also stored in XDB, and is made available for future audits
(within a predefined time frame). Auditors have no interest
in submitting false reports since they are at the risk of being
caught by other honest auditors in case the same verification
instance is repeated. To the contrary, malicious auditors
may try submit Failed Reports to compromise the system.
This can be prevented by having auditors deposit a credit
as a guarantee against false reports — only in the case of
submitting Failed Reports.

4) Committing the block: Once M notices a pre-defined
number of Audit Transactions with Passed Reports, it collects
the references of all XT, DT, VXT, and AT transactions to-
gether with H(X) and H(Y’), and attaches them as a PoX to the
block header, that is confirmed by now and can thus safely be
added to the blockchain. Finally, all credit deposits are claimed
using the PoX of the confirmed block, and the stored data in
XDB can be removed. Recall that this verification scheme is
important to reduce the overhead of repeated verification of the
entire blockchain as well as the data storage and availability
costs — which are expensive in the case of PoX.

VI. RELATED WORK

Bitcoin was introduced by an anonymous author, called
Satoshi Nakamoto, as a fully functional Peer-to-Peer cryp-
tocurrency system [37]. The security, i.e., generation, transfer,
and maintenance of Bitcoins, is mainly guaranteed by a
tamper-proof public ledger called blockchain: the structure

where transactions are safely retained [44], [43]. To guard
against malicious behaviors, creating a block is made expen-
sive through solving a cryptographic puzzle: finding a nonce
that once hashed together with the block header returns an
integer having a leading number of zeros. Solving the puzzle
serves as a Proof of Work (PoW) asserting that this very
miner has done the hard job, and is thus worth some Bitcoins
from the system. PoW also imposes a maintained rate of
generating new blocks as an attempt to impose total order
across all system transactions (to prevent double spending).
The interesting properties of Bitcoin’s PoW are rarely studied
in a comprehensive way in literature. In this work, we show
that these properties are beyond what is usually mentioned in
literature.

Despite its nice properties, Bitcoin’s PoW is very energy
hungry, and it has been shown in [38], [14] that Bitcoin may
consume as energy as Ireland or Denmark. Consequently, there
are continuous attempts from researchers and practitioners to
provide more “useful” alternatives to PoW to justify the energy
consumed. Among the famous proposals is Proof of Stake [30]
(PoS) in which creating blocks is based on the coin age. The
proposal is often criticized being non-democratic solution —
biased to richer peers, and that coin age accumulates even
when the node is not connected to the network. Delegated
Proof-of-Stake (DPoS) [33] and Proof of Stake Velocity [45]
(PoSV) tried to solve the two issues independently without
solving the other, and with leaving new limitations. To the
contrary, Proof of Activity (PoA) [6] adopted a hybrid solution
of PoW and PoS to address both issues, however being using
PoW, the computation is still considered “wasted” on unless
nonce computation. Our work avoids these issues by sticking
to the nice properties of PoW, however, computing something
more valuable — like matrix-based scientific problems —
rather than a random nonce.

Similar to PoX, another class of proposals tried to replace
the “work” in Bitcoin by a more “useful” one that has some
other real use. In particular, Primecoin [29] suggested finding
prime numbers instead of finding the nonce. Although this
systems achieves similar properties to Bitcoin’s PoW, the
usefulness of finding prime numbers remains questionable.
Proof of Retrievability [35] is another suggestion where miners
provide a proof that they are investing on maintaining the
system through providing storage and memory resources.
Similarly, PieceWork [42] tried to outsource work like spam
deterrence and Denial of Service without showing how this is
done in detail. In all of these works, the work is limited to few
selected services, whereas PoX allows solving a wide range
of scientific problems.

The problem of finding proof of works has also attracted
other communities in industry and academia. Recently, Intel
introduced a CPU extension called Intel Software Guard
Extensions (Intel SGX) SDK that permits the execution of
trustworthy code in an isolated tamper-free environment [11].
This allowed to reduce the waste by computing real world
problems; however, it induced security threats through using
the partially-decentralized (Intel as authority) Proof of Elapsed

Time (PoET) model to force an idle elapsed time before
signing a block [56]. REM [56] addressed these security
challenges without providing a fully decentralized scheme.
Nevertheless, we believe that such hardware technology can
be exploited to improve the proof of work, e.g., to enforce the
use of a given algorithm, and to use more credible timestamps.

Theoreticians in the Computation Complexity area also
addressed the PoW problem since the nineteens [17], [47],
[18], [20], [53]. The closest work to PoX is Proofs of
Useful Work (uPoW) [5] in which the authors introduce a
“usefulness” property of a probabilistic PoW algorithm for
matrix-based problems (on Orthogonal Vectors). The authors
explicitly address blockchain in the last section, without going
deep into the technical design and integration challenges in
cryptocurrencies. Our work reveals that these challenges are
significant, and thus worth a dedicated research. Interestingly,
the uPoW work supports our idea that matrix-based problems
have a high potential to serve as PoWs, and it has a high
potential to fit in our PoX model.

Finally, ensuring the security of blockchain is also being
studied in academia, e.g., [9], [13], [32], [49], [46], following
Byzantine fault tolerant (BFT) approaches [10], [31], [22],
[27]. However, as shown in [49], BFT-based approaches are
not scalable to public settings as in cryptocurrencies, and are
thus only used in private blockchain.

VII. CONCLUSIONS

We introduced Proof of eXercise (PoX): a new proof of
work for cryptocurrencies, where the work is a real matrix-
based scientific computation problem. This work shows that
the inherit “magical” properties of Bitcoin’s hash-based PoW
(i.e., the puzzle), make it even more interesting than what is
documented in literature; and thus, we presented a compre-
hensive analysis to the propoerties of PoW. This was only
possible via thoroughly considering a real alternative problem
as eXercise.

As our work shows, the complexity of designing and
implementing PoX is much higher than PoW, and therefore,
as long as no cheaper alternatives that do not sacrifice the
genuine properties of PoW are proposed, it is wise to explore
the feasibility of PoX by studying individual scientific compu-
tation use-cases, and discussing potential extensions, e.g., as
those based on computational complexity [5]. Otherwise, one
may opt to stick to cheaper Proof of Stake [30], [33], [45], [6]
methods as long as the limitations and constrains are tolerated.

Finally, an empirical evaluation that compares the difficulty
levels of PoW versus PoX matrices (e.g., dimension, sparse-
ness, etc.) is an interesting future work.

REFERENCES

[1] Amir Abboud, Virginia Vassilevska Williams, and Oren Weimann. Con-
sequences of faster alignment of sequences. In International Colloquium
on Automata, Languages, and Programming, pages 39–51. Springer,
2014.

[2] Helmut Alt and Michael Godau. Computing the fréchet distance between
two polygonal curves. International Journal of Computational Geometry
& Applications, 5(01n02):75–91, 1995.

[3] Angel.co. Blockchains startups. https://angel.co/blockchains. Accessed:
2017-09-15.

[4] László Babai, Lance Fortnow, Leonid A Levin, and Mario Szegedy.
Checking computations in polylogarithmic time. In Proceedings of the
twenty-third annual ACM symposium on Theory of computing, pages
21–32. ACM, 1991.

[5] Marshall Ball, Alon Rosen, Manuel Sabin, and Prashant Nalini Vasude-
van. Proofs of useful work. 2017.

[6] Iddo Bentov, Charles Lee, Alex Mizrahi, and Meni Rosenfeld. Proof
of activity: Extending bitcoin’s proof of work via proof of stake
[extended abstract] y. ACM SIGMETRICS Performance Evaluation
Review, 42(3):34–37, 2014.

[7] Philip Bille. A survey on tree edit distance and related problems.
Theoretical computer science, 337(1):217–239, 2005.

[8] Vitalik Buterin. A next-generation smart contract and decentralized
application platform. white paper, 2014.

[9] Christian Cachin, Simon Schubert, and Marko Vukolic. Non-
determinism in byzantine fault-tolerant replication. In 20th Interna-
tional Conference on Principles of Distributed Systems, OPODIS 2016,
December 13-16, 2016, Madrid, Spain, pages 24:1–24:16, 2016.

[10] Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance
and proactive recovery. ACM Transactions on Computer Systems
(TOCS), 20(4):398–461, 2002.

[11] Intel Corporation. Intel software guard extensions (intel sgx) sdk. https:
//software.intel.com/en-us/sgx-sdk. Accessed: 2017-08-29.

[12] Pedro Costa, Marcelo Pasin, Alysson N Bessani, and Miguel Correia.
Byzantine fault-tolerant mapreduce: Faults are not just crashes. In
Cloud Computing Technology and Science (CloudCom), 2011 IEEE
Third International Conference on, pages 32–39. IEEE, 2011.

[13] Tyler Crain, Vincent Gramoli, Mikel Larrea, and Michel Raynal.
(leader/randomization/signature)-free byzantine consensus for consor-
tium blockchains. CoRR, abs/1702.03068, 2017.

[14] Sebastiaan Deetman. Bitcoin Could Consume as Much Electricity as
Denmark by 2020. https://motherboard.vice.com/en us/article/aek3za/
bitcoin-could-consume-as-much-electricity-as-denmark-by-2020. Ac-
cessed: 2017-09-05.

[15] Michel Marie Deza and Elena Deza. Encyclopedia of distances. In
Encyclopedia of Distances, pages 1–583. Springer, 2009.

[16] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The
second-generation onion router. Technical report, Naval Research Lab
Washington DC, 2004.

[17] Cynthia Dwork and Moni Naor. Pricing via processing or combatting
junk mail. In Annual International Cryptology Conference, pages 139–
147. Springer, 1992.

[18] Dario Fiore and Rosario Gennaro. Publicly verifiable delegation of large
polynomials and matrix computations, with applications. In Proceedings
of the 2012 ACM conference on Computer and communications security,
pages 501–512. ACM, 2012.

[19] Anka Gajentaan and Mark H Overmars. On a class of o (n2) problems in
computational geometry. Computational geometry, 5(3):165–185, 1995.

[20] Jiawei Gao and Russell Impagliazzo. Orthogonal vectors is hard for
first-order properties on sparse graphs. In Electronic Colloquium on
Computational Complexity (ECCC), volume 23, page 53, 2016.

[21] David Goldschlag, Michael Reed, and Paul Syverson. Onion routing.
Communications of the ACM, 42(2):39–41, 1999.

[22] Rachid Guerraoui, Nikola Knežević, Vivien Quéma, and Marko Vukolić.
The next 700 bft protocols. In Proceedings of the 5th European
conference on Computer systems, pages 363–376. ACM, 2010.

[23] Maurice Herlihy and Nir Shavit. The art of multiprocessor programming.
Morgan Kaufmann, 2011.

[24] IBM. Hyperledger fabric. https://www.ibm.com/blockchain/hyperledger.
html. Accessed: 2017-09-15.

[25] COST: ”European Cooperation in Science and Technology” NESUS Ac-
tion IC1305. Network for sustainable ultrascale computing. http:
//www.nesus.eu/.

[26] Bitmain Technologies Inc. Antminer hardware. https://shop.bitmain.
com/main.htm?lang=en#spec-para. Accessed: 2017-09-15.

[27] Jean-Paul Bahsoun, Rachid Guerraoui, and Ali Shoker. Making BFT
Protocols Really Adaptive. In In the Proceedings of the 29th IEEE
International Parallel & Distributed Processing Symposium, IPDPS’15.
IEEE-CS, May 2015.

[28] Maja Kabiljo and Aleksandar Ilic. Recommending items to more than
a billion people. https://code.facebook.com/posts/861999383875667/

recommending-items-to-more-than-a-billion-people/. Accessed: 2017-
08-29.

[29] Sunny King. Primecoin: Cryptocurrency with prime number proof-of-
work. July 7th, 2013.

[30] Sunny King and Scott Nadal. Ppcoin: Peer-to-peer crypto-currency with
proof-of-stake. self-published paper, August, 19, 2012.

[31] Ramakrishna Kotla, Lorenzo Alvisi, Mike Dahlin, Allen Clement, and
Edmund Wong. Zyzzyva: speculative byzantine fault tolerance. In ACM
SIGOPS Operating Systems Review, volume 41, pages 45–58. ACM,
2007.

[32] Jae Kwon. Tendermint: Consensus without mining. Draft v. 0.6, fall,
2014.

[33] Daniel Larimer. Delegated proof-of-stake (dpos). Bitshare whitepaper,
2014.

[34] Miles Lopes. Estimating unknown sparsity in compressed sensing. In
International Conference on Machine Learning, pages 217–225, 2013.

[35] Andrew Miller, Ari Juels, Elaine Shi, Bryan Parno, and Jonathan Katz.
Permacoin: Repurposing bitcoin work for data preservation. In Security
and Privacy (SP), 2014 IEEE Symposium on, pages 475–490. IEEE,
2014.

[36] Cleve Moler. The worlds largest matrix computation. The MathWorks,
Inc., 2002.

[37] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. https:
//bitcoin.org/bitcoin.pdf.

[38] Karl J O’Dwyer and David Malone. Bitcoin mining and its energy
footprint. 2014.

[39] University of California. BOINC projects. http://boinc.berkeley.edu/
projects.php. Accessed: 2017-08-29.

[40] University of Zurich. The Center for Theoretical Astrophysics &
Cosmology Program. http://www.ctac.uzh.ch/research/index.html. Ac-
cessed: 2017-09-9.

[41] UNITED NATIONS:Framework Convention on Climate Change. Paris
climate change agreement. http://unfccc.int/paris agreement/items/9485.
php, October 2016.

[42] Ittay Eyal Philip Daian, Emin Gn Sirer and Ari Juels. Piecework:
Generalized outsourcing control for proofs of work. In BITCOIN
Workshop. Springer, 2017.

[43] Bitcoin Project. Bitcoin. https://bitcoin.org/.
[44] Bitcoin Project. Bitcoin documentation. https://bitcoin.org/en/

developer-reference. Accessed: 2017-08-29.
[45] Larry Ren. Proof of stake velocity: Building the social currency of the

digital age. 2014.
[46] João Sousa, Alysson Bessani, and Marko Vukolić. A byzantine fault-

tolerant ordering service for the hyperledger fabric blockchain platform.
arXiv preprint arXiv:1709.06921, 2017.

[47] Justin Thaler. Time-optimal interactive proofs for circuit evaluation. In
Advances in Cryptology–CRYPTO 2013, pages 71–89. Springer, 2013.

[48] Florian Tschorsch and Björn Scheuermann. Bitcoin and beyond: A tech-
nical survey on decentralized digital currencies. IEEE Communications
Surveys & Tutorials, 18(3):2084–2123, 2016.

[49] Marko Vukolić. The quest for scalable blockchain fabric: Proof-of-
work vs. bft replication. In International Workshop on Open Problems
in Network Security, pages 112–125. Springer, 2015.

[50] Bitcoin Wiki. Difficulty. https://en.bitcoin.it/wiki/Difficulty. Accessed:
2017-09-06.

[51] Bitcoin Wiki. Mining hardware comparison. https://en.bitcoin.it/wiki/
Mining hardware comparison. Accessed: 2017-09-06.

[52] Bitcoin Wiki. Sha-256. https://en.bitcoin.it/wiki/SHA-256. Accessed:
2017-09-06.

[53] Ryan Williams. Strong eth breaks with merlin and arthur: Short non-
interactive proofs of batch evaluation. arXiv preprint arXiv:1601.04743,
2016.

[54] Virginia Vassilevska Williams. Multiplying matrices in o (n2. 373) time.
preprint, 2014.

[55] Raphael Yuster and Uri Zwick. Fast sparse matrix multiplication. ACM
Transactions on Algorithms (TALG), 1(1):2–13, 2005.

[56] Fan Zhang, Ittay Eyal, Robert Escriva, Ari Juels, and Robbert van
Renesse. Rem: Resource-efficient mining for blockchains. In USENIX
Security Symposium. Springer, 2017.

[57] Albert Y Zomaya. Parallel computing for bioinformatics and com-
putational biology: models, enabling technologies, and case studies,
volume 55. John Wiley & Sons, 2006.

