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Abstract—Several approaches to mitigating the Forwarding
Information Base (FIB) overflow problem were developed and
software solutions using FIB aggregation are of particular inter-
est. One of the greatest concerns to deploy these algorithms to
real networks is their high running time and heavy computational
overhead to handle thousands of FIB updates every second. In
this work, we manage to use a single tree traversal to implement
faster aggregation and update handling algorithm with much
lower memory footprint than other existing work. We utilize 6-
year realistic IPv4 and IPv6 routing tables from 2011 to 2016 to
evaluate the performance of our algorithm with various metrics.
To the best of our knowledge, it is the first time that IPv6
FIB aggregation has been performed. Our new solution is 2.53
and 1.75 times as fast as the-state-of-the-art FIB aggregation
algorithm for IPv4 and IPv6 FIBs, respectively, while achieving
a near-optimal FIB aggregation ratio.

I. INTRODUCTION

A. FIB scalability problem

Several factors contribute to the super-linear growth of

global Forwarding Information Base (FIB) size. First of all, the

tremendous growth of the number of Internet users results in

new network prefixes to be allocated and advertised. Second,

network operators often divide large block of IP prefixes

allocated to an Autonomous System (AS) into smaller ones

and advertise them via Border Gateway Protocol (BGP) to

enable fine-grained traffic engineering. According to several

research studies ([1], [2]), around 50% of BGP-announced

prefixes are more specific prefixes, i.e., the total address space

they cover belongs to large address blocks allocated by Internet

Assigned Numbers Authority (IANA). 40% of these more

specific prefixes are attributed to Traffic Engineering, which is

used by network administrators to avoid congested paths [3]

or fight against prefix hijacking [4]. Address fragmentation by

multi-homing, a practice to connect an end-user network to

more than one network in order to provide high throughput

and resilient connectivity, is another source of extra prefixes

in a routing table ([4], [5]). Overall, the number of entries

in FIB has increased almost 40 times since 1994, when the

current BGP version 4 emerged. In 2017, the size of FIB has

approached 710,000 entries for IPv4 and 40,000 for IPv6, and

continues to increase with a super-linear pace [6].

Supporting the current size of FIB and its growth is

a challenging task for Default-Free Zone (DFZ) network

operators, as they are forced to periodically upgrade their

∗This work was done when Garegin Grigoryan was a student at Clarkson
University.

routing hardware in order to fit the FIB into line cards. It

is a heavy financial burden for many small Internet Service

Providers (ISPs) to migrate old hardware to new one due to

the high costs of line cards and operational expenses ([4],

[7]). Some operators avoid upgrading expenses by filtering

out specific prefixes with prefix length more than 24, thus

affecting the reachability of the Internet [8]. The increasing

size of global FIB may also increase chip space for Ternary

Content-Addressable Memory (TCAM) design, the Longest

Prefix Match (LPM) lookup time [9] and energy consumption

by line cards [10].

B. Current approaches

To mitigate the FIB scalability problem, a number of pos-

sible solutions were put forward. They can be classified into

two broad categories: long-term and short-term solutions. The

long-term solutions include revision of the business relations

between ASes, e.g., network operators working in the Default-

Free Zone (DFZ) can be compensated for keeping all routes

in FIB, and re-design of the routing architecture, e.g., splitting

address space into a locator (for routing systems) and an

identifier (for end systems), may significantly reduce the size

of global FIB table, but its wide deployment may take long

time [4]. FIB aggregation falls into the category of short-

term solutions. Network operators believe it to be one of

the most feasible solutions at this moment as it has a clear

benefit and many ISPs are seeking such a solution to reduce

their operational costs and mitigate their routing scalability

problem [4]. FIB aggregation does not require changes on

routing hardware and routing architecture, and can be applied

locally to each individual router. Several FIB aggregation

techniques, such as the Optimal Routing Table Constructor

(ORTC) algorithm [11], can greatly reduce the number of FIB

entries for an IPv4 FIB by more than 50%. When comparing

this result to the rates of FIB growth, we infer that the

FIB aggregation may prolong a router’s lifetime up to 9

years. However, existing FIB aggregation approaches, such as

ORTC-based aggregation algorithms, suffer from a number of

challenges that remain to be addressed:

(1) High time costs for processing route updates, including

additions, withdrawals and changes. For instance, one of the

state-of-the-art FIB aggregation algorithms, FIFA-S [12], can

achieve optimal aggregation ratio for each update, but needs to

perform two subtree traversals in the control plane to update

an FIB into aggregated and optimal state.
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(2) Individual routing updates result in a significant number

of changes in an FIB, called FIB bursts.

(3) The optimal compression ratio is achieved at the expense

of high memory usage: each node generated by the aggregation

algorithm in the control plane contains an array of variable

size, which stores next-hop candidates to be used for next hop

selection for aggregated prefixes.

C. Our contributions

In this work we introduce a new ultra-fast FIB aggregation

algorithm: FIB Aggregation with Quick Selections (FAQS).

Different from existing aggregation algorithms, FAQS uses

a single tree traversal to conduct both FIB aggregation and

handle FIB updates. It handles routing updates incrementally,

without re-aggregation of the whole forwarding table. On a

single BGP update, in the worst case, FAQS will traverse

only the subtree rooted at the updated node and its par-

ents’ nodes. Furthermore, unlike FIFA-S, FAQS keeps only

a single next hop at each node and considerably reduces

memory consumption for aggregation operations. The outcome

of our improvements is the significant acceleration of FIB

aggregation and update handling. Although FAQS is still a

heuristic aggregation algorithm, we experimentally proved its

superior performance via multiple realistic datasets in different

Routing Information Bases (RIBs) with more than 1 billion

route updates from Route Views Project [13] over a 6-year

period. The results are briefly described as follows:

(1) FAQS achieves high and near-optimal compression ra-

tios: reducing the number of FIB entries by up to 73% for

IPv4 and 42% for IPv6.

(2) FAQS runs up to 2.53 and 1.75 times as fast as existing

FIFA-S algorithm for IPv4 and IPv6 FIBs, respectively.

(3) FAQS reduces the average number of FIB changes by

30% for IPv4 routing tables and by 10% for IPv6 routing

tables.

(4) FAQS can save up to 30% of memory consumption

compared with FIFA-S algorithm that achieves optimal aggre-

gation ratio. FIFA series [12] have three algorithms: FIFA-T,

FIFA-H and FIFA-S. We did not compare FAQS with FIFA-

T and FIFA-H as both of them are threshold-based aggre-

gation algorithms (not strictly incremental). Namely, when

a threshold is reached, both algorithms need to re-aggregate

over an entire tree/subtree. However, both FAQS and FIFA-S

are strictly incremental FIB aggregation algorithms for every

single update.

II. DESIGN

A. FIB aggregation in a nutshell

FIB aggregation refers to a process, that merges two or

more FIB entries with different prefixes and same next hop

into one. While FIB aggregation may significantly compress

the size of an FIB, the aggregation process should not change

the forwarding behaviors of any packet. Namely, the next hop

for any packet should be same before and after aggregation. In

Table Ia, FIB entries B and C have the same next hop value

as the entry A, which fully covers IP address blocks of both

TABLE I: FIB aggregation process

(a) Original FIB table

Label Prefix Next Hop

A 141.92.0.0/16 1

B 141.92.64.0/18 1

C 141.92.0.0/19 1

D 141.92.192.0/19 2

E 141.92.224.0/19 2

(b) Compressed FIB table

Label Prefix Next Hop

A 141.92.0.0/16 1

D 141.92.192.0/19 2

E 141.92.224.0/19 2

Fig. 1: FAQS Module

B and C. Hence, excluding the entries B and C from the FIB

table will not change the forwarding behaviors of any packets

matching against B or C, which preserves the Forwarding

Correctness rule. Excluding the entries D or E, in contrast,

will not preserve Forwarding Correctness, e.g., packets with

destination IP addresses from these blocks will be forwarded

to the next hop 1 instead of 2. The correctly aggregated FIB

is given in Table Ib.

B. FAQS overview

As illustrated in Figure 1, FIB aggregation and FAQS algo-

rithm operate in a router’s Control Plane, between the RIB and

the FIB. When the router boots up, FAQS algorithm aggregates

the initial set of routes from the RIB and downloads them into

the FIB. We call this process Static FIB Aggregation. Mean-

while, FAQS keeps a copy of the aggregated FIB with various

flags to process future route updates. After a routing update,

either an addition, a change, or a withdrawal, is advertised via

a routing protocol, e.g., BGP, the router first updates its RIB

in accordance with BGP decision process. Subsequently, the

routing changes are pushed to the aggregation module, where

FAQS algorithm carries out incremental FIB updates over the

aggregated FIB, located in the control plane. A routing update,

applied to an aggregated FIB, may not always lead to changes

in an FIB. In the meantime, it may result in multiple FIB

changes: adding new entries to an FIB, changing next hop

values for existing entries or deleting existing entries. If there

are FIB changes, FAQS installs them in the line cards located



in the data plane.

The remaining part of this section describes both Static FIB

Aggregation process and Incremental FIB Update Handling

process in detail.

C. Static FIB aggregation

FAQS uses a data structure based on the PATRICIA trie

(PT) [14]. Each node in the PT has the following fields (we

assume the current node labeled as n):

(1) Node type, denoted by T (n). If a node was derived

from an original FIB entry, the value is REAL; otherwise, if a

PT node is only an ancillary node that helps to form the PT,

the value is FAKE. In Figure 2(a), T (F )=T (G)=FAKE, and

T (A)=T (B)=T (C)=T (D)=T (E)=REAL.

(2) Original next hop. The next hop value that is associated

with an original FIB prefix and mapped to a PT node, denoted

by O(n). For a REAL node, it is taken from the FIB; for a FAKE

node, it is derived from the original hop of its nearest REAL

ancestor node during the top-down instantiation described

below.

(3) Selected next hop. The next hop value of a prefix after

aggregation, denoted by S(n). Note that a selected next hop

may be different from an original next hop for the same prefix

as long as aggregated FIB has exactly the same forwarding

behaviors as the original one.

(4) FIB status, denoted by F(n). Indicates whether the prefix

and its selected next hop should be placed in the FIB or

not after FIB aggregation. F(n) can be equal to IN FIB or

NON FIB. All routes with the status F(n)=IN FIB account

for the entire aggregated FIB.

After the initial PT is built from an original FIB, the nodes

corresponding to its prefixes have the original next hop from

FIB, the REAL node type, and an empty selected next hop. The

auxiliary nodes in the PT have an empty original next hop, the

FAKE type, and an empty selected next hop. Starting from here

as shown in Figure 2(a), Static FIB Aggregation uses one-time

post-order traversal to complete the whole aggregation, which

consists of a recursive top-down and bottom-up stage.

• Post-order top-down instantiation for an original next

hop: For simplicity, the root node in the PT has the prefix 0/0

and the REAL type. Its original next hop is either derived from

the original FIB (if the FIB has a default next hop), or equal

to 0 (to indicate a packet drop). From the root node of the

PT, we instantiate the original next hop of each FAKE node n

based on O(n)=O(n.ancestor), where n.ancestor is n’s nearest

REAL ancestor. Figure 2(b) shows the results after top-down

process. The next hops of FAKE nodes O(F) and O(G) are

derived from the nearest REAL ancestor A.

• Post-order bottom-up assignment for selected next

hop and FIB status: The bottom-up process consists of two

operations for each node: assigning a node’s selected next hop

and determining the FIB status of its children. The selected

next hop is assigned as follows:

I. Leaf nodes: S(n)=O(n).

II. Internal nodes:

(1) S(n)=S(n.l), when the following conditions are satisfied:

O(n)!=S(n.r), len(n.l)-len(n)=1 and len(n.r)-len(n)=1, where

n.l and n.r are node n’s left and right child, and len(n)

represents the length of the prefix on node n. Intuitively, the

selected next hop value equals to its left child’s selected next

hop, when this node has two children nodes and the prefix

length differences between this node and both of its children

are exactly one, and the right child’s selected next hop is

different from its own original next hop.

(2) S(n)=O(n) in other cases. There can be three cases: (a)

n misses a child node; (b) The length of a child’s prefix is

longer than that of this node by more than 1; and (c) The

selected next hop of a right child equals to the original next

hop of n.

The next step for the bottom-up process is determining the

FIB status of each node’s children nodes. Assume n.l and n.r

denote directly connected children of a node n. Then,

(1) F(n.l)=IN FIB, if n.l exists and S(n.l)!=S(n).

(2) F(n.r)=IN FIB, if n.r exists and S(n.r)!=S(n).

Otherwise, children’s node status will be NON FIB.

Intuitively, we start aggregation from the leaf prefixes and

recursively assign selected next hops based on their original

next hops. When a child’s selected next hop is the same as

its parent’s, the child’s prefix and selected next hop can be

excluded from the aggregated FIB. The process stops at the

root node, which is always IN FIB. The resultant aggregated

FIB will have exactly the same forwarding behaviors as the

original one. Figure 2(c) shows the results after the bottom-up

process. Algorithms 1, 2, and 3 present the pseudo code for

the static FIB aggregation process. Finally, Table II illustrates

the aggregated results, where the original five FIB entries are

aggregated into two.

Algorithm 1 Static FIB Aggregation

1: procedure StaticAggregation(node)

2: p← node.parent
3: l ← node.left
4: r ← node.right
5: if T (node) 6= REAL then

6: O(node)← O(p)
7: end if

8: if l 6= NULL then

9: StaticAggregation(l)
10: end if

11: if r 6= NULL then

12: StaticAggregation(r)
13: end if

14: setSelectedNexthop(node)
15: setChildFIBstatus(node)
16: end procedure

D. Incremental FIB update handling

FIB updates consist of two categories: (a) Route announce-

ments, including new routes and route changes, and (b) Route

withdrawals.



(a) Initial PATRICIA tree (b) PT after the top-down process (c) PT after the bottom-up process

Fig. 2: Static FIB aggregation of FIB from Table Ia.

Fields in a node: (1) original next hop; (2) selected next hop, (3) FIB status: (F:IN FIB, N:NON FIB).

The solid nodes denote REAL nodes, whose prefixes are from the original FIB.

Algorithm 2 Assignment of Selected Next Hop

1: procedure SetSelectedNexthop(node)

2: l← node.l
3: r← node.r
4: if l 6= NULL∧ r 6= NULL∧

len(l)− len(node) = 1∧
len(r)− len(node) = 1∧
O(node) 6= S(r) then

5: S(node)← S(l)
6: else

7: S(node)← O(node)
8: end if

9: end procedure

Algorithm 3 Determine FIB status for Children Nodes

1: procedure SetChildFIBstatus(node)

2: l← node.l
3: r← node.r
4: if l 6= NULL then

5: if S(node) 6= S(l) then

6: F (l)← IN FIB
7: else

8: F (l)← NON FIB
9: end if

10: end if

11: if r 6= NULL then

12: if S(node) 6= S(r) then

13: F (r)← IN FIB
14: else

15: F (r)← NON FIB
16: end if

17: end if

18: end procedure

TABLE II: FIB entries after Aggregation by

FAQS

Label Prefix Next Hop

A 141.92.0.0/16 1

G 141.92.192.0/18 2

• Route announcements: If the announced route is a

new route, FAQS algorithm generates a REAL node with

the corresponding original next hop in the PT; if it is a

route update, it simply changes the original next hop value

accordingly. In order to maintain a good aggregation ratio and

forwarding correctness, the aggregated FIB needs to be re-

aggregated. In FAQS, two portions of the PT may be affected:

the subtree rooted at the updated node and the ancestors upon

it. Specifically, the original next hop, the selected next hop

and the FIB status of each node under the subtree need to be

checked and updated if necessary. The process is similar to

the procedure of the static FIB aggregation for the entire PT.

Also, the selected next hop and the FIB status of each ancestor

need to be checked and refreshed if necessary to maintain

forwarding correctness. The procedure seems to be tedious,

however, we leverage the following three crucial optimization

techniques to greatly reduce the overall time costs and memory

access times.

(a) When adding a REAL node or updating a FAKE node,

if the original next hop of this node’s parent O(n.parent) is

same as the new next hop of the updated node O(n), then the

top-down process can immediately terminate, since a parent’s

original next hop in the subtree rooted at n does not change.

(b) Similarly, during the period of updating the subtree, if

the node type of a node T(n) is REAL, then the top-down

process can stop on the current branch, because the original

next hop of that node does not change.

(c) During the period of updating the ancestors, if the newly

selected next hop of an ancestor n is the same as the old one

before the update, then the bottom-up traversal can stop. Since

update only happens on one branch and a parent’s selected

next hop is determined by its children’s selected next hop, the

preservation of a selected next hop of a node n guarantees the

invariance of all nodes above it.

Algorithms 4, 5 and 6 illustrate the whole process of

incremental update handling and Figure 3 demonstrates an

example to update a route with a new next hop, where the

second and third optimization techniques are applied. In the

example, Node D has an update with a new next hop 3. First

the original next hop changes to 3 and other fields are freed;

then the update-tree process stops when encountering a REAL



node G. After that, the update-ancestor process stops when

the same selected next hop 1 is discovered at node B. As a

result, we can observe that only a small portion of the trie has

been traversed to incrementally handle the update.

Algorithm 4 Incremental FIB Update Handling

1: procedure UpdateNode(prefix, nexthop)

2: node← find(prefix)
3: if node = NULL then

4: node← initialize(prefix, nexthop)
5: T (node)← REAL
6: p← node.parent
7: if O(p) 6= O(node) then

8: UpdateSubtree(node)
9: UpdateAncestors(node)

10: end if

11: else

12: if T (node) 6= REAL then

13: T (node)← REAL
14: end if

15: if O(node) 6= nexthop then

16: O(node)← nexthop
17: UpdateSubtree(node)
18: UpdateAncestors(node)
19: end if

20: end if

21: end procedure

Algorithm 5 Update Subtree

1: procedure UpdateSubtree(node)

2: l← node.l
3: r← node.r
4: if l 6= NULL∧ T (l) 6= REAL then

5: O(l)← O(node)
6: UpdateSubtree(l)
7: end if

8: if r 6= NULL ∧ T (r) 6= REAL then

9: O(r)← O(node)
10: UpdateSubtree(r)
11: end if

12: setSelectedNexthop(node)
13: setChildFIBstatus(node)
14: end procedure

• Route withdrawal: The FAQS algorithm handles the

prefix withdrawals within two steps:

(a) Node removal. First, FAQS looks up the corresponding

REAL node from the PT. If the node is found, then FAQS

checks if it is removable. A removable node refers to a node,

which will not affect the PT structure after its deletion. In such

case, FAQS deletes the node and reorganizes the pointers of

its parent and child. Otherwise, if the node is not removable,

FAQS changes its type to FAKE and frees the values of the

original next hop, the selected next hop and the FIB status.

Algorithm 6 Update Ancestors

1: procedure UpdateAncestors(node)

2: p← node.parent
3: while p 6= NULL do

4: oldSlctNexthop← S(p)
5: setSelectedNexthop(p)
6: setChildFIBstatus(p)
7: if oldSlctNexthop = S(p) then

8: break
9: end if

10: p← p.parent
11: end while

12: end procedure

(b) Trie update. Starting from the parent node of the deleted

or updated node, the incremental update process will be the

same as the case of route announcements. First, FAQS does

a top-down update of the original next hops of nodes on the

subtree; next, it bottom-up updates the values of the selected

next hops and the FIB status for each node all the way to the

point where a new selected next hop does not change. The

three optimization techniques used in route announcements

apply here as well.

III. EVALUATION

We used realistic IPv4 and IPv6 routing tables from 2011

to 2016 in Route Views project [13] for the evaluation. We

collected one baseline routing table on 01/01/2011 for both

IPv4 and IPv6, and applied all following updates to obtain the

aggregation results. We use AS neighbors as the next hops

for FIB tables, because local FIB interface information is not

available in the dataset. Normally, the number of interfaces in

a FIB is much less than the number of its neighbors. Thus

our results underestimate the real FIB aggregation effects. We

verified the forwarding behaviors before and after aggregation

and they are equivalent. We ran our experiment on an Intel

Xeon Processor E5-2603 v3 1.60GHz machine. We compared

our FAQS algorithm with the optimal ORTC-based FIFA-S [12]

aggregation algorithm. Unlike FIFA-T, a faster version of FIFA

algorithms, FIFA-S has significantly smaller FIB bursts, which

is critical since writing operations on TCAM are slow [15].

We used the following metrics for our experiment:

1) FIB Size: the total number of entries before and after

aggregation. Aggregation Ratio is calculated by the

ratio between the total number of the FIB entries after

aggregation and before aggregation.

2) FIB Aggregation Time: the time spent handling all route

updates by the aggregation algorithm (before pushing

FIB changes into the data plane).

3) Total Number of FIB Changes: the total number of

FIB changes that are pushed into the data plane by

the aggregation module upon handling all route updates.

One route update from the control plane may result in

zero or more FIB changes to the data plane FIB due to

the incremental FIB aggregation process. If there is no



(a) Update node D with the new next hop 3
(b) Update original next hop to

3 and free selected next hop and
FIB status

(c) Update subtrie rooted at
updated node D and stop at

REAL node G

(d) Update ancestors and stop
when encountering the same
selected next hop at node B

Fig. 3: Incremental FIB update handling by FAQS

aggregation, one route update corresponds to one FIB

change.

4) FIB Burst: The number of FIB changes caused by a

single route update, either a route announcement or a

withdrawal.

A. IPv4 results

We use five routing tables from different ASes to demon-

strate the dependency of aggregation performance on the

number of neighbors (i.e. the number of possible next hops).

The number of next hops ranges from 21 to 4500. To illustrate

the worst case, we use a routing table in AS3356 that has 4500

next hops on 12/31/2016. There are more than 426 million

route updates to be handled for the 6-year period.

Figure 4(a) shows the number of FIB entries without

aggregation, using FIFA-S algorithm and FAQS aggregation

algorithms. The top green line marked by a triangle represents

the FIB size without aggregation. The middle line marked

by a rectangle represents the FIB size after FAQS and the

bottom line represents the FIB size after FIFA-S. Both of

the aggregation algorithms can compress the original FIB

by around 60%. Since FIFA-S reaches optimal aggregation

ratio for each route update, FAQS can achieve near-optimal

aggregation ratio.

However, FAQS uses much less time to complete the aggre-

gation as shown in Figure 4(b). FIFA-S takes around 1000s to

finish with an average 2.38µs per update, while FAQS takes

about 400s to finish with an average 0.94µs per update. Thus

FAQS is 2.53 times faster than FIFA-S but bears similar

aggregation ratio. The primary reason is that FIFA-S needs

to traverse a subtree twice to handle an update with additional

memory consumption but FAQS only needs one-time traversal

as described in Section II. The numbers also indicate that

FAQS can handle more than 1 million updates per second and

can be well adopted by Internet backbone routers, given that

BGP churn can be up to 500,000 per minute [16].

The smaller number of FIB changes to the FIB, the better

performance. Figure 4(c) shows that FAQS algorithm gener-

ates 31% less number of FIB changes than that of FIFA-S

algorithm (543,309,259 vs 786,633,132). The average number

of FIB changes per update is 1.27 for FAQS and 1.84 for

FIFA-S. Both algorithms have similar distribution for the size

of FIB bursts as shown in Table III(a). The vast majority of

FIB bursts (more than 99.97%) in both algorithms consist of 30

FIB changes and less. The largest FIB burst for FAQS is 1443,

which is slightly smaller that FIFA-S (1496). Nonetheless, the

update handling time cost for the largest burst in FAQS

takes only 30% of running time of FIFA-S. Table III(a)

presents other evaluation results of FIB aggregation for the

five ASes. It is interesting to observe that a good percentage

(6.05%-14.91%) of FIB updates result in zero FIB changes

(column nb=0).

B. IPv6 results

To the best of our knowledge, this is the first time that

IPv6 routing tables have been evaluated for their aggregation

results. We aggregated FIB tables from AS 6939 with 3501

next hops. The total number of route updates to be handled

is more than 122 million. Figure 5 shows the curves of FIB

size, aggregation time and the total number of FIB changes. In

Figure 5a, we can observe that the size of IPv6 routing tables

has increased dramatically since six years back, when there

were only less than 5,000 entries. In the end of 2016, it has

been close to 35,000. Due to the small size, the aggregation

ratios for both FAQS and FIFA-S are around 60%, which

are not as good as IPv4. Since FIFA-S outputs the smallest

aggregated FIB, FAQS’s aggregation ratio for IPv6 is close

to optimal. Remarkably, the running time of FAQS is much

lower than FIFA-S (90s vs 160s in Figure 5b) while they

have similar aggregation ratios, which again attributes to the

one-time subtree traversal with three important optimization

techniques for FAQS while FIFA-S uses two traversals. Ta-

ble III(b) demonstrates results for both AS6939 and AS33437.

AS33437 has only 7 next hops, thus the aggregation ratio is

better (58% vs 56% for FAQS and FIFA-S, respectively) and

the burst size is larger than the one in AS6939, because one

update in AS33437 may affect a larger area of next hops.

IV. RELATED WORK

A number of FIB aggregation algorithms have been pro-

posed. We highlight a few of them here. SMALTA algo-

rithm [17] uses the binary tree data structure and bases on
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Fig. 4: FIB aggregation of IPv4 routing table (AS 3356)
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Fig. 5: FIB aggregation of IPv6 routing table (AS 6939)

ORTC algorithm [11], which can achieve one-time optimal

aggregation. SMALTA takes ORTC as the initial FIB aggrega-

tion algorithm and processes updates without the optimization

of a subtree, rooted at the updated node. Eventually, SMALTA

requires full re-aggregation of the FIB table upon reaching

FIB size threshold. It results in computational spikes and high

time costs. In [18], authors study and employ the locality of

FIB updates to build Locality-aware FIB Aggregation (LFA)

algorithm. In LFA, reaggregation for an updated prefix region

is delayed until it is stabilized. However, such approach

requires timers attached to nodes which may significantly

complicate its operation in the real routers. Bienkowski et

al. [19] present a formal study on the trade-off between FIB

aggregation and update bursts. In addition, paper presents the

algorithm HIMS that attaches time-dependent counters to each

node as well. However, the paper provides no information

on the performance of the algorithm when processing real

network routing data. In [20], authors propose MMS, the

Memory Management System designed to prolong the lifetime

of legacy routers in an ISP. MMS uses parallelization of

ORTC and can aggregate routing tables locally or on an AS-

level. Moreover, MMS may change the forwarding behavior

of routers in order to gain additional compression.

Some FIB compression work uses smart data structures to

minimize storage size of FIB [21]. In [22], authors present a

tunable aggregation algorithm with compressed prefix trees.

By changing the deepness of the compression, network opera-

tors can manage the trade-off between the aggregation ratio

and BGP update overhead. Similarly, Yang et al. in [23]

present two algorithms, EAP-slow and EAP-fast and compare

it with ORTC. In [24], authors propose an aggregation algo-

rithm for OpenFlow flow tables using prefix wildcards. FIB

aggregation scheme, that applies multiple selectable next hops,

is proposed by Li et al. [8]. Abraham et al. [25] create a virtual

network system to implement and study FIB aggregation.

It is a reusable framework to test the performance of FIB

aggregation algorithms in a realistic environment.

Aggregation algorithms such as Level-1 and Level-2 [26]

compress FIB quickly but bear costly update handling oper-

ations. In 2013, Liu et al. developed FIFA algorithms [12],

which improves ORTC algorithm by applying PATRICIA trie

(PT) with incremental FIB aggregation features.

Our work, FAQS algorithm, makes a good balance of aggre-

gation time, ratio and memory consumption. It sacrifices very

little aggregation ratio compared with the optimal solution,

but speeds up the aggregation more than twice with much less

memory consumption. Considering the real-time and efficiency

requirements of FIB aggregation, our approach is superior to

the existing algorithms.

V. CONCLUSION

FIB Aggregation with Quick Selections (FAQS) is a new FIB

aggregation algorithm, that leverages compact data structures

and three unique optimization techniques to quickly and incre-

mentally select next hops when handling route updates. As a

result, FAQS can run up to 2.53 and 1.75 times faster for IPv4

and IPv6, respectively, than the optimal FIB aggregation algo-

rithm while achieving near-optimal aggregation ratio. Mean-



AS nu pavg Algorithms r nc/nu taggr tpeak nb = 0 nb = 1 nb ≤ 30 bmax m

3356 426551755 3746
FAQS 0.43 1.27 0.94µs 3.09ms 12.75% 56.21% 99.97% 1443 175MB

FIFA 0.37 1.84 2.38µs 10.29ms 12.85% 64.23% 99.98% 1496 228MB

7018 782293331 2397
FAQS 0.41 1.21 0.94µs 3.09ms 16.43% 61.71% 99.99% 1854 175MB

FIFA 0.34 1.78 2.06µs 8.39ms 16.38% 54.57% 99.97% 1892 229MB

8492 1037150247 1126
FAQS 0.39 1.37 0.93µs 3.27ms 6.05% 69.45% 99.97% 4268 178MB

FIFA 0.32 1.90 2.33µs 12.14ms 6.40% 63.77% 99.97% 4657 233MB

1239 295214072 739
FAQS 0.42 1.28 1.09µs 3.56ms 13.18% 62.18% 99.98% 1585 175MB

FIFA 0.36 1.91 2.69µs 12.68ms 13.38% 55.03% 99.97% 1952 229MB

3130 402445005 23
FAQS 0.27 1.23 0.95µs 3.26ms 14.69% 63.50% 99.98% 6464 174MB

FIFA 0.20 1.68 2.04µs 16.02ms 14.91% 56.74% 99.98% 5524 228MB

(a) IPv4 routing tables

AS nu pavg Algorithms r nc/nu taggr tpeak nb = 0 nb = 1 nb ≤ 30 bmax m

6939 122903741 2725
FAQS 0.63 1.06 0.76µs 1.27ms 7.08% 84.19% 99.99% 181 11MB

FIFA 0.61 1.18 1.33µs 2.97ms 7.09% 81.19% 99.98% 258 14MB

33437 33486605 7
FAQS 0.58 0.98 0.90µs 1.42ms 17.47% 73.68% 99.99% 2447 11MB

FIFA 0.56 1.11 1.43µs 2.48ms 17.46% 68.33% 99.99% 2432 14MB

(b) IPv6 routing tables

TABLE III: Evaluation summary (2011-2016 period). nu - the number of FIB updates; pavg - average peer number; r -

aggregation ratio; nc/nu - the ratio between the number of FIB changes and FIB updates; taggr - average aggregation time

per update; tpeak - peak aggregation time; nb - percentage of updates with burst values 0, 1 and below 30; bmax - maximum

burst value; m - memory consumption.

while, it consumes much less memory and generates much

smaller number of FIB changes when carrying out frequent

updates. The performance enhancement of the new algorithm

addresses many concerns from ISPs regarding performance

issues, and enhances the probability to push FIB aggregation

techniques further to the level of production adoption by the

industry.
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