
ar
X

iv
:1

81
2.

05
64

7v
1

 [
cs

.N
I]

 1
3

D
ec

 2
01

8

LAMP: Prompt Layer 7 Attack Mitigation With

Programmable Data Planes

Garegin Grigoryan

gg5996@rit.edu

Rochester Institute of Technology∗

Yaoqing Liu

liu@clarkson.edu

Clarkson University

Abstract—While there are various methods to detect applica-
tion layer attacks or intrusion attempts on an individual end host,
it is not efficient to provide all end hosts in the network with
heavy-duty defense systems or software firewalls. In this work, we
leverage a new concept of programmable data planes, to directly
react on alerts raised by a victim and prevent further attacks
on the whole network by blocking the attack at the network
edge. We call our design LAMP, Layer 7 Attack Mitigation with
Programmable data planes. We implemented LAMP using the P4
data plane programming language and evaluated its effectiveness
and efficiency in the Behavioral Model (bmv2) environment.

I. INTRODUCTION

Layer 7 attacks target the resources of the application layer,

such as web and database servers. A victim of Layer 7

attack might be a data center, a cloud service or a private

network. There are multiple scenarios where Layer 7 attacks

can disrupt the services provided by a network. For example, a

DDoS attack known as HTTP flood exhausts web servers and

databases of a network by sending a great amount of POST

or GET requests. The attack can be reinforced, when it is

conducted by large botnets, i.e., a network of compromised

devices controlled by an attacker. IoT (Internet of Things)

devices are the most attractive victims to be lured into botnets,

because of various security flaws. In particular, most often

the users of IoT devices do not change the default login and

password embedded by the manufacturer, which makes the

IoT devices vulnerable to dictionary attacks [1]. Moreover,

IoT devices possess limited CPU resources for identifying a

malicious user or an intrusion attempt [2].

The number of attacks at the application layer is growing,

according to the ”Global DDoS Threat Landscape Report” [3].

Current detection techniques for application layer attacks

include wide range of measures including (1) Pattern analysis

of HTTP requests; (2) Browsing behavior analysis using web

logs; (3) Geo-location analysis of web clients; (4) Machine

learning pre-profiling legitimate traffic; (5) Application layer

challenges, such as as CAPTCHA; (6) JavaScript engine

authentication and many others ([4], [5], [6], [7], [8]). All of

these techniques require application data analysis with high

computational capabilities, which are usually available at the

powerful end hosts. Upon detection, the malicious traffic can

be dropped based on their source IP addresses or other at-

tributes, such as TCP/UDP ports or HTTP request information.

∗This work was done when Garegin Grigoryan was a student at Clarkson
University.

Normally, there are two ways to achieve this goal with the

help of a victim end host. The first one is individual or local

defense, where the machine running the application installs

certain firewall/IDS rules to block the attack traffic. One of

the main drawbacks of this approach is that the identified

attacking information cannot be re-used by other end hosts

in the same network. The second approach is cooperative or

global defense, where a Software Defined Networking (SDN)

controller can be used to collect the detection results and to

install the corresponding OpenFlow-like rules to SDN-enabled

switches. However, in this case, an SDN controller introduces

additional complexity and overhead to the network operations.

In addition, security of the SDN controller itself is another

concern.

To enable prompt, cooperative, and efficient mitigation of

Layer 7 attacks, in this work, we introduce a new approach

by leveraging the Protocol Independent Switch Architecture

(PISA) [9]. PISA allows us to program data planes directly

without involving a centralized controller by using parser

engines, match-action tables, ingress and egress pipelines in

P4 language [9]. More specifically, we design LAMP, Layer 7

Attack Mitigation with Programmable data planes. In LAMP,

we track the path of each flow coming into the victim network.

If an end host application detects an intrusion attempt, it

generates an attack alert by embedding a signal flag and

the attacker’s IP address in the IP option field of the reply

packet. We assume that such application has privileges to

modify IP packets’ fields of the alert message. The alert is sent

to the closest switch directly, which eventually forwards the

packet to the ingress switch that carried the original malicious

traffic. Upon receiving the alert, the ingress switch modifies

its flow control policy to block the subsequent traffic from

the attacker. Our new mitigation strategy yields at least three

advantages: (1) It enables network-wide cooperative detection

and mitigation of attacks. The detection results obtained by

one end host can be re-used to benefit services for the entire

network; (2) The volume of in-network malicious traffic is

considerably reduced, since the network edge quickly blocks

them; and (3) It enables lightweight and efficient network

operations compared to existing SDN approaches, where an

SDN controller is required to bridge the gap between appli-

cation and network layer services. In addition, SDN incurs

many additional messages, necessary to establish connections

between the SDN controller and end hosts. Overall, we made

the following contributions in this work:

http://arxiv.org/abs/1812.05647v1

(1) We designed LAMP, a new cooperative framework for

prompt and efficient mitigation of Layer 7 attacks without the

involvement of a centralized SDN controller;

(2) To the best of our knowledge, it is the first time that we

designed a Layer 7 intrusion mitigation solution by leveraging

the new concept of programmable data planes;

(3) We implemented LAMP in P4 [9], the language for

programming the data plane of a switch. LAMP can re-use

the same P4 code for all the switches in a network for the

mitigation tasks.

(4) We emulated LAMP in the bmv2 model [10], a virtual

environment designed for testing P4-programmed switches.

Our comparison with a similar SDN architecture shows that

LAMP bears much less operational complexity and minimizes

the number of malicious application messages reaching end

hosts once an attack is detected.

II. RELATED WORK

In [15], Norman et al. studied application layer protocols

used in modern IoT devices and their vulnerabilities. De

Donno et al. in [2] presented a deep survey on DDoS

attacks against the IoT. Particularly, the authors analyzed

Mirai, an attack that was conducted using large number of

IoT devices, compromised with application layer dictionary

attacks and lured into the botnets. In [5], [7], [8], [6], the

authors proposed various Layer 7 attack detection techniques,

such as additional client tests (CAPTCHA, passwords, puzzles,

JavaScript authentication); web logs analysis and building a

profile of a legitimate user; analysis of the visiting history of

clients; traffic classification. LAMP is compatible with all of

these approaches since it is designed for fast mitigation of

attacks after they are detected by a member(s) of the network.

Giotis et al. in [16] presented an SDN architecture for

flow-based anomaly detection and installation of the mitigation

rules on the edge switches. The mitigation rules are dropping

the packets based on their source and destination IP addresses.

Lim et al. [17] design DDoS blocking solution that changes

the IP address of the victim and redirects the legitimate

connections, in order to mitigate large botnet attacks. In our

work, we present LAMP architecture, that blocks malicious

traffic at the edge switches using programmable data planes.

III. DESIGN

We demonstrate an example of Layer 7 attack mitigation

with LAMP on Figure 1. The attacker starts scanning resources

of the victim network in Figure 1(b), e.g., a random dictionary

attack in order to login into the most vulnerable end hosts.

Since the attack is conducted against the application layer,

the network layer devices, such as switches and routers, are

unable to detect it, and they allow the packets to reach the

end hosts. To track the entrance point of each external flow,

Switch 1 encapsulates its ID into the option field of the

incoming IP packet’s headers. The option is given a special

type INGRESS SWITCH INFO to differentiate it from other

possible options. Later, the switch ID and its option are

dumped as the last switch on the path forwards the packet

to the final destination. Meanwhile, that switch records the

mapping between the flow’s source IP address and the edge

(ingress) switch’s ID.

In our scenario, the end-host Server 2 detects the scanning

attempt and sends the attack alert message back into the

network (Figure 1(c)). The alert is encapsulated inside AT-

TACK ALERT option. The attack alert contains the IP source

address of the attacker. The switch (Switch 3) that receives

the alert finds the corresponding ingress switch (Switch 1),

adds the switch ID to the IP option, changes its type to

FORWARD and sends the packet to the next hop towards that

switch (Switch 1). Lastly, Switch 1 installs necessary entries

to drop the packets from the attacker before they enter the

network. To implement LAMP using the P4 language, we need

to program the following components over a programmable

data plane: (1) The parser; (2) Match-action tables; (3) Ingress

and egress flows of a switch. In the rest of this section, we

give the detailed description of our modifications in each of

those components.

A. Parser

To implement the parser, we first define (1) The headers that

should be decoupled and read from each packet; (2) The pos-

sible option numbers used in LAMP. We create 3 types of op-

tions with the following option numbers from the unassigned

range: ATTACK ALERT = 31; INGRESS SWITCH INFO =

29; FORWARD = 27.

In addition to Ethernet (ethernet t), IP (ipv4 t) and the

standard IP option header (ipv4 option t), we defined the

switch header (switch t) and the alert header (block t), that

shall contain the edge switch’s ID and attacker’s IP address re-

spectively. switch t and block t are placed within the payload

of ipv4 option t, so LAMP’s parser does not need to decouple

the Layer 4 (the Transport Layer) headers. In the meantime, for

the internal packets of a network, the parser will not decouple

switch t or block t headers, because those packets shall not

contain any of the above-mentioned IP options. Thus, we

exclude the additional overhead for the internal traffic, which

in some cases constitutes more than 75% of the total traffic

within a network [11]. LAMP’s parser’s state transitions are

illustrated on Figure 2.

B. Match-action tables

In LAMP, match-action tables are used for (1) Forwarding

the packets based on their IP destination address; (2) Adding

the edge switch’s ID to a packet that comes from outside the

network; (3) Removing the edge switch’s ID from a packet

whose next hop is an end host; (4) Forwarding the attack alert

based on the edge switch’s ID. While the tables’ structure and

actions are defined in the data plane, the content of the tables is

regulated by the control plane. We assume that the centralized

or a distributed control plane can automatically populate

match-action tables using API generated by P4 compiler.

(1) ipv4 lpm: As in the ”Simple Switch” presented by

P4 designers [12], table ipv4 lpm contains the prefixes and

the corresponding next hops (output port and MAC address

(a) Initial state
(b) Scanning the hosts of the
victim network by Attacker

(c) Server 2 detects the scanning
attempt and sends the alert

(d) Attack is blocked at the edge
Switch 1

Fig. 1: Scenario of Layer 7 attack mitigation with LAMP

Fig. 2: Parser in LAMP

information). The destination IP address of a packet will be

matched against one of those prefixes in order to get the next

hop. Based on the match, the packet is either forwarded (action

ipv4 forward) or dropped.

(2) swid add: Contains the mapping of the current switch’s

ID and the list of ports that connect the switch to an external

network. On receiving a packet from one of those ports, the

switch will attach its ID to the packet (action add swid).

In addition, the packet will be marked as ”to be checked”

using the packet’s metadata field (meta.check source ip=1).

The table is empty for internal switches.

(3) swid remove: Contains ports that connect to end hosts

and the option numbers we specified for Layer 7 attack

mitigation. LAMP needs to remove our previously attached

INGRESS SWITCH INFO option via remove swid action

from the packets that are reaching an end host at their next hop.

Meanwhile, the switch needs to store the mapping between the

attached ingress switch ID and the hashed value of the packet’s

source IP address. The table should be empty for switches that

are not directly connected to end hosts.

(4) swid forward: Contains the list of destination switch

IDs, the next hop ports and the corresponding MAC ad-

dresses in the network. This table may incur two different

actions based on the value of packet’s destination switch ID

hdr.switchID.swid: (a) If the value equals to the current switch

ID, run the action block, that will install a drop entry into

the blacklist hash table for the attached source IP address in

the alert message; (b) Otherwise, run the action ipv4 forward,

that will forward the packet to the next hop towards the

destination switch whose ID equals to hdr.switchID.swid. To

enable such workflow, the control plane needs to correctly

initialize swid forward table.

Fig. 3: Ingress pipeline in LAMP

Fig. 4: Evaluation scenario

C. Control flow

1) Ingress flow: After a packet is parsed (Figure 2), its

header fields are transmitted to the ingress pipeline as shown in

Figure 3. At first, LAMP checks the validity of the IP header.

If valid, the packet’s input port is matched against swid add

table. Two cases may happen: (1) If the port faces an external

network, the current switch ID is attached to the header option

of the packet. In addition, the packet’s source IP address

will be matched against the blacklist. If a match is found,

it indicates that this packet was from an attacker and LAMP

drops it; (2) Otherwise, the packet’s IP option is checked. If

there is an ATTACK ALERT option, the switch first finds the

corresponding ingress switch and adds its ID to the packet

header option. Then it changes the option to FORWARD and

forwards the packet towards that ingress switch. In case the

packet does not have above-mentioned options, it is matched

against ipv4 lpm table to obtain the next hop port and MAC

address. Lastly, the packet is matched against swid remove

table to remove option INGRESS SWITCH INFO if it exists

and the next hop for the packet is an end host.

Measurement
Architecture

LAMP SDN

Total 278 1288

Maximum 10 106

Minimum 5 5

Average 9 43

TABLE I: The number of invalid HTTP requests that

Server 1 received in SDN and LAMP architectures

2) Egress flow: For the egress flow, LAMP simply de-

parses the packet header in the following order: hdr.ethernet,

hdr.ipv4, hdr.ipv4 option, hdr.block, hdr.switchID. P4 program

automatically checks if each of these headers is valid and omits

the header if not. We omit P4 code listings ingress control flow

and the deparser due to the space constraints.

IV. EVALUATION

We emulated LAMP in the Behavioral Model (bmv2) [10],

which provides a P4 software switch with the compiler using

Mininet virtual environment [13]. We compared LAMP with

a similar architecture, implemented using SDN and Open-

Flow [14] in Mininet. The topology for the experiment is

similar to one illustrated on Figure 1. We used the following

scenario for the experiment (see Figure 4): At the moment

t0, the Attacker establishes TCP connection with Server 1

and Server 2; at t1, it starts sending packets with invalid

HTTP requests with a rate 200 packets/s. As soon as Server 2

detects the attack, it sends an alert message into the network

(t2). In case of LAMP, the message reaches the edge switch,

where a blocking entry is installed into the blacklist. In case

of SDN, the message is captured by an SDN controller, which

figures out the corresponding ingress switch and installs a

drop rule into its OpenFlow table. In our experiment, we

emulated 30 attacks for both LAMP and SDN architectures.

We intended to observe how many messages can go through

the network to reach the other victim before the attack can

be blocked. Interestingly, unlike LAMP, the SDN emulation

produced fluctuating results, as it can be seen in Table I.

Overall, in LAMP, Server 1 received only 278 invalid HTTP

requests, 1010 packets less than that received by Server 1 in

the SDN architecture. Moreover, the maximum number of such

requests during a single attack in LAMP is 10, while in SDN

it reached 106. But, in some cases, both LAMP and SDN

controller acted fast enough to block Attacker, so Server 1

received only 5 invalid HTTP requests. On average, in SDN,

Server 1 received 80% more invalid HTTP requests than that

in LAMP. We attribute it to the use of a centralized controller

that introduces additional overhead and complexity. In LAMP,

attack alerts are processed fully in the data plane, which makes

attack mitigation significantly faster. In the meantime, other

factors might have affected the performance of two emulated

architectures, such as the differences and deficiencies of P4

and SDN implementations in Mininet.

V. CONCLUSION

In this work, we presented LAMP, an architecture for

Layer 7 attack mitigation with programmable data planes. To

the best of our knowledge, for the first time we leveraged

Protocol Independent Switch Architecture (PISA) to design a

cooperative mitigation solution against the application layer

attacks. We presented the detailed solution of the new miti-

gation architecture in LAMP, including the modified parser,

match-action tables and the ingress flow. We implemented

LAMP in the P4 language and emulated it in the Mininet

virtual environment. Compared to a similar Software Defined

Networking architecture, LAMP mitigates the Layer 7 attacks

more quickly and minimizes the number of malicious appli-

cation layer messages that are sent to victims of the same

network.

REFERENCES

[1] R. Mahmoud, T. Yousuf, F. Aloul, and I. Zualkernan, “Internet of things
(iot) security: Current status, challenges and prospective measures,”
in Internet Technology and Secured Transactions (ICITST), 2015 10th

International Conference for. IEEE, 2015, pp. 336–341.
[2] A. Spognardi, M. De Donno, N. Dragoni, and A. Giaretta, “Analysis of

ddos-capable iot malwares,” Annals of Computer Science and Informa-

tion Systems, vol. 11, pp. 807–816, 2017.
[3] Imperva Incapsula, “Q1 2017 Global DDoS

Threat Landscape Report,” 2017. [Online]. Available:
https://www.incapsula.com/blog/q1-2017-global-ddos-threat-landscape-report.html/

[4] Infosec Institute, “Layer 7 DDoS Attacks:
Detection And Mitigation,” 2013. [Online]. Available:
http://resources.infosecinstitute.com/layer-7-ddos-attacks-detection-mitigation/

[5] J. D. Ndibwile, A. Govardhan, K. Okada, and Y. Kadobayashi, “Web
server protection against application layer ddos attacks using machine
learning and traffic authentication,” in Computer Software and Applica-

tions Conference (COMPSAC), 2015 IEEE 39th Annual, vol. 3. IEEE,
2015, pp. 261–267.

[6] R. Bronte, H. Shahriar, and H. M. Haddad, “Mitigating distributed
denial of service attacks at the application layer,” in Proceedings of

the Symposium on Applied Computing. ACM, 2017, pp. 693–696.
[7] S. Prabha and R. Anitha, “Mitigation of application traffic ddos attacks

with trust and am based hmm models,” International Journal of Com-

puter Applications IJCA, vol. 6, no. 9, pp. 26–34, 2010.
[8] C. Wang, T. N. Miu, X. Luo, and J. Wang, “Skyshield: A sketch-

based defense system against application layer ddos attacks,” IEEE
Transactions on Information Forensics and Security, 2017.

[9] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese et al., “P4: Pro-
gramming protocol-independent packet processors,” ACM SIGCOMM

Computer Communication Review, vol. 44, no. 3, pp. 87–95, 2014.
[10] “Behavioral model repository,” 2017. [Online]. Available:

https://github.com/p4lang/behavioral-model/
[11] Timothy Prickett Morgan, “Cisco: Data Center Traffic To

Quadruple Thanks To Clouds,” 2012. [Online]. Available:
https://www.itjungle.com/2012/10/29/tfh102912-story06/

[12] Barefoot, “Simple switch,” 2012. [Online]. Available:
https://github.com/p4lang/tutorials/blob/master/P4D2 2017 Spring/exercises/ipv4 forward/solution/ipv4 forward.p4

[13] K. Kaur, J. Singh, and N. S. Ghumman, “Mininet as software defined
networking testing platform,” in International Conference on Commu-
nication, Computing & Systems (ICCCS), 2014, pp. 139–42.

[14] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation in
campus networks,” ACM SIGCOMM Computer Communication Review,
vol. 38, no. 2, pp. 69–74, 2008.

[15] J. Norman and P. Joseph, “Security in Application Layer Protocols of
IoT: Threats and Attacks,” in Security Breaches and Threat Prevention
in the Internet of Things. IGI Global, 2017, pp. 76–95.

[16] K. Giotis, C. Argyropoulos, G. Androulidakis, D. Kalogeras, and
V. Maglaris, “Combining openflow and sflow for an effective and scal-
able anomaly detection and mitigation mechanism on sdn environments,”
Computer Networks, vol. 62, pp. 122–136, 2014.

[17] S. Lim, J. Ha, H. Kim, Y. Kim, and S. Yang, “A SDN-oriented DDoS
blocking scheme for botnet-based attacks,” in Ubiquitous and Future
Networks (ICUFN), 2014 Sixth International Conf on. IEEE, 2014, pp.
63–68.

https://www.incapsula.com/blog/q1-2017-global-ddos-threat-landscape-report.html/
http://resources.infosecinstitute.com/layer-7-ddos-attacks-detection-mitigation/
https://github.com/p4lang/behavioral-model/
https://www.itjungle.com/2012/10/29/tfh102912-story06/
https://github.com/p4lang/tutorials/blob/master/P4D2_2017_Spring/exercises/ipv4_forward/solution/ipv4_forward.p4

	I Introduction
	II Related Work
	III Design
	III-A Parser
	III-B Match-action tables
	III-C Control flow
	III-C1 Ingress flow
	III-C2 Egress flow

	IV Evaluation
	V Conclusion
	References

