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Abstract

We study broadcasting on multiple-access channels under adversarial packet injection. Leaky-
bucket adversaries model packet injection. There is a fixed set of stations attached to a channel.
Additional constrains on the model include bounds on the number of stations activated at a
round, individual injection rates, and randomness in generating and injecting packets. Broad-
cast algorithms that we concentrate on are deterministic and distributed. We demonstrate that
some broadcast algorithms designed for ad-hoc channels have bounded latency for wider ranges
of injection rates when executed on channels with a fixed number of stations against adversaries
that can activate at most one station per round. Individual injection rates are shown to impact
latency, as compared to the model of general leaky bucket adversaries. Outcomes of experiments
are given that compare the performance of broadcast algorithms against randomized adversaries.
The experiments include randomized backoff algorithms.
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1 Introduction

We consider distributed broadcast algorithms on multiple-access channels. The goal is to compare

their performance with respect to latency and queue sizes when packet generation is constrained

by adversarial models. We investigate how the properties of channels and kinds of adversaries and

classes of algorithms interplay among themselves to impact the performance of broadcasting.

Adversarial queuing is a methodology that can capture stability of communication without

any statistical assumptions about traffic. It can provide a framework for worst-case bounds on

performance of deterministic distributed algorithms. This approach was proposed by Borodin

et al. [17] in their study of routing algorithms in store-and-forward networks, and continued by

Andrews et al. [9]. Berger et al. [15] studied engineering aspects of adversarial queuing modeling

packet injection. Latency of routing in adversarial queueing was studied by Aiello et al. [2], Andrews

et al. [10], and Rosen and Tsirkin [29].

Multiple-access channels model contention occurring in local-area networks utilizing Ethernet

protocols, see Metcalfe and Boggs [27]. Broadcasting algorithms for multiple-access channels need

to resolve contention for access and typically use randomness in their design; see Chang et al. [18],

Zhou et al. [30], and a survey by Chlebus [19]. Throughput of channels using Ethernet protocols

was investigated by Bianchi [16] when the network is saturated, in the sense that each node has

always a packet to transmit. Kwak et al. [26] studied saturated throughput of variants of backoff

broadcast on multiple-access channels.

Stability of randomized communication algorithms on multiple-access channels can be consid-

ered in the queue-free model, in which a packet gets associated with a new station at the time of

injection; see Chlebus [19] for a survey of this topic. The model of a fixed set of stations each with its

own queue appears to have a stabilizing effect on randomized broadcasting. This was demonstrated

by H̊astad et al. [24], Al-Ammal et al. [3] and Goldberg et al. [23], who investigated the range of

injection rates for which the binary exponential backoff is stable, as a function of the number of

stations. The efficiency of backoff-related algorithms for the batched-arrival and slack-constrained

models of packet creation was studied by Bender et al. [14], Bender et al. [12], Bender et al. [13],

Agrawal et al. [1], Anderton et al. [8].

Broadcasting in multiple-access channels with queue-free stations in the framework of adversar-

ial queuing was first studied by Bender et al. [11]. Deterministic distributed broadcast performed

by stations with queues was introduced in the adversarial setting by Chlebus et al. [22]. The max-

imum throughput in such a setting was studied in [21]; that paper demonstrated that the ultimate

throughput of 1 was achievable. Anantharamu et al. [7] extended work on such throughput 1

to adversarial models with individual injection rates. Anantharamu and Chlebus [5] developed

deterministic distributed broadcast algorithms for ad-hoc 1-activating channels; that work also

demonstrated that no broadcast algorithm can be universal in such channels. Anantharamu et

al. [6] investigated latency of adversarial broadcasting by deterministic algorithms. Hradovich et

al. [25] considered deterministic broadcasting on adversarial multiple-access channels when the ad-

versary has to continually maintain the maximum allowed injection rate. Chlebus et al. [20] studied

adversarial routing in multiple-access channels subject to energy constraints.
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2 Technical Preliminaries

A multiple-access channel is a broadcast network that allows for each user to transmit a message di-

rectly to all the other users. A multiple-access channel consists of a shared communication medium

and communication agents using the shared medium; the agents are called nodes or stations. We

consider a synchronous variant of such networks, in which an execution of a communication algo-

rithm is structured as a series of consecutive rounds.

Shared channels can be categorized depending on whether the set of nodes is set permanently

or it may change in time. A perpetual channel has a permanent set of some n nodes, which have

fixed names to identify them; a node’s name is a unique integer in the range [0, n − 1]. In an

ad-hoc channel, there is a potentially unbounded supply of nodes, which do not have any individual

identifiers. Nodes may join and leave an ad-hoc channel, while only finitely many nodes participate

actively in an execution of a communication algorithm at any round.

Packets obtained by the stations are encapsulated in messages, which then are broadcast on the

channel. A transmitted message contains at most one packet. The duration of a round and the size

of a message are scaled such that it takes a whole round to transmit a message. This means that

transmissions of messages by different stations overlap if and only if they occur in the same round.

Sharing a channel. Every station obtains a feedback from the channel at every round. The feedback

is the same for each station, and does not depend on whether the station transmits a message at

this round or not. In particular, a transmitting node and a pausing node receive the same feedback.

A node hears a message when it receives it successfully. It is the critical property of multiple-

access channels how the multiplicity of concurrent transmissions affects hearing of the transmitted

messages. There are the following three relevant cases of the multiplicities of transmissions at

a round: no nodes transmit, exactly one node transmits, and multiple (more than one) nodes

transmit. When multiple nodes transmit at a round then this is referred to as a collision occurring

in this round.

If no node transmits at a round then the channel is silent, which is reflected by the corresponding

silence feedback received from the channel by every node. If only one node transmits, then all the

nodes can hear the transmitted message as the feedback they receive from the channel, including

the transmitting node. If multiple nodes transmit in the same round, which creates a collision,

then the effect is such that the messages interfere with one another and none can be heard by

any attached node. If a collision occurs at a round then every node obtains a collision signal as

the feedback from the channel. A round in which no message is heard on the channel is called

void ; a void round is either silent or created by a collision. Multiple-access channels come in two

variants, which are determined by the feedback coming from a channel when a message is not heard.

A channel without collision detection has the property that both silence and collision signals are

identical. In a channel with collision detection these respective signals are different, so that the

nodes can distinguish between the two cases of silence and collision.

Dynamic broadcasting. Stations participate in executing a distributed broadcast algorithm. The

goal is to perform dynamic broadcasting, in the sense that packets get generated and then injected

into the nodes continually, while the nodes strive to have these packets heard on the channel. All

the stations begin executing a given algorithm together starting from the first round.

Dynamic packet generation leads to additional categorization of shared channels. In the queue-

2



free model, each generated packet gets injected into a new station that has been previously passive.

Such an injection makes the station active for the duration of handling the packet; this model was

considered for example in Bender et al. [11]. In the queuing model, each station can handle multiple

packets at the same time. The packets handled by a station get stored in a private buffer space

referred to as this station’s queue; this model was considered for example in H̊astad et al.[24]. In

this paper we consider the queueing model. Every station has a potentially unbounded buffer to

store queued packets. A packet queued by a station gets dequeued immediately after it has been

heard on the channel. Packets do not get dropped by stations without being heard on the channel,

neither due to timeouts nor for any other reason.

Let the nodes that have packets to transmit in the beginning of a round be called active in this

round and passive otherwise. The event of injecting a packet into a passive station results in an

activation of this station. If a positive integer k is an upper bound on the number of stations that

can be activated at a round, then the communication channel is k-activating.

In this paper, we consider a perpetual channel with some number n of stations and adversaries

constrained by the 1-activation constraint. The motivation for having at most one node activated

at a round comes from the real-world applications, when new packets typically get injected into

nodes that are already active, and rarely a passive node will get activated by obtaining packets to

broadcast. This latter interpretation means also that having multiple passive nodes activated at a

round occurs so rarely that it can be disregarded without distorting the performance of broadcasting,

as modeled in simulations.

Historically, perpetual channels without constraints on the number of activations at a round

were typically studied. Having a constant number of named stations allows to develop deterministic

broadcast algorithms with bounded latency for all injection rates ρ < 1 and stable algorithms for

injection rate ρ = 1, see work by Chlebus et al. [22, 21] and Anantharamu et al. [6]. Restricting

packet injections to 1-activating patterns allows to develop deterministic broadcast algorithms for

dynamic channels that are stable for sufficiently small injection rates, as was shown in Anantharamu

et al. [5].

Categories of broadcast algorithms. A broadcast algorithm is full sensing when all the nodes listen

to the channel at all times. We understand“listening to the channel”as undergoing state transitions

determined by the feedback from the channel, which is opposed to “ignoring the feedback” by idling

in an initial state. An algorithm is activation based when a passive station ignores the feedback

from the channel and starts participating at a round when it gets activated by having a packet

injected into it. An active station executing an activation-based algorithm listens to the channel

when it has packets to transmit, but it stops listening to the channel as soon as it has no pending

packets. An activation-based algorithm is called acknowledgement based when a station resets its

state to initial after a successful transmission of a message.

A message transmitted on the channel includes at most one packet but it may consist of only

control bits. If an algorithm does not use control bits at all, then messages transmitted in the

course of its execution contain only packets; such an algorithm is called a plain packet one. A node

executing a plain-packet algorithm cannot transmit a message at all if it does not have a pending

packet in its queue. A general algorithm that allows stations to transmit messages with control bits

is also called adaptive. A node executing an adaptive algorithm may transmit a message consisting

of only control bits.

The actions performed at a round by a node executing a full-sensing algorithm or an activation-
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based one by an active station are as follows. The node first either transmits a message or pauses,

as determined by its state. Then the nodes obtains feedback from the channel, which is the same

at all the stations. Next, the node may have a number of packets injected into it at this round.

Finally, the node performs local computation, which can be interpreted as a state transition. Local

computation involves the following actions. If packets were injected then they are enqueued in the

node’s queue. The private variables get updated, depending on what occurred in the round up to

this moment. The node decides if to transmit at the next round, and if so then it builds a message

to be transmitted. In particular, if the queue includes packets then the message to be transmitted

may include a packet.

Performance metrics. The number of packets in a station’s queue at a round is this stations’s

queue size at the round. If a packet is injected into a station at a round t1 and is heard on the

channel at a round t2 > t1 then t1 − t1 is the number of rounds it spends in the queue, which is

this packet’s delay.

The performance of broadcast algorithms is assessed with respect to two performance metrics.

Latency is the maximum packet delay in an execution, and the number of queued packets or simply

queues is the maximum sum of the queue sizes of the stations at a round in an execution. A

broadcast algorithm is stable in an execution if there is an upper bound on the number of queued

packets.

3 Adversarial Models of Packet Injection

The quantitative restrictions on packet generation and injections are formulated as adversarial

models. The adversaries we consider are all specializations of the leaky-bucket concept. The

behavior of an adversary can be understood as an execution, which proceeds through consecutive

rounds. At each round of such an execution, the adversary first generates packets and next injects

these packets into stations. Generation means producing a finite number of packets at a round.

Injection denotes enqueuing each generated packet into a queue at some station.

Adversarial models provide a framework that allows to study worst-case performance of broad-

casting, but we can build randomness into an adversarial model to capture average performance

as well. An adversary that has either the process of generation of packets or their injection deter-

mined randomly is called randomized and otherwise it is worst case. The leaky-bucket adversarial

paradigm will be considered for both the worst-case and randomized-case senses. An adversary

may have an upper bound on the number of stations activated at a round as an additional param-

eter, in particular, it could be k-activating, for an integer k > 0. Similarly, an adversary may be

additionally constrained by upper bounds on the frequency of packets injected into each individual

station.

Leaky-bucket adversaries. A leaky-bucket adversary is determined by a pair of numbers. One

is the injection rate, denoted ρ, which is a real number satisfying 0 < ρ ≤ 1. The other is the

burstiness component, denoted β, which is a real number satisfying β ≥ 1. Together they make

a type (ρ, β) of the adversary. For a contiguous time interval τ of |τ | rounds, the adversary may

generate up to ρ · |τ |+ β packets during the rounds in τ .

The definition of the adversary of type (ρ, β) constraints both average numbers of created

packets in large intervals and also bursts of numbers of packets generated in short intervals. An
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injection rate ρ can be interpreted as the average number of generated packets, if averaging over

large intervals. Indeed, the average number created in intervals of t rounds is at most the following:
ρ·t+β
t → ρ, where t→∞. The adversary may generate at least one packet at a round and there is

an upper bound on the number of packets created in one round. The maximum number of packets

that can be generated in one round is the burstiness of the adversary. Indeed, let τ be a time

interval of just one round: |τ | = 1. Then at most ρ · |τ |+ β = ρ+ β new packets can be generated

in τ , and the following inequalities hold: 1 < ρ + β ≤ 1 + β. A generated packet is immediately

injected into a station by enqueuing it in the station’s queue. The adversary also determines where

to inject each newly generated packet, which may be constrained though a further stipulation of

the adversarial model.

The four step bucket process. Next, we describe the process of controlling the number of packets

injected at a round by a leaky-bucket adversary of a given type through the concept of a bucket.

We refer to the following process as a four-step bucket process of type (ρ, β).

The four-step process proceeds as an execution through a sequence of rounds. The actions at a

round are determined as follows. Let D be a variable, which we call a bucket. The bucket variable D

is initialized to β at round zero. The number of packets generated in each of the following rounds

is determined in four steps:

1. First, reset the bucket to D ← min[D + ρ, β].

2. Then, choose a non-negative integer X.

3. Next, set the number of actually generated packets to j ← min{bDc, X}.

4. Finally, update the bucket variable to D ← D − j.

The first step represents the bucket leaking at rate ρ, which is the rate with which the bucket’s

available capacity grows. The second step involves a proposed quantity X of packets to be gener-

ated, assuming this quantity is consistent with the adversarial model. The third step represents a

verification of the available capacity of the bucket bDc, as determined by the recent generations of

packets and continuous leaking. The fourth step updates the available capacity of the bucket to

account for the number j of packets created in this round.

Proposition 1 Consider a sequence of packets generated at each round by an adversary in an un-

bounded execution. The sequence is consistent with a leaky-bucket adversarial type (ρ, β) if and only

if it is consistent with the four-step bucket process of type (ρ, β).

Proof: Let us consider the four-step bucket process. We may observe that the invariant 0 ≤ D ≤ β
holds after each round. We show this by induction on the round numbers. The basis of induction

follows from the initialization of D to β. Assume that the invariant holds at a round and consider

the next round. The bucket will satisfy D ≤ β in the next round because the first step of generation

is the only one when D could be increased. The bucket will satisfy D ≥ 0 in the next round because

its decrease in the fourth step is preceded by a verification in the third step.

Now, we are ready to show that if a sequence of numbers of packets generated at each round is

consistent with the four-step bucket manipulation of type (ρ, β) then it is consistent with a leaky-

bucket adversary of type (ρ, β). Let D be the bucket variable and let τ = [t1, t2] be a time interval.
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The variable D is at most β when round t1 begins, by the invariant. The bucket D is incremented

by at most ρ in the beginning of each round in τ , for the total of at most ρ · |τ | during all the

rounds in τ . This can be at most balanced by injecting packets, suitably constrained by updating

D in the fourth step. Generating each packet results in decrementing the variable D to D − 1 in

the fourth step. Such a decrement is always possible to perform, because during the third step, it

is verified that the number of packets generated at a round does not surpass D. It follows that the

adversary can inject at most (t2 − t1)ρ+ β packets during τ .

Next, we show that if a sequence of numbers of packets generated at each round is consistent with

a leaky-bucket adversary of type (ρ, β) then it is consistent with the four-step bucket manipulation

of type (ρ, β). Let τ = [0, t] be a time interval, for t > 0. The bucket variable is initialized to β at

round 0, which allows to inject bβc packets in the first round. The bucket variable is an upper bound

on the number of packets that can be injected at each round, per the third step, and is decreased

only to record actual packet generation in the fourth step. So the total number of packets generated

in τ is accounted for by all the decrements of D. �

Randomized adversaries. We define randomized leaky-bucket adversaries of type (ρ, β), where 0 <

ρ ≤ 1 and β ≥ 1. The adversarial model is determined through the four-step bucket manipulation

process.

Any sequence of numbers of generated packets is consistent with the definition of a leaky-

bucket adversary of type (ρ, β), by Proposition 1. The adversary is defined by how the number of

packets X in the third step of packet generation is determined. We treat X as a random variable In

this randomized adversarial model. A random variable X has a Poisson distribution with parameter

λ > 0 if Pr(X = i) = e−λ · λii! , for each integer i ≥ 0; see Mitzenmacher and Upfal [28].

The adversary uses a random variable X that is a Poisson distribution with parameter λ equal

to the injection rate ρ in type (ρ, β). The average number of generated packets through an execution

of actions of a randomized adversary of type (ρ, β) is less than ρ. This is because the expectation

of the random variable X is the second step of generation is exactly ρ, but the number of generated

packets is restrained by the bucket’s capacity, as reflected in the third step.

Proposition 2 Each sequence of numbers of generated packets during a time segment [t1, t2], for

0 ≤ t1 < t2, that is consistent with the general adversary of type (ρ, β), can be generated with a

positive probability by the randomized adversary of type (ρ, β).

Proof: Proposition 1 states that the consistence with adversary of type (ρ, β) is equivalent to the

four-step bucket process of type (ρ, β), so we can consider the corresponding bucket process. For

each value D such that 0 ≤ D ≤ β, and for each integer j such that 0 ≤ j ≤ D, the probability of

generating j packets in a given round is positive, as determined by the second step of the generation.

�

Individual injection rates. The adversaries with individual injection rates are defined for a per-

petual channel with a given number n of stations attached to it. The stations are identified by their

names in the interval [0, n−1]. The adversarial model is a specialization of the general leaky-bucket

adversaries, so the adversary is of some leaky-bucket adversary’s type (ρ, β).

On top of the general leaky-bucket constraint, there are additional restrictions on injecting

packets into individual stations. Namely, each station i has its individual injection rate ρi assigned
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to it, such that 0 ≤ ρi ≤ 1. All these injection rates satisfy
∑n−1

i=0 ρi = ρ. For each station i and a

contiguous time interval τ of |τ | rounds, the adversary can inject at most ρi · |τ | + β packets into

the station i during the rounds in τ . These packets are chosen from among all the packets that can

be generated during τ contiguous rounds according to the general leaky-bucket constraint; there

are at most ρ · |τ |+ β such packets.

4 Broadcast Algorithms

There are two general paradigms to structure deterministic broadcast in a distributed manner.

Algorithms designed specifically for a perpetual multiple-access channel with a fixed set of nodes

attached to the channel, each with a unique name, could operate by having the nodes exchange

a token. The token visiting a node allows the node to transmit, which prevents collisions. Such

algorithms could be called token ones; see Chlebus et al. [22, 21] and Anantharamu et al. [6]. The

other paradigm is for ad-hoc channels, where nodes are dynamically generated. The idea is to

assign temporary implicit names: this works for a setting in which at most one new node is added

to the system at a round. Such algorithms could be called ad-hoc ones; see Anantharamu et al. [5].

A broadcast algorithm is universal if it is stable for each injection rate less than 1, and it is

strongly universal if it is universal and there exists a range [0, c], for 0 < c < 1, such that if an

injection rate ρ satisfies 0 < ρ < c then the number of packets in the queues is a function of only

the type of the adversary (ρ, β), rather than the number of stations n in a perpetual channel. A

broadcast algorithm has universal latency if it has bounded latency for each injection rate less

than 1. A broadcast algorithm has strongly universal latency if it has universal latency and there

exists a range [0, c], for 0 < c < 1, such that if injection rate ρ satisfies 0 < ρ < c then packet delay

is a function of only the type of the adversary (ρ, β). The throughput is the maximum injection

rate for which an algorithm is stable, if such an injection rate exists.

Broadcasting by deterministic algorithms can be more effective on perpetual multiple-access

channels than on channels executing ad-hoc algorithms, due to the stabilizing effect of a fixed set

of stations. In particular, a perpetual channel can achieve throughput 1, as shown in Chlebus

et al. [21], and there are algorithms with universal packet latency, as shown in Anantharamu et

al. [6]. In contrast to this, ad-hoc algorithms cannot handle injection rates that are at least 3
4

with bounded latency, as shown in Anantharamu and Chlebus [5], which implies that there are no

universal algorithms for ad-hoc channels.

We consider three groups of algorithms: deterministic token ones, deterministic ad-hoc ones,

and randomized ones. What follows are outlines of specifications of the algorithms.

Algorithms for perpetual channels. Algorithm Round-Robin-Withholding (RRW) is a plain-

packet full-sensing algorithm of universal latency for channels without collision detection proposed

in Chlebus et al. [22]. Algorithm Search-Round-Robin (SRR) is a plain-packet full-sensing

algorithm of universal latency for channels with collision detection proposed in Chlebus et al. [22].

Each of the algorithms RRW and SRR can be modified by using the approach called “old-go-first,”

see Anantharamu et al. [6]. This approach works as follows. An execution can be interpreted as

having a token that traverses all the nodes at a round robin manner, starting from station 0. A

phase consists of a segment of rounds in which the token makes a full cycle and returns to the

starting point. The packets that are injected in a phase are considered “new” during the phase and
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become “old” when the next phase starts. In the course of a phase, the new packets are ignored

and only the old ones are broadcast. The algorithms modified this way are called Old-First-

Round-Robin-Withholding (OF-RRW) and Old-First-Search-Round-Robin (OF-SRR),

respectively. Algorithm Move-Big-To-Front (MBTF) is an adaptive full-sensing algorithm for

channels without collision detection, proposed in Chlebus et al. [21]. It attains throughput 1 and

has universal latency.

Algorithms for 1-activating ad-hoc channels. Next we discuss deterministic distributed algorithms

designed for 1-activating ad-hoc channels. The ad-hoc model and the algorithms were given in

Anantharamu and Chlebus [5].

Algorithm Counting-Backoff is a plain-packet activation-based algorithm for ad-hoc chan-

nels with collision detection. Active nodes are stored on a virtual distributed stack, which is

implemented such that an active station remembers its distance from the top of the stack.

In an execution of algorithm Quadruple-Round, time is partitioned into segments of length

four, which are considered one by one. For a processed time segment, the stations activated in one

of the four rounds in the segment have an opportunity to broadcast their packets. The existence of

such stations is verified in a binary search manner, with the four rounds associated with leaves. In

the first round of search, each such a station is to broadcast its packet. If this first round results in

silence, then this means that no station was activated in the given time segment and the algorithm

advances to the next segment; otherwise, if collision is detected, then the binary search branches off

to consider the left and right subtrees. If a packet is heard, then the transmitting station does not

withhold the channel, instead, it will have an opportunity to transmit again in the next iteration

of the binary search.

The active stations executing algorithm Queue-Backoff are organized as a distributed first-

in-first-out queue, which they join in the order of activation time. A station at the front of the

queue transmits its packets, and the last packet has an ‘over’ bit attached, used to prompt the next

station to start its transmissions. Additionally, each message carrying a packet includes control bits

describing the current size of the queue. A newly activated station transmits immediately, which

results in a collision, unless the queue is empty. If a collision occurs, the front station learns that

the queue has just increased, and this count is reflected in the messages the station transmits. A

station that joins the queue identifies its position by the size of the queue when it learns it for the

first time, from which it subtracts the number of immediately preceding collisions created by other

stations joining the queue.

These three algorithms for ad-hoc channels do not use the names of nodes, even if they are

available. They have ranges of injection rates with bounded latency even when there is no fixed

set of nodes attached to the channel and the adversary has the power to “create” new stations

by injecting packets into them, but at most one new station at a round; see Anantharamu and

Chlebus [5].

Randomized backoff algorithms. Now we discuss two randomized backoff algorithms. These are

the Binary-Exponential-Backoff (BEB) and Quadratic-Backoff (QB). Each of them is

acknowledgement-based; as soon as a packet is made heard on the channel, the next available

packet is processed immediately. A node processes its packets in the order of injection. The backoff

algorithms are considered in their windowed versions. A window is a contiguous segment of rounds

starting from the round of a successful transmission or a collision. The lengths of windows may
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vary; the window just after a successful transmission is of size 1. When a new packet is available

for processing, the node selects a round uniformly at random in the current window, then waits for

this round to occur and transmits the packet. Since the first window consists of one round, a new

packet is transmitted immediately.

Backoff algorithms differ among themselves in how the sizes of consecutive windows increase. For

Binary-Exponential-Backoff, the ith window size was determined as 2i, and for Quadratic-

Backoff, the ith window size was defined to be i2.

The two randomized algorithms can be considered with an upper bound on the window size,

as the binary exponential backoff is used in the implementation of the Ethernet. For instance, the

ith window size for Binary-Exponential-Backoff could be 2min(10,i), which is exactly as in the

Ethernet, and for Quadratic-Backoff, the ith window size could be (min(i, 32))2. Observe that,

with these two choices of constants, the maximum size of a window is the same in BEB and QB,

since 25 = 32.

5 Upper Bounds on Queues and Latency

We investigate worst-case upper bounds on latency of adversarial broadcasting in two special cases.

One is for algorithms designed for a perpetual channel with named stations when leaky bucket

adversaries are restricted to have individual injection rates. The effect of individual injection

rates, as compared to the general leaky-bucket adversarial model, is that the old-go-first versions

of algorithms have greater bounds on packet latency rather than smaller, when compared to the

regular versions. The other is for algorithms designed for ad-hoc channels when they are executed

on perpetual channels.

Deterministic algorithms for 1-activating ad-hoc channels were given in Anantharamu and Chle-

bus [5] that can handle injection rates up to 1
2 in a stable manner. A fixed set of nodes of a perpetual

channel may have a stabilizing effect on these algorithms. Indeed, we show that a particular al-

gorithm designed for ad-hoc channels has strong universal latency when executed on 1-activating

perpetual channels.

5.1 Old-Go-First with individual injection rates

We begin with token algorithms designed for perpetual channels. It was shown in Anantharamu et

al. [6] that algorithm OF-RRW executed by n stations against an adversary of type (ρ, β) has the

following asymptotically-tight performance bounds: the number of packets simultaneously queued

in the stations is at most 2ρ
1−ρ · n+ β and packet latency is at most 2

1−ρ · n+ β(1 + ρ). In contrast

to that, algorithm RRW has he following asymptotically-tight performance bounds: the number of

packets simultaneously queued in the stations is at most 2ρ
1−ρ · n+ β and packet latency is at most

2−ρ
(1−ρ)2 ·n+ β

1−ρ . It follows that algorithm OF-RRW has superior worst-case performance bounds as

compared to algorithm RRW, better by a factor 1/(1− ρ), which grows unbounded as ρ increases

towards 1.

Next, we show that if an adversary is restricted by individual injection rates then this phe-

nomenon does not hold.

9



Theorem 1 Algorithm RRW has at most ρ
1−ρ n + β packets queued and its latency is at most

2−ρ
1−ρ n + β when executed on a perpetual channel with n stations against a (ρ, β) adversary with

individual injection rates.

Proof: We consider an execution in which the adversary injects at full power, with the effect of

burstiness considered separately. As the phases pass, their length increases approaching a limit,

with possible fluctuations. If the adversary is injecting at full power into a particular station, then

the number of rounds between two consecutive injections differs by at most 1, due to rounding. If

this occurs for all the stations in the same phase then this phase may be extended by n rounds.

Burstiness can make queues increase by β in one phase and contribute β to the length of the phase.

Let p denote the number of packets in a phase in equilibrium state, while disregarding burstiness:

the number of packets at the start of a phase is the same as after the phase is over. Such a phase

takes n + p rounds, and the number of packets injected during the phase is ρ(n + p). This gives

the equation p = ρ(n+ p), which can be solved for p to give p = ρ
1−ρ n. The number of packets in

a phase can be increased by injecting up to β packets extra packets, for a total of ρ
1−ρ n+ β.

A phase consists of the rounds spent on transmitting packets, then n silent rounds that result in

the token advancing through the stations, and possibly n extra rounds due to individual fluctuations

of the number of packets injected individually in each station. This bound is therefore as follows:

2n+ ρ
1−ρ n+ β, which can be simplified to the claimed form by algebra. �

Algorithm OF-SRR executed by n stations against an adversary of type (ρ, β) has the following

asymptotically-tight performance bounds: the number of packets simultaneously queued in the

stations is at most 4ρ
1−ρ · n + β and packet latency is at most 4

1−ρ · n + β(1 + ρ). In contrast to

that, algorithm SRR has he following asymptotically-tight performance bounds: the number of

packets simultaneously queued in the stations is at most 4ρ
1−ρ · n+ β and packet latency is at most

4−2ρ
(1−ρ)2 · n+ β

1−ρ ; see Anantharamu et al. [6].

Algorithms SRR and OF-SRR have greater upper bounds on packet latency than RRW and

OF-RRW, respectively. Algorithms SRR and OF-SRR have a property that their packet latency

becomes O(log n) for suitably small injection rates that are O(1/ log n), see Anantharamu et al. [6].

Algorithm OF-SRR has superior worst-case performance bounds compared to algorithm SRR by

the factor 1/(1 − ρ), which grows unbounded if ρ converges to 1. If an adversary is restricted by

individual injection rates, then this phenomenon does not occur, as stated next.

Theorem 2 Algorithm SRR has at most 2ρ
1−ρ n+ β packets queued at a round and its latency is at

most 3−ρ
1−ρ n + β if executed on a perpetual channel with n stations against a (ρ, β) adversary with

individual injection rates.

Proof: We denote by p the number of packets in a phase in equilibrium state, while disregarding

burstiness: the number of packets at the start of a phase is the same as after the phase is over.

There may be up to 2n− 1 void rounds in a phase, so a phase takes at most 2n+ p rounds, while

the number of packets injected during the phase is ρ(2n+p). This gives the equation p = ρ(2n+p),

which solved for p gives p = 2ρ
1−ρ n. The number of packets in a phase can be increased by injecting

up to β packets extra packets, for a total of 2ρ
1−ρ n+ β.

A phase consists of the rounds spent on transmitting packets, then 2n − 1 silent rounds that

result in the token advancing through the stations, and possibly n extra rounds due to individual
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fluctuations of the number of packets injected individually in each station. This bound is therefore

as follows: 3n+ 2ρ
1−ρ n+ β, which can be simplified to the claimed form by algebra. �

5.2 Ad-hoc algorithms in perpetual channels

We will consider algorithms designed for ad-hoc channel when executed on a perpetual channel

with a fixed set of stations against 1-activating adversaries.

Algorithm Counting-Backoff has packet latency 3β−3
1−3ρ in ad-hoc 1-activating channels, for

injection rates ρ that are less than 1
3 ; see Anantharamu et al. [5]. This algorithm is not stable

for injection rates at least 1
3 , since the stack may stay forever nonempty in an execution, and the

station at the bottom is starved for access to the channel. This property holds in both ad-hoc and

perpetual channels.

Algorithm Quadruple-Round is a full-sensing plain-packet algorithm for ad-hoc 1-activating

channels with collision detection that has packet latency 2β+ 4 and queues β+O(1) against (38 , β)

adversaries, see Anantharamu and Chlebus [5]. These bounds hold a fortiori for perpetual channels.

Next, we show that the algorithm attains bounded latency for a larger range of injection rates

in perpetual channels compared to ad-hoc ones.

Theorem 3 Algorithm Quadruple-Round has queues at most ρ
3−7ρ · n + β and latency at most

7ρ
(3−7ρ)2

· n + n+7β
3−7ρ , if executed on a 1-activating perpetual channel with collision detection against

(ρ, β) adversaries with ρ < 3
7 and n stations attached to a channel.

Proof: We investigate how the adversary can organize an execution to maximize the delay of some

packet. The discrete time line underlying an execution is partitioned into double segments of

eight consecutive rounds. It is possible to activate three stations in a segment with one packet

per activated station such that algorithm Quadruple-Round spends seven rounds processing the

double segment; see Anantharamu and Chlebus [5] for similar arguments. This can be iterated with

more triples of packets injected into the same stations in the double segment. Finally, one more

silent round verifies that the double segment is clear. This creates the worst-case time overhead

per the number of injected packets, and is the scheme repeatedly used in the argument on the level

of executions.

A specific execution we present consists of two parts. In the first part, the adversary works

to make all the active stations store as many packets in total as possible. This is accomplished

by activating three stations in a segment, whenever there is an opportunity to do this, and such

that the algorithm needs seven rounds to process such triples of packets. We keep injecting into

these stations, three packets per the same stations, when the adversarial model allows to inject three

packets, or a multiple of three, and when activating three new stations is not possible because fewer

than three stations are passive. After the goal of the first part is accomplished, a station is activated

with a new dedicated packet that we want to delay as much as possible. This is accomplished by

injecting at full power only into stations that were activated prior to the dedicated packet’s station.

The first part begins by the size of the set of acting stations growing with the goal to make all

the available n stations active. This is feasible because injecting a packet at every other round is

sufficient to maintain the current size of the queue, in the sense that a new station gets activated
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immediately after a station leaves the queue. We define a phase to be a contiguous segment of rounds

during which n stations become active. In particular, if all n stations are active simultaneously

and each of them holds one packet, then a phase takes 8
3n rounds. This is because there are n

3

segments, with three stations activated in a segment, each taking 8 rounds to clear. Once the n

stations are active, injecting with rate 3
8 is sufficient to maintain this state in the ad-hoc channel,

and with rate less that 3
7 in the perpetual one.

Let p denote the maximum number of packets accrued in the first part, disregarding burstiness,

so the true maximum number is m = p+ β. The number of double segments in a phase is n
3 , and

this is the number of silent rounds resulting in clearing the double segments. When the first part

of an execution is in the equilibrium state, the following equality is satisfied:

p = ρ ·
(1

3
n+

7

3
p
)
.

It can be solved for p to give m: m = ρ
3−7ρ · n + β. The delay of a packet injected now can be

extended to the following value(7

3
m+

1

3
n
)(

1 +
7

3
ρ+

(7

3
ρ
)2

+ · · ·
)

=
7m+ n

3− 7ρ
.

The claimed bound is obtained from this by algebra. �

Algorithm Queue-Backoff is an adaptive activation-based algorithm for ad-hoc channels

without collision detection that has packet latency 4β − 4 against 1-activating adversaries with

injection rate 1
2 , see Anantharamu and Chlebus [5].

This algorithm has strong universal latency in perpetual channels against 1-activating adver-

saries.

Theorem 4 Algorithm Queue-Backoff is an adaptive algorithm with strongly-universal packet

latency if executed on a 1-activating perpetual channel with collision detection. It has queues at

most ρ
1−ρ · n + β and latency at most ρ

(1−ρ)2 · n + β
1−ρ against (ρ, β) adversaries with ρ < 1 an n

stations attached to such a channel.

Proof: We investigate how the adversary can organize an execution to maximize the number of

packets and delay of some packet. A specific execution will consist of two parts. In the first part, the

adversary will work to make all the active stations store as many packets in total as possible. This is

accomplished by activating a station whenever there is an opportunity to do this and continuously

injecting into this station at full power until a next station is activated. After the goal of the first

part is accomplished, a station is activated with a new dedicated packet that we want to delay as

much as possible. This is accomplished by injecting at full power only into stations that are in

front of the dedicated packet’s station in the distributed queue.

The first part begins by the queue growing to encompass all the available n stations. This is

feasible because injecting a packet every other round is sufficient to maintain the current size of

the queue, in the sense that immediately afer a station leaves the queue at least one new station is

activated. We define a phase to be a contiguous segment of rounds during which n stations become

active. A phase includes n collision rounds and the rest consists of rounds with packets heard on

the channel.
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Figure 1: A comparison of ad-hoc and backoff algorithms with respect to the average
packet latency for n = 10 stations for the full range of injection rates.

Let p be the maximum number of packets stored in all the active stations while disregarding the

effect of burstiness, so that the ultimate maximum number of packets m is m = p+ β. As the first

part of the execution progresses, the number of packets approaches the solution of the equation

p = ρ(n+ p). This equation can be solved for p to yield m = ρ
1−ρ · n+ β.

Once the first part ends, a packet is injected into a newly activated station with the goal to

delay its successful transmission by injecting at full power in the stations preceding the packet’s

one. This results in the following time spent by the packet waiting:

m(1 + ρ+ ρ2 + · · · ) =
m

1− ρ
,

which is equivalent to the claimed form by algebra. �

Algorithm Queue-Backoff is adaptive, in that it uses control bits in messages. We conjecture

that this is a necessary property of algorithms with strongly universal latency.

Conjecture 1 There is no plain-packet algorithm that has strongly universal latency when executed

on 1-activating perpetual channels.

6 Simulations of Randomized Adversaries

We presents outcomes of experiments carried out as simulations of randomized adversaries. Such

adversaries are specified by bucket processes, see Section 3. A bucket process determines the

number of packets generated in a step but does not determine the stations into which the packets

get injected. We specify a natural way to select stations for injecting packets that is consistent with

the 1-activating constraint. Let us consider a (ρ, β) randomized adversary injecting packets into

the stations of a perpetual channel with n stations. At a round, first the number of packets j to
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Figure 2: A comparison of ad-hoc and backoff algorithms with respect to the average
packet latency for n = 250 stations for the full range of injection rates.

inject is determined. Next, the adversary selects one station uniformly at random from the set of

passive stations as virtually active; if all stations are active then there is no virtually active station.

The set of active and virtually active nodes makes the set of eligible nodes for this round. For each

of the new j packets, an eligible station is assigned to it independently and uniformly at random

and the packet is injected into it.

A simulating execution proceeds by running a broadcast algorithm and injecting packets subject

to the type (ρ, β) of a considered adversary; in our experiments β = 10. The execution is partitioned

into stages, such that a stage concludes with the average packet delay of a batch of some K

packets; this parameter is set to K = 5, 000 in our experiments. A stage begins by designating K

consecutively generated packets as marked and concludes when all the marked packets have been

heard on the channel. As the execution proceeds, packets are generated continuously, but if they

are not marked then their delay is not measured. As a stage ends, the average packet delay is

determined by the K marked packets.

We say that an average packet latency stabilizes when the relative average packet latencies

in any two stages in four consecutive stages differ by less than 5%. If the average packet delay

stabilizes then it is considered as output of the experiment, otherwise the channel is considered

unstable. This assessment is conservative with respect to stability, in that some latency may be

recorded even if the system is unstable in the stochastic sense. The latencies obtained in simulation

may vary significantly among the algorithms, so we depict them on exponential vertical scales in

the charts.

Figures 1 and 2 present a comparison of ad-hoc deterministic algorithms and acknowledgement-

based randomized algorithms on the whole spectrum of injection rates and for two sample sizes of

the system: one relatively small and the other larger. Latencies turn out to be comparable for small

injection rates but vary significantly when injection rates approach 1. In particular, the latencies

for algorithm Counting-Backoff do not stabilize in some range, which is consistent with this

algorithm’s instability in the worst-case sense for injection rates greater than 1
2 . Algorithm Queue-

Backoff outperforms all the other algorithms. Individual comparisons depend on the number of
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Figure 3: A comparison of average packet latency of token algorithms for the range
[0.8, 0.98] of injection rates with n = 10 stations.

stations; in particular, Quadruple-Round may outperform both backoff algorithms, or vice versa.

Figures 3 and 4 present experiments of token algorithms for a range of large injection rates close

to 1, and for two sample sizes of the system: one relatively small and the other larger. The best

choice for large systems and low injection rates may be algorithm SRR. Another observation is that

RRW outperforms OF-RRW in this adversarial model, which is consistent with the analysis of

the individual-injection rates adversaries in Section 5.1, and the opposite of the worst-case bounds

given in Anantharamu et al. [6]. Algorithm MBTF may have smallest latency for large injection

rates, but when the number of stations is sufficiently small; this is consistent with the worst-case

bound showed in Anantharamu et al. [6] to depend on n2.

7 Conclusion

We presented algorithmic contributions to the landscape of broadcasting on adversarial multiple-

access channels by deterministic distributed algorithms. These results demonstrate how perfor-

mance bounds of broadcast algorithms depend on model’s components. Featured examples include

perpetual channels versus ad-hoc ones, and the models of unconstrained leaky-bucket injection rate

versus individually-constrained injection rate.

Leaky-bucket adversaries allow to investigate stability and latency of broadcasting on multiple-

access channel without stochastic assumptions on packet injection. The performance bounds of

deterministic algorithms for such adversarial traffic can be worst-case only because adversarial

packet injection is constrained by upper bounds on how many packets can be injected in all bounded

time intervals. Simulations of such adversaries are virtually impossible because the constrains on

the adversaries are in the form of an upper bound of how many packets an adversary may inject

if exercising “full power of packet generation” while this behavior does not necessarily result in

15



0.80 0.81 0.82 0.83 0.84 0.85 0.86 0.87 0.88 0.89 0.90 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98

Injection Rate

101

102

103

104

105

A
ve

ra
ge

 P
ac

ke
t L

at
en

cy

RRW
SRRW
OFRW
MBTF

Figure 4: A comparison of average packet latency of token algorithms for the range
[0.8, 0.98] of injection rates with n = 250 stations.

worst-case performance.

We proposed a randomized model of adversarial packet injection that allows for arbitrarily

bursty traffic to occur with positive probability. This model is amenable to simulations and the

average performance of broadcasting algorithms can be discovered via simulated experiments. The

examples of such simulations that we gave indicate a complicated landscape of behavior of broadcast

algorithms, with performance bounds depending on the number of stations in a perpetual channel

as well as on injection rates. These experiments involve two popular randomized backoff protocols,

binary-exponential and quadratic ones. The most interesting injection rates are these close to

the ultimate injection rate of 1, as they differentiate the algorithms most. Such differentiation is

not necessarily simple and conclusive, as relative packet latency of two broadcast algorithms may

depend on the number of stations attached to the channel. Deriving formal performance bounds

on the expected packet latency and queue size of the studied broadcast algorithms for the model

of randomized adversaries is an interesting direction of future research.

References

[1] Kunal Agrawal, Michael A. Bender, Jeremy T. Fineman, Seth Gilbert, and Maxwell Young.

Contention resolution with message deadlines. In Proceedings of the 32nd ACM Symposium

on Parallelism in Algorithms and Architectures (SPAA 2020), pages 23–35. ACM, 2020.

[2] William Aiello, Eyal Kushilevitz, Rafail Ostrovsky, and Adi Rosén. Adaptive packet routing

for bursty adversarial traffic. Journal of Computer and System Sciences, 60(3):482–509, 2000.

[3] Hesham Al-Ammal, Leslie Ann Goldberg, and Philip D. MacKenzie. An improved stability

bound for binary exponential backoff. Theory of Computing Systems, 34(3):229–244, 2001.

16



[4] Bader A. Aldawsari, Bogdan S. Chlebus, and Dariusz R. Kowalski. Broadcasting on adversarial

multiple access channels. In Proceedings of the 18th IEEE International Symposium on Network

Computing and Applications (NCA 2019), pages 1–4. IEEE, 2019.

[5] Lakshmi Anantharamu and Bogdan S. Chlebus. Broadcasting in ad hoc multiple access chan-

nels. Theoretical Computer Science, 584:155–176, 2015.

[6] Lakshmi Anantharamu, Bogdan S. Chlebus, Dariusz R. Kowalski, and Mariusz A. Rokicki.

Packet latency of deterministic broadcasting in adversarial multiple access channels. Journal

of Computer and System Sciences, 99:27–52, 2019.

[7] Lakshmi Anantharamu, Bogdan S. Chlebus, and Mariusz A. Rokicki. Adversarial multiple

access channels with individual injection rates. Theory of Computing Systems, 61(3):820–850,

2017.

[8] William C. Anderton, Trisha Chakraborty, and Maxwell Young. Windowed backoff algorithms

for wifi: theory and performance under batched arrivals. Distributed Computing, 34(5):367–

393, 2021.

[9] Matthew Andrews, Baruch Awerbuch, Antonio Fernández, Frank Thomson Leighton, Zhiyong

Liu, and Jon M. Kleinberg. Universal-stability results and performance bounds for greedy

contention-resolution protocols. Journal of the ACM, 48(1):39–69, 2001.

[10] Matthew Andrews, Antonio Fernández, Ashish Goel, and Lisa Zhang. Source routing and

scheduling in packet networks. Journal of the ACM, 52(4):582–601, 2005.

[11] Michael A. Bender, Martin Farach-Colton, Simai He, Bradley C. Kuszmaul, and Charles E.

Leiserson. Adversarial contention resolution for simple channels. In Proceedings of the 17th

ACM Symposium on Parallel Algorithms and Architectures (SPAA 2005), pages 325–332, 2005.

[12] Michael A. Bender, Jeremy T. Fineman, Seth Gilbert, and Maxwell Young. Scaling exponen-

tial backoff: Constant throughput, polylogarithmic channel-access attempts, and robustness.

Journal of the ACM, 66(1):6:1–6:33, 2019.

[13] Michael A. Bender, Tsvi Kopelowitz, William Kuszmaul, and Seth Pettie. Contention resolu-

tion without collision detection. In Proccedings of the 52nd Annual ACM SIGACT Symposium

on Theory of Computing (STOC 2020), pages 105–118. ACM, 2020.

[14] Michael A. Bender, Tsvi Kopelowitz, Seth Pettie, and Maxwell Young. Contention resolution

with constant throughput and log-logstar channel accesses. SIAM Journal on Computing,

47(5):1735–1754, 2018.

[15] Daniel S. Berger, Martin Karsten, and Jens B. Schmitt. On the relevance of adversarial

queueing theory in practice. In Proceedings of the International Conference on Measurement

and Modeling of Computer Systems (SIGMETRICS 2014), pages 343–354. ACM, 2014.

[16] Giuseppe Bianchi. Performance analysis of the IEEE 802.11 distributed coordination function.

IEEE Journal on Selected Areas in Communications, 18:535 – 547, 2000.

[17] Allan Borodin, Jon M. Kleinberg, Prabhakar Raghavan, Madhu Sudan, and David P.

Williamson. Adversarial queuing theory. Journal of the ACM, 48(1):13–38, 2001.

17



[18] Yi-Jun Chang, Wenyu Jin, and Seth Pettie. Simple contention resolution via multiplicative

weight updates. In Proceedings of the 2nd Symposium on Simplicity in Algorithms (SOSA

2019), volume 69 of OASICS, pages 16:1–16:16. Schloss Dagstuhl - Leibniz-Zentrum für Infor-

matik, 2019.

[19] Bogdan S. Chlebus. Randomized communication in radio networks. In Panos M. Pardalos,

Sanguthevar Rajasekaran, John H. Reif, and Jose D. P. Rolim, editors, Handbook of Random-

ized Computing, volume I, pages 401–456. Kluwer Academic Publishers, 2001.

[20] Bogdan S. Chlebus, Elijah Hradovich, Tomasz Jurdziński, Marek Klonowski, and Dariusz R.
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