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Abstract—Video streaming is the dominating traffic in today’s
data-sharing world. Media service providers stream video content
for their viewers, while worldwide users create and distribute
videos using mobile or video system applications that signifi-
cantly increase the traffic share. We propose a multilayer and
pipeline encoding on the computing continuum (MPEC2) method
that addresses the key technical challenge of high-price and
computational complexity of video encoding. MPEC2 splits the
video encoding into several tasks scheduled on appropriately
selected Cloud and Fog computing instance types that satisfy
the media service provider and user priorities in terms of
time and cost. In the first phase, MPEC2 uses a multilayer
resource partitioning method to explore the instance types for
encoding a video segment. In the second phase, it distributes the
independent segment encoding tasks in a pipeline model on the
underlying instances. We evaluate MPEC2 on a federated com-
puting continuum encompassing Amazon Web Services (AWS)
EC2 Cloud and Exoscale Fog instances distributed on seven
geographical locations. Experimental results show that MPEC2
achieves 24% faster completion time and 60% lower cost for
video encoding compared to resource allocation related methods.
When compared with baseline methods, MPEC2 yields 40%–
50% lower completion time and 5%–60% reduced total cost.

Index Terms—Cloud, Fog, computing continuum, video encod-
ing, multilayer partitioning, encoding pipeline.

I. INTRODUCTION

The global Internet phenomena report [1] revealed that
video streaming dominated 53.72% of the overall Internet
traffic during the first half of 2021. YouTube, Netflix, and
Facebook are the three popular over-the-top media service
providers that stream the services to their users through
web video player or mobile applications. Worldwide users
generate and distribute videos through video-oriented mobile
applications (i.e., live video sharing, online gaming) from a
wide range of client devices, mostly tablets and smartphones.
Video traffic will increase significantly as new multimedia
applications, such as augmented and virtual reality, surveil-
lance systems, autonomous cars, and online learning, become
available. Furthermore, the media service providers encode
an initial video sequence into varying sequences of different
bitrates, resolutions, and codecs for viewers with a variety of
devices and network access characteristics. Such an increase
in video data volume requires intensive and costly use of
computing resources for highly complex encoding tasks.

Cloud computing introduced a new type of value-added
video encoding services varying in price and performance [2],
used by service providers for the downlink streaming scenarios

of video content to their viewers. Fog computing extends
Cloud services with micro-data centers (or cloudlets) [3] lo-
cated towards the edge of the network, closer to the end-users.
Fog resources cache stream videos for the user devices with
lower latency in the downlink, and transcode user-generated
videos for efficient streaming to other viewers in the uplink [4].

Related methods tackle this challenging problem by dividing
a video sequence into smaller tasks, and distributing them
among instances for encoding [5], [6]. These methods only
focus on Cloud infrastructures, follow one objective (i.e., time
or cost), and do not consider the transmission time of video
data that significantly affects the total encoding time and cost.

In this work, we focus on the video encoding scheduling
on the computing instances in the continuum. We propose a
multilayer and pipeline encoding on the computing continuum
(MPEC2) offering improved time and cost performance based
on the following operational steps: 1) identify scenes of similar
visual complexity in a video stream, split each scene into
segments, and select a segment of each scene; 2) create
a three-layer graph of resource, network channel and cost
features, and partition the computing instances with similar
features by the multilayer graph partitioning method [7];
3) manage the segment encoding tasks among Cloud and Fog
instances in two phases: a) select an appropriate instance type
from proper partitions to encode one video segment task, and
b) distribute all the scene’s segment tasks over the selected
instances by defining a pipeline of segment encoding [8].

The main contributions of this work are the following:
• We formulate the scheduling problem as a multilayer and

pipeline video encoding model aiming at minimizing video
encoding completion time and cost by selecting the appro-
priate instance types of the Cloud and Fog;

• We benchmark the video encoding performance of AWS
EC2 [9] and Exoscale [10] instances, respectively for ten
and five different types, using H.265 codec and various
constant quantization parameters, over 500 video segments
with different content complexity;

• We demonstrate that MPEC2 reduces the completion time of
video encoding by 24% and the total cost by 60% compared
to related work.

This paper has eight sections. Section II surveys the related
work. Section III describes the model, followed by the archi-
tectural design in Section IV. Section V presents the proposed
MPEC2 stream encoding algorithm. Section VI defines the
experimental design, while Section VII elaborates on the



evaluation scenarios and result analysis. Finally, Section VIII
concludes the paper.

II. RELATED WORK

This section reviews the state-of-the-art about the video
streaming services on the Cloud and Fog computing infras-
tructures, classified into three categories.

A. Time reduction

Long et al. [11] presented an architecture of multiple Fog
devices cooperatively preprocessing video chunks generated
by cameras. The architecture divides delay-sensitive video
processing tasks in several sub-tasks, preprocessed by multiple
Fog devices in parallel aiming for lower completion time. Aral
et al. [12] considered Fog computing characteristics to improve
the user experience for latency-sensitive video encoding. The
service placement considers the network connectivity path and
available bandwidth between the user device and the Cloud
or Fog instances. Ali et al. [13] proposed a real-time video
stream processing method using Fog and in-transit computing.
The algorithm allocates the video processing application by
preferring the low-latency Fog devices while satisfying the
deadlines. In contrast, MPEC2 also considers the cost objective
from the perspective of media provider or user with limited
budgets that affect the computing service selection.

B. Cost reduction

Barais et al. [14] designed a low-cost video-transcoding
method as a microservice application. Their results show
that parallel executions of video transcoding microservices on
small Fog devices cost lower than on private Cloud servers.
Mehrabi et al. [15] proposed a Fog-assisted and cost-efficient
video streaming method and greedy-based scheduling algo-
rithm to map users to Fog servers. The aim was maximizing
the quality of experience and fairness among mobile users, and
load balancing of the Fog data centers. In contrast, MPEC2
also considers the encoding time objective, besides the cost
objective, with regard to the video encoding deadline required
by media providers or users.

C. Time and cost reduction

Veillon et al. [16] proposed an architecture for a federated
Fog content delivery network aiming to reduce the latency and
cost of fetching video segments. The architecture uses cached
video segments at the neighboring fog delivery networks for
encoding the on-demand video segment. Erfanian et al. [17]
proposed a mixed binary linear programming method for
lightweight transcoding on the Fog with reduced transcoding
time and computation cost. This method extracts the encoding
metadata from the origin server and employs for transcoding
at the Fog. Mehran et al. [18] proposed a multi-objective
optimization-based model for placing an application on the
computing continuum. This method aims at minimizing the
completion time and total cost along with the energy consump-
tion of application execution on the Cloud and Fog instances.
MPEC2 considers reducing the transmission times in addition
to these works.

D. Contribution

Related methods model the video encoding on the Cloud
and Fog instances but neglect resource and network utilization
along with the economic cost. We extend these methods by re-
searching a network, resource, and cost multilayer partitioning
model that minimizes completion time and cost. Moreover, we
explore the scene scheduling consisting of multiple segments
passing through encoding pipeline stages.

III. MODEL

This section presents the formal computing infrastructure,
network, encoding application, segment, scene, and stream
encoding models along with the problem definition.

A. Computing infrastructure model

The computing infrastructure consists of NI homogeneous
clusters: I = {Ij |1 ≤ j ≤ NI}, where a cluster consists of Nj

virtual machine (VM) instances of type Ij ∈ I with the same
resource capabilities (e.g., AWS c5.2xlarge).

1) Coordinator: Iζ is a special instance in the computing
infrastructure holding the entire video stream, which orches-
trates other instances during the encoding process.

2) Instance type: Ij = (COREj , CPUj , CPj , MEMj , STORj , CSj)
is a vector representing the resource capabilities: 1) the number
of the processing cores COREj with 2) the processing speed
CPUj measured in millions of instructions per second (MIPS),
3) available at a processing cost CPj per hour of instance
use, 4) the memory MEMj size (in GB), 5) the storage STORj
size (in GB) available at a storage cost CSj per MB of use.

3) Network channels: H = {hkj |1 ≤ j, k ≤ NI} connect
the homogeneous clusters, where hkj = (LATkj , BWkj , CRkj)
models the round-trip latency LATkj , bandwidth BWkj , and
cost CRkj for transmitting 1MB of video stream between two
instances from the clusters of instance types Ik and Ij grouped
based on their geographical locations.

B. Encoding application model

We represent an encoding application
A = (CD,BR,R,PR,U) with a codec CD, bitrate BR,
resolution R, preset PR, and media provider’s or user’s
time and cost requirements U = {θ, α}. The user requires
a deadline θs, or time priority of α = 1 or cost priority of
α = 0.

C. Video stream model

Video stream V = (Vx,NV) represents a sequence of NV

scenes Vx (1 ≤ x ≤ NV). A video scene Vx = (Vxy,D,NVx)
merges NVx video segments Vxy (1 ≤ y ≤ NVx) with the
same duration D, as typically performed by HAS streaming
services [19], [20].

D. Segment encoding model

We model in this section the time and cost of encoding a
video segment Vxy requested by a coordinator Iζ .



a) Completion time: T (A, Vxy, Ij) of encoding a seg-
ment Vxy by an application A on an instance Ij is the sum of
the transmission and encoding times:

T (A, Vxy, Ij) = Tr (Iζ , Vxy, Ij) + Te (A, Vxy, Ij) .

b) Transmission time: Tr (Iζ , Vxy, Ij) is the ratio be-
tween the size of a segment Vxy and the network bandwidth
BWζj , plus the round-trip time LATζj from the coordinator Iζ
to Ij = µ (A, Vxy):

Tr (Iζ , Vxy, Ij) =
sizeof(Vxy)

BWζj
+ LATζj .

c) Encoding time: Te (A, Vxy, Ij) of a video segment
Vxy on an instance Ij is:

Te (A, Vxy, Ij) =
CPU (A, Vxy)

CPUζ
· RSζj ,

where CPU (A, Vxy) is the computational requirement (in mil-
lion of instructions (MI)) to encode a segment Vxy by an
application A on the coordinator Iζ with the processing speed
CPUζ , and RSζj is its relative processing speed to type Ij :

RSζj =
CPUζ

CPUj
.

d) Encoding cost: C (A, Vxy, Ij , Iζ) of a segment Vxy by
an application A on an instance Ij is the sum of its processing
CPj , storage CSj , and transmission costs CRkj [21]:

C (A, Vxy, Ij) = Te · CPj + sizeof(Vxy) · CSj + Tr · CRζj .

E. Scene encoding model

We model, in this section, the time and cost of encoding a
video scene consisting of multiple segments.

1) Completion time: T (A, Vx, Ij) of encoding a scene Vx
is the sum of the waiting, transmission, and encoding times
of all its segments on a set of instances Ij :

T (A, Vx, Ij) = Tw (A, Vx, Ij) + Tr (Iζ , Vx, Ij)+

+ Te (A, Vx, Ij) .

a) Waiting time: Tw (A, Vx, Ij) required by a scene Vx
is the transmission time of all its previous video scenes Vz:

Tw (A, Vx, Ij) =

{
0, x = 1;∑x−1

z=1 Tr (Iζ , Vz, Ij) , x ̸= 1.

b) Transmission time: Tr (Iζ , Vx, Ij) of a video scene Vx
from the coordinator Iζ to a set of instances Ij takes place in
multiple pipeline stages, as illustrated in Figure 1. Each stage
fully utilizes the bandwidth to each instance by maximizing the
number of transmitted segments per second (where Vxy ∈ Vx):

Nζj =
BWζj

sizeof(Vxy)
.

The scene transmission time considers the segment transmis-
sion to the

⌈
Nj

Nζj

⌉
homogeneous groups of Nζj instances:

Tr (Iζ , Vx, Ij) = Tr (Iζ , Vxy, Ij) ·
⌈
Nj

Nζj

⌉
,

where it is important to note that while the transmission time
of segments to the first stages of instances of each group is
considered in this formula, the segment transmission time to
the following stages is ignorable due to their overlap with their
previous segment encoding stages.

c) Encoding time: of a video scene Vx on the set of
instance types Ij is the total segment encoding times along
the pipeline stages:

Te (A, Vx, Ij) = Te (A, Vxy, Ij) ·
⌈
NVx

Nj

⌉
,

where
⌈
NVx

Nj

⌉
is number of stages in an encoding pipeline.

F. Stream encoding model

We model in this section the completion time and total cost
of an application A for encoding a video stream V consisting
of multiple scenes Vx ∈ V on a set of instances I.

1) Completion time: T (A, V, I) is the latest completion
time of all the scenes Vx ∈ V:

T (A, V, I) = max
∀Vx∈V

{T (A, Vx, Ij)} .

2) Total cost: C (A, V, I) aggregates the transmission costs
from the coordinator with the storage and processing costs on
the encoding instances of its scenes Vx ∈ V:

C (A, V, I) =
∑
∀Vx∈V

{Tr (Iζ , Vx, Ij) · CRζj+

+sizeof(Vx) · CSj + Te (A, Vx, Ij) · CPj} .

G. Example of scene encoding pipelines

Figure 1 depicts an example encoding pipeline of a video
stream with two scenes V = {V1, V2} comprising NV1 = 8 and
NV2 = 4 segments, respectively. We consider an infrastructure
with two instance types I = {I1, I2}, with four instances of
the first type N1 = 4 and two of the second N2 = 2. We
assume that the maximum number of segments per second
transmitted from Iζ to both instance types are Nζ1=2 and
Nζ2=1, respectively. Thus, we have

⌈
N1

Nζ1

⌉
=2 and

⌈
N2

Nζ2

⌉
=2

homogeneous groups of instances receiving the segments
through the first stages. Thus, encoding the scene V1 needs
two stages on the four instances of type I1, while the scene
V2 needs two stages on the two instances of type I2.

H. Problem definition

We define in this section the problem of scheduling an
encoding application.

a) Segment encoding schedule: is a function
µ : (A, Vxy) → I that assigns a segment Vxy of an encoding
application A to an instance type Ij = µ (A, Vxy).
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Fig. 1: Scene encoding pipeline example.

b) Segment scheduling objective: minimizes the aggrega-
tion of the completion time and cost of the segment encoding:

O1 (A, Vxy) = min
µ(A,Vxy)=Ij

{α · T (A, Vxy, Ij)+

+ (1− α) · C (A, Vxy, Ij)},

where α ∈ [0, 1] is a media service or user provider tradeoff.
We instantiate this objective following particular problems:

1) time-optimized scheduling when α = 1;
2) cost-optimized scheduling when α = 0;
3) deadline-constrained scheduling with minimal cost trade-

off: T (A, Vxy, Ij) ≤ θ ∧ min(α).
c) Stream scheduling objective: minimizes the comple-

tion time by execution of the scenes in pipeline stages:

O2 (A, V) = min
µ(A,V)=I

T (A, V, I) .

IV. MPEC2 ARCHITECTURE

Figure 2 represents an overview of the MPEC2 architecture
for encoding a video using different codecs or/and resolutions
with reduced completion time and cost. MPEC2 runs on a
coordinator Iζ that accesses a video stream, makes scheduling
decisions, and distributes segments for encoding on appro-
priate computing instances. MPEC2 has five components,
described as follows.

A. Scene detector
The scene detector identifies scenes of similar visual com-

plexity in an input video, and splits each scene into segments
for encoding, based on a default segment duration D. We select
the middle segment Vxm of a scene Vx ∈ V to represent all
the segments of that scene. The reason is that all the segments
of each scene have similar content complexity, encoding time,
and size [5]. The selected segments Vxm are then sent to other
components for further processing.

B. Multilayer graph generator
To handle the instance diversities, we model the comput-

ing infrastructure as totally interconnected multilayer graph
G = (I, E ,L), where I is the set of instances and E is the set
of interconnections between different resources, network and
cost layers L = {li|0 ≤ i < 3}:

a) Network layer (l0): captures the network interconnec-
tions between instances using the round-trip network latency
LATkj and bandwidth BWkj , modeled in Section III-A.

b) Resource layer (l1): indicates the similarity between
instances with respect to their processing speed CPUj , number
of cores COREj , memory MEMj , and storage STORj , modeled
in Section III-A.

c) Cost layer (l2): defines the similarity between in-
stances based on their processing CPj , storage CSj , and
transmission costs CRj , modelled in Section III-D0d.

The edges E in the multilayer graph are of two types:
d) Intra-layer edges: Ell = {(Ik, Ij) ∈ I × I|k ̸= j}

connect two instances in one layer l ∈ L with a weight wl
kj

modelled according to the similarity score in each layer l ≥ 1:

wl
kj =

1

1 + dl (Ik, Ij)
.

where dl (Ik, Ij) is the Euclidean distance between instance
types Ik and Ij in layer l ≥ 1.

e) Inter-layer edges: Ell′ = {(Ij , Ij) ∈ I × I} connect
an instance Ij in the layer l ∈ L with the corresponding
instance Ij in all the other layers l′ ∈ L, where l ̸= l′.

C. Partitioner

Classifying the instances based on their features narrows
the search space to fewer partitions, decreases the search
complexity, and improves the scheduling decision time [7].

1) Features: We define three features for classification:
a) Network channel features: are network latency LATζj

and bandwidth BWζj between the coordinator Iζ and the
instance type Ij .

b) Resource features: are processing speed CPUj , mem-
ory MEMj and storage sizes STORj for an instance type Ij .

c) Cost features: are the costs of encoding CPj , storage
CRj and transmission CRj of an instance type Ij .

2) Instance classification and partitioning: has three steps.
a) Layer partitioning: defines a set of disjoint partitions

for each layer using the Louvain clustering algorithm [22].
Each partition contains instances with similar network (latency
and bandwidth), resources (processing speed, memory and
storage) or cost (encoding, storage, transmission) features.
Layer partitioning targets a single objective, such as trans-
mission time, processing speed, or cost.

b) Graph compression: merges each partition containing
instances with similar features (e.g., network, resources, costs)
into a single node. In addition, it merges the edges between
the partitions into a single edge.

c) Compressed graph classification: defines a set of par-
titions P = {pz|1 ≤ z ≤ Np} with similar network, resources
and cost features across all layers using the Louvain clustering
algorithm and aiming for multiple objectives, such as data
transmission time, processing speed, and cost tradeoffs. Each
partition has aggregated network channel, resource and cost
features fp = (LATp, BWp, CPUp, MEMp, STORp, CPp, CSp, CRp),
calculated as their average across all its instances.
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Fig. 2: MPEC2 architecture overview.

D. Partition selector

This component selects one partition p ∈ P for placing an
application according to the media provider or user deadline,
time or cost priority:

p =


max
∀p∈P

{SIM(A, Vxm, fp)}, T ≤ θ;

min
∀p∈P

{T (A, Vxm, fp)}, α = 1;

min
∀p∈P

{C (A, Vxm, fp)}, α = 0;

a) max
∀p∈P

{SIM(A, Vxm, fp)}: selects a partition p with av-

erage completion time of segment encoding that has maximum
similarity [7] to the deadline θ. The similarity function SIM

relies on the Euclidean distance between partition features,
and provider or user priority α to meet the deadline θ with
minimum cost [7].

b) min
∀p∈P

{T (A, Vxm, fp)}: selects a partition p with min-

imum average completion time for encoding the segment
Vxm ∈ V regarding the user’s time or cost priority α.

c) min
∀p∈P

{C (A, Vxm, fp)}: selects a partition p with min-

imum cost for encoding a video segment Vxm ∈ V regarding
the user’s time or cost priority α.

E. Segment and scene encoding scheduler

1) Segment encoding scheduling: selects an instance type
Ij ∈ p that optimizes the objective O1 defined Section III-H,
representing the tradeoff between the completion time (ag-
gregating the transmission and encoding times, explained in
Section III-D) and the processing cost based on the user or
provider time and cost priority α, as follows.

a) Cost-optimized scheduling: sorts all instances in the
partition in ascending order based on their estimated costs, and
selects the cheapest one. In case of more instances with equal
cost, it considers the completion time as the second priority.

b) Time-optimized scheduling: sorts all instances in the
partition in ascending order based on their completion times
and selects the one with the fastest one. In case of more
instance selections, it considers the cost as the second priority.

Algorithm 1 MPEC2 scheduler.
Input: A = (CD,BR,R,PR,U) ▷ Encoding application

V ▷ Video stream
I = {Ij |1 ≤ j ≤ NI} ▷ Cloud and Fog homogeneous clusters set
H = {hkj |1 ≤ j, k ≤ NI} ▷ Network channel set
Nj ; ∀Ij ∈ I ▷ Number of instances of each type

Output: (T,C, µ (A, Vxy)) ; ∀Vxy ∈ V ▷ Time, cost, and schedule of all segments
1: function MPEC2(A, V, I,H,Nj )
2: G ← GENERATEML(I,H) ▷ Generate a multilayer graph
3: P ← PARTITION(G) ▷ Partition the multilayer graph
4: (Vx,NV)← DETECTSCENES(V), ∀x ∈ [1,NV] ▷ Detect scene
5: for all Vx ∈ V do ▷ Iterate scenes
6: for all Vxm ∈ Vx do ▷ Iterate selected segments
7: fp ← (LATp, BWp, CPUp, MEMp, STORp, CPp, CSp, CRp) ; ∀p ∈ P
8: p← SELECTPARTITION(A, Vxm, fp) ▷ Select partition
9: µ(A, Vxm)← SCHEDULESEGMENT(A, Vxm, p)

↪→ ▷ Schedule segment encoding
10: end for
11: T,C, µ← SCHEDULESCENE(A, Vx, µ,Nj) ▷ Schedule scene encoding
12: end for
13: return (T,C, µ);
14: end function

c) Deadline-constrained scheduling: selects an instance
that satisfies the deadline with the lowest cost.

2) Scene encoding scheduling: allocates the segments of
the video scenes that compose a stream to the instances in
the computing continuum (see Section III-B), optimizing the
objective O2 defined in Section III-H. The scene scheduling
distributes the independent segments in a pipeline model on
the instances, where each pipeline comprises a number of
encoding stages [8].

V. MPEC2 SCHEDULING ALGORITHM

Algorithm 1 describes the MPEC2 pseudocode for encoding
an application A with an input video stream V on a set of
instance types I interconnected through a set of network chan-
nels H. There are Nj instances of each type Ij ∈ I. Firstly,
the algorithm applies the Louvain clustering and calculates
the multilayer graph of the computing infrastructure (line 2).
Line 3 splits the multilayer graph into partitions based on the
instances, network channels, and their cost similarity. Line 4
detects the scenes, splits them into segments of the duration
requested by the media provider or user, and selects a segment



of each video scene. The algorithm loops between lines 6 – 10
until it schedules all segment encoding tasks on the instances.
In particular, it selects a partition including an instance for the
segment encoding, and sets the scheduling function (lines 8
– 9). Line 11 schedules the pipeline of the video scene’s
segments based on the number of instances of each selected
instance type. Finally, line 13 returns the completion time and
total cost along with the scheduled instances.

VI. EXPERIMENTAL SETUP

We implemented the MPEC2 in Python 3.10.5. We
used the PySceneDetect library to detect the video scenes
in a stream. Moreover, we used the NetworkX Python
package to implement the Cloud and Fog multilayer graph
along with the partitioning model. We configured the network
bandwidth by measuring maximum achievable throughput
with iPerf3 [23] and the round-trip latency with the ICMP
echo request and reply tool.

A. Experimental infrastructure testbed

We run the experiments on the Carinthian Computing Con-
tinuum (C3) testbed [24] with instances from two providers
distributed across the Cloud and Fog computing layers (see
Table I). The instance types are heterogeneous in number
and resource capabilities, such as number of cores, processing
speed, and memory size.

AWS: We utilized compute-optimized, general-purpose, and
memory-optimized AWS instances in Frankfurt and London.
We shared a multi-attached general-purpose solid state disk
volume (500GB) for storing video dataset among the AWS
instances in the same availability zone.

Exoscale: We used compute-optimized Exoscale [10] in-
stances located in Geneva, Zurich, Munich, Frankfurt, Vienna,
and Klagenfurt. We attached a single 400GB storage volume
to each instance for the experiments on the Exoscale.

Encoding costs: We estimated the costs for Cloud and
Fog instances and of transmitting video streams through the
bandwidth allocated to the shared or isolated storage using
the Exoscale [25] and AWS [26] calculators. Aside from
the compute cost calculations [27], for the local storage cost
estimations, we used the information provided by AWS [28]
and Exoscale [29]. We relied on the AWS calculator [30] for
the data transfer cost estimation and the Exoscale outbound
prices [31].

B. Encoding benchmark

We prepared the test video streams using FFmpeg
v3.4.11 from the publicly available video complexity
dataset [32], [33]. It comprises 47 video sequences of 4 k
ultra high definition (UHD) resolution with R=3840×2160
pixels in YUV format. We divided the raw videos into 500
segments of D = 5 s, each with the same 23.98 frame/s,
4 : 2 : 0 YUV format, and 8 bit/pixel. We encoded each YUV
segment using the CD=H.265 video codec with the lossless
method that generates the highest possible quality compared
to the original videos. We used the libx265 library with a
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Fig. 3: Time-optimized and cost-optimized segment encoding
results.

preset PR of medium and a constant quantization parameter of
37, controlling the amount of compression. Finally, we bench-
marked the encoding of the 47 video streams on ten commonly
used AWS EC2 Cloud and six Exoscale Fog instances (see
Table I), created the instance encoding dataset, and extracted
the encoding times in the 4 s–75 s range. Results: Table II
shows the average encoding time of all segments on each
instance relative to the coordinator instances c5.2xlarge
and large. As observed, the relative processing speed RS of
instances is, on average, ∼6% different from the relative pro-
cessing speed benchmarks [5]. The reason is that the CPU speed
directly impacts on the video encoding time [34]. Therefore,
this observation validates the use of instance relative speed RS

for the time and cost estimations (see Section III-D).

VII. EVALUATION

We selected a video stream with three different scenes that
vary in content complexity, with different number of segments
and sizes presented in Table III. We define three experiments
to evaluate MPEC2 on our computing continuum testbed.

• Segment encoding scheduling considering various provider
or user priorities (i.e., time, cost, deadline) and coordinator
locations.

• Scene encoding scheduling with various number of segments
per scene in time- and cost-optimized scenarios.

• Related work comparison with MAPO [18], random, fastest,
and cheapest instance selection methods.

A. Segment encoding scheduling

We investigate the impact of the media service provider
or user priorities on the completion time and cost of one
segment encoding. The coordinator can be a Cloud instance
for media service providers or a Fog instance in surveillance
systems, for example, where users are close to the edge of
the network. In addition, we validate MPEC2 with the actual
values (see Section VI-B) in time- and cost-optimized, along
with deadline-constrained scenarios. The selected segment of
the scene V1 with sizeof(V1m) = 330MB is evaluated in the
following scenarios.



TABLE I: Experimental Cloud and Fog infrastructure testbed.
Provider AWS Exoscale
Location Frankfurt, London Geneva, Zurich, Munich, Frankfurt, Vienna Klagenfurt

Instance
type

compute-optimized general-purpose memory-optimized CPU-optimized standard standard
c5.2xlargec5.4xlargec5.9xlargec5a.2xlargem5.xlargem5.2xlargem5.4xlarger5.xlarger5.2xlarger5.4xlargehuge (cpu-opt) huge large medium small large

No. instances (Nj ) 10 10 5 10 15 10 5 15 10 5 10 5 10 10 10 10

CORE (cores) 8 16 36 8 4 8 16 4 8 16 16 8 4 2 2 4
CPU (MIPS) 21 100 44 200 90 700 23 000 10 200 19 700 38 400 10 250 19 700 38 900 48 000 25 000 14 000 7200 7100 12 000
MEM (GB) 16 32 72 16 16 32 64 32 64 128 32 32 8 4 2 8
STOR (GB) 500 400

BW (Mbit s−1) 748–5089 748–5089 748–5089 748–5089 748–5089 748–5089 748–5089 748–5089 748–5089 748–5089 480–13 000 480–13 000480–13 000480–13 000480–13 000500–13 000
LAT (ms) 0.5–28 0.5–28 0.5–28 0.5–28 0.5–28 0.5–28 0.5–28 0.5–28 0.5–28 0.5–28 0.5–26 0.5–26 0.5–26 0.5–26 0.5–26 7–12
CPj ($/h) 0.388 0.776 1.746 0.348 0.23 0.46 0.92 0.304 0.608 1.216 0.44 0.36 0.089 0.044 0.022 0.089

monthly CSj ($/GB) 0.053–0.0952 0.0432
CRkj ($/GB) 0.05–0.09 0.02

TABLE II: MPEC2 vs. benchmark relative processing speeds of Cloud and Fog instances.
Instance type c5.2xlargec5.4xlargec5.9xlargec5a.2xlargem5.xlargem5.2xlargem5.4xlarger5.xlarger5.2xlarger5.4xlargehuge (cpu-opt)hugelargemediumsmalllarge

RS to c5.2xlarge 1 2.1 4.3 1.1 0.48 0.93 1.82 0.46 0.93 1.84 2.27 1.18 0.66 0.34 0.34 0.57
MPEC2 processing speed
relative to c5.2xlarge

1 1.96 3.4 1.2 0.43 0.88 1.72 0.44 0.88 1.69 2.4 1.26 0.65 0.32 0.32 0.58

RS to large 1.51 3.16 6.48 1.64 0.73 1.41 2.74 0.73 1.41 2.78 3.43 1.79 1.00 0.51 0.51 0.86
Benchmark processing speed

relative to large
1.54 2.99 5.18 1.63 0.67 1.36 2.65 0.67 1.36 2.62 3.65 1.95 1.00 0.52 0.52 0.88

TABLE III: Video stream characteristics.

Scene Number of segments Selected segment size (MB)
V1 25 330
V3 20 475
V2 15 240

1) Time versus cost-optimized scenarios: We configured the
media provider or user priority to α = 0 for cost-optimized
and α = 1 for time-optimized scenarios to investigate the
impact of user priorities on the completion time and cost
of segment encoding. MPEC2 selects instances at the same
location with the coordinator in all time-optimized scenarios
to reduce the transmission time. Figure 3 shows that the
completion time of encoding one segment for time-optimized
scenario when coordinator is huge (cpu-opt) (Vienna)
(8.69 s) is approximately 7.35 times faster than its cost-
optimized one (65.91 s). Likewise, the cost-optimized segment
encoding (0.079 ¢) is about eight times cheaper than time-
optimized (0.1 ¢). Overall, the time-optimized scenarios are
86% faster and 77% more expensive than the cost-optimized
ones.

a) Coordinator in Vienna: MPEC2 does not select the
fastest c5.9xlarge instance in Frankfurt (with 36 cores and
90 700MIPS processing speed), since the transmission time
(13.34 s) is an order of magnitude longer compared to the
huge (cpu-opt) instance at the same location (0.519 s).

b) Coordinator in London: The cost-optimized scenario
selects a medium instance in Zurich. Interestingly, MPEC2
does not select the Exoscale small instance with two cores,
7100MIPS speed and the lowest cost (i.e., 0.08 ¢ versus
0.079 ¢) due to its longer encoding time (i.e., 131.16 s versus
65.91 s) at a slightly higher price. Although the difference in
the price in negligible for one segment, it imposes higher price
for encoding tens of segments.

2) Deadline-constrained scenario: We configured a con-
stant deadline of θ = 10 s, based on the actual transcoding time
presented in [35] to investigate the completion time and cost
of segment encoding. We selected c5a.2xlarge (Frankfurt)
as coordinator.
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Fig. 4: Segment encoding completion time and cost in
deadline-constrained, time-optimized, and cost-optimized sce-
narios with c5a.2xlarge (Frankfurt) coordinator.

Figure 4 shows that, in the deadline-constrained scenario,
MPEC2 selects c5.4xlarge (Frankfurt) to encode a seg-
ment with the completion time of 8.93 s that, as expected, is
less than 10 s. This completion time (8.93 s) is higher than
the time-optimized result (6.51 s) that selects c5.9xlarge
(Frankfurt). Particularly, in a deadline-constrained scenario,
MPEC2 allocates the instance type with the lowest cost among
the instances that satisfy the deadline (see Figure 5). Therefore,
in this experiment, MPEC2 selects c5.4xlarge with the
lowest cost (0.18 ¢), while two other instances m5.4xlarge
(0.238 ¢) and c5.9xlarge (0.246 ¢) are also able to satisfy
the deadline. On the other hand, the total cost for the deadline-
constrained scenario is more expensive (0.18 ¢) than the cost-
optimized one (0.058 ¢) with the medium instance.

We analyze the MPEC2 scheduling for four coordinator
locations in Figure 5 as follows:

a) Exoscale huge (cpu-opt) (Vienna) and small
(Zurich): MPEC2 selects huge (cpu-opt) instances for
both coordinator locations since they provide completion times
lower than the deadline.

b) Exoscale large (Frankfurt): MPEC2 first selects
the Exoscale huge (cpu-opt) (Frankfurt) and AWS
c5.9xlarge (Frankfurt) instance types with completion
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Fig. 5: Deadline-constrained encoding completion time and
cost for different coordinator locations.

times lower than 10 s. Among them, MPEC2 prefers the Ex-
oscale huge (cpu-opt) (Frankfurt) instance that satisfies
the deadline with the lowest cost of 0.1 ¢.

c) AWS c5a.2xlarge (Frankfurt): MPEC2 selects
first three AWS instance types: c5.4xlarge (Frankfurt),
m5.4xlarge (Frankfurt), and c5.9xlarge (Frankfurt)
that satisfy the deadline. Among them, it prefers the
c5.4xlarge (Frankfurt) instance with the lowest cost.

d) AWS c5a.2xlarge (London): MPEC2 selects the
AWS c5.4xlarge (London) instance with 0.188 ¢ encoding
cost, following the same strategy.

3) Accuracy analysis: Figure 4 further compares the
MPEC2 estimated segment encoding completion time and cost
with the actual measurements. The results show that MPEC2
estimations are close to the actual values with the accuracy of
95% for deadline-constrained, 93% for time-optimized, and
96% for cost-optimized scenarios. Similarly, Figure 5 shows
that the actual completion times and costs validate MPEC2
estimated values with an accuracy above 90% in all scenarios.

B. Scene encoding scheduling

We evaluate the scene encoding scheduling using the com-
pletion time and total cost of encoding all video segments
having c5a.2xlarge (Frankfurt) as the coordinator.

1) Time-optimized scenario: In the first phase, MPEC2
selects an instance type for encoding the segments of each
video scene. In the second phase, it allocates the segments to
the selected instance types by following a pipeline model.

a) Segment encoding scheduling: selects the instance
type with the lowest completion time for segment encoding
among the available instances displayed in Table IV. Thus, it
selects the c5.9xlarge for the first scene, c5.4xlarge
for the second scene, and r5.4xlarge for the last scene.

b) Scene encoding scheduling: depicted in Figure 6a,
allocates the segments in an encoding pipeline of N1=5
c5.9xlarge, N2=10 of c5.4xlarge, and N3=5
of r5.4xlarge instance types (see Table I). The
c5a.2xlarge (Frankfurt) coordinator transmits a maximum
of two segments per second for the first two scenes, and
fourteen segments per second for the third scene. Thus,
we have
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(b) Cost-optimized scene encoding scenario.

Fig. 6: Scheduling results of scene encoding pipeline.

clusters providing the possibility of six, ten, and fourteen
encoding pipelines. The number of instances restrains the
number of encoding pipelines to five, ten, and five for each
respective scene, which needs five, two, and three stages
to complete the segments’ encoding (the number of stages
depends on the number of segments per scene). Finally,
MPEC2 estimates 34.37 s for the completion time and 2.79 ¢
for the total cost of video segment encoding.

2) Cost-optimized scenario: We study the cost-optimized
scenario similar to the time-optimized one.

a) Segment encoding scheduling: selects the low-cost
medium instance for all the scenes, with the corresponding
completion times displayed in Table IV. Although the small
instance has the lowest cost (see Table I), it increases the
segment encoding time and generates a higher cost.

b) Scene encoding scheduling: depicted in Figure 6b
allocates the segments in an encoding pipeline on ten medium
(Frankfurt) instances (see Table I). The c5a.2xlarge
(Frankfurt) coordinator transmits a maximum of twelve seg-
ments per second for the first scene, eight for the second,
and seventeen for the third, due to different segment sizes.
Thus, we have

⌈
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Nζ1

⌉
=1,

⌈
N2

Nζ2

⌉
=2, and

⌈
N3

Nζ3

⌉
=1 homoge-

neous clusters providing the possibility of twelve, sixteen,
and seventeen encoding pipelines. The number of instances
restrains the number of encoding pipelines for all scenes,
which need three, two, and again two stages to complete
segment encoding. Although selecting the same medium



TABLE IV: Segment encoding results for scene scheduling.

Scene
Time-optimized Cost-optimized

Instance type (Frankfurt) Completion Cost Accuracy Instance type (Frankfurt) Completion Cost Accuracy
time (s) (¢) Time Cost time (s) (¢) Time Cost

V1 c5.9xlarge 6.51 0.29
92% 93.5%

medium 52.28 0.061
95% 96.8%V2 c5.4xlarge 15.38 0.32 medium 146.92 0.121

V3 r5.4xlarge 4.29 0.14 medium 24.38 0.041

(Frankfurt) instance type for all video scenes increases the
stream encoding completion time (494.2 s), it reduces the total
cost (0.61 ¢).

3) Accuracy analysis: Table IV compares the MPEC2
completion time and cost estimations with the actual encoding
benchmarks. Using the middle segment to estimate the scene
encoding time produced an accuracy of 92% in completion
time and 93.5% in cost for the time-optimized scenario. In
the cost-optimized scenario, MPEC2 obtains an even better
accuracy of 95% for the completion time and 96.8% for the
total cost of video encoding.

C. Related work comparison

In this section, we compare MPEC2 with four related works,
evaluated in time- and cost-optimized scenarios.

1) MAPO [18] provides the instance selections to the multi-
objective optimization algorithm that searches for a Pareto
set of tradeoff solutions considering completion time and
cost objectives. MAPO utilizes non-dominated sorting genetic
algorithm (NSGA-II) [36] to search for a set of instance types.
Then, the method selects one instance type for encoding the
video stream.

2) Random selects one arbitrary instance type per scene to
encode the video stream;

3) Fastest selects the fastest instance type relying on the
CPU speed (see Table I) to encode the video stream.

4) Cheapest selects the lowest cost instance type (see
Table I) to encode the video stream.

a) Time-optimized scenario: Table V shows that MPEC2
reduces the completion time of the video stream encoding by
24% compared to MAPO, which does not differentiate the
video scenes and selects only one instance type c5.4xlarge
for all scenes. In contrast, MPEC2 selects c5.9xlarge for
the scene V1, c5.4xlarge for the V2, and r5.4xlarge
for the V3. MPEC2 further improves the completion time
on average by 54% compared to the random method that
generates a load imbalance when allocating scenes to slow
instances [5]. The fastest method schedules the encoding tasks
on five c5.9xlarge instances with the highest CPU speed
of 90 700MIPS (see Table I). In contrast, MPEC2 selects
different instance types and encodes the video scenes in a
pipeline model reducing the completion time by 40%.

b) Cost-optimized scenario: Table V shows that MPEC2
improves the video stream encoding cost by 60% compared
to MAPO, which selects just one instance type that is not
the lowest cost one. MPEC2 reduces on average total cost by
50% compared to the random method, which may select a
costly instance type. Finally, the cheapest method does select

TABLE V: Comparative MPEC2 results in time and cost-
optimized scenarios.

Time-optimized Cost-optimizedMethod Improvement Instance type (Frankfurt) Improvement Instance type (Frankfurt)

MPEC2 0%
c5.9xlarge (scene V1)
c5.4xlarge (scene V2)
r5.4xlarge (scene V3)

0% medium

MAPO 24% c5.4xlarge 60% c5.4xlarge
Random 54% Random instance type 50% Random instance type
Fastest 40% c5.9xlarge – –

Cheapest – – 5% small

the instance type small with the lowest cost for encoding
all the scenes, increases the completion time that imposes a
higher total cost. Therefore, the cheapest method performs 5%
worse in terms of total cost than MPEC2.

VIII. CONCLUSION

We introduced MPEC2, a new scheduling method for video
encoding application on the computing continuum. MPEC2
uses a multilayer graph partitioning model [7] to find an
appropriate instance type based on its location to encode one
video segment. Afterward, it proposes a pipeline model [8]
to distribute the encoding of all the video scenes’ segments
on the selected instance types. We evaluated MPEC2 in
a realistic Cloud and Fog testbed distributed across seven
geographical locations outperforming related methods in terms
of completion time and total cost of encoding a video stream.
MPEC2 achieved 24%, 54%, and 40% faster video encoding
compared to MAPO, random, and fastest instance selection
methods. Moreover, it lowered the total encoding cost by 60%,
50%, and 5% compared to the MAPO, random, and cheapest
methods.
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