arXiv:1312.3295v4 [cs.NI] 6 Feb 2014

No-Sense: Sense with Dormant Sensors

Chayan Sarkar, Vijay S. Rao, R. Venkatesha Prasad
Embedded Software Group
Delft University of Technology, The Netherlands
{C.Sarkar, V.Rao, R.R.VenkateshaPrgs@dudelft.nl

Abstract—The lifetime of a wireless sensor network mainly
depends on battery capacity and energy consumption at eactode
for operations such as, sensing, processing and communiaat.
Popular approaches to save energy have been to intelligepnttiuty
cycle and restrict the frequency of these operations, rending
lower quality data at the sink. In this article, we propose Virtual
Sensing Framework (VSF), which reduces the frequency of the
above mentioned operations at each node while not comproniigy
on the sensing interval, and hence resulting in higher quaty data
at the sink. VSF creates virtual sensors at the sink to explbi
the spatio-temporal correlations among sensed data. Usingn
adaptive model at every sensing iteration, the virtual ser@s can
predict multiple consecutive sensor data for dormant physical
sensors with the help of only a few active physical sensors.
We show that even when the sensed data represents different
parameters (e.g., light, temperature), our proposed techique
works well. Applying our technique on the real-world data sds,
we attain substantial reduction in energy consumption per wde
while maintaining high accuracy of the sensed data. To achie
higher energy reduction, VSF has to be used in conjunction wh
various layers and protocols of the communication stack. Ths,
it has the potential to open up new research insights to make
the best use of statistical properties of collected sensorath in a
network.

I. INTRODUCTION
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Fig. 1: (a) Data collection scenario in a WSN (star topology)
(b) Data collection with virtual sensing framework.

construct in the sink that represents a Physical Sensof] (PS)
in the WSN. A PS can either be dormant (lowest power mode
or sleep mode) or be active (microcontroller, sensors and/o
radio are on). When a PS is active, the frequency of its sensor
data reporting varies adaptively, which is described |#&erS
holds the measured sensor data reported by its corresgpndin
PS, when active, or predicts sensor data on behalf of its
PS, when dormant, by exploiting the temporal and spatial
correlations among sensors’ data in the WSN. It is impottzant
note that the VSF does not consider amyriori knowledge
about the correlation patterns in the data collected froen th
sensors. Rather, it utilizes adaptive prediction scheimeséch

Wireless sensor networks (WSNs) have enabled continuoi€nsor based on inherent correlation among the sensoes’ dat
monitoring of an area of interest (body, room, region, etc.)This is known as non-model approa¢h|[15].

while eliminating expensive wired infrastructure. Typigan

such applications, wireless sensor nodes report the sen

Each VS saves energy for its PS by following a col-

orative technique to balance between the accuracy of the
redicted values and the energy consumption at its PS. Since
VSs “reside” in the sink/base station, the collaboratios ha

values to a sink node, where the information is require
for the end-user. WSNs also provide the flexibility to the

end-user for choosing several parameters for the mon@orininsignificant overheads: the only overhead is notifying B8

application. For example, placement of sensors, frequenCynather to be in sleep mode, or in active mode for a certain
of sensing and transmission of those sensed data. Over the ation.

years, the advancement in embedded technology has led to

increased processing power and memory capacity of these The concept of VSF is depicted in Fig. 1. Here, we have
battery powered devices. However, batteries can only gupplconsidered one hop to describe VSF and its mechanisms,
limited energy, thus limiting the lifetime of the networkn | and illustrate the working of VSFs through real-data. It is
order to prolong the lifetime of the deployment, variounaff  possible to extend the work to a multihop scenario, which
have been made to improve the battery technologies and alswe consider as future work. Nevertheless, several WSNs ap-
reduce the energy consumption of the sensor node at variogdications can make use of VSF - many periodically reporting
layers in the networking stack. Of all the operations in theWSN can utilize VSF to conserve energy. A case in point is
network stack, wireless data transmission and receptioe ha smart buildings, where sensors monitor humidity, verittat
found to consume most of the energy. Hence many proposa#nd air conditioning (HVAC) continuously. With VSF, some
found in the literature target reducing them through iigelit ~ sensors need not transmit data until their values have elkng
schemes like power control, reducing retransmissions, etsignificantly. With this background we list below the major

In this article we propose a new framework callg@tual
Sensing Framework/SF), which aims to sufficiently satisfy
application requirements while conserving energy at tins@e
nodes.

In VSF, we define avirtual Sensor(VS) as a software

contributions of this work:

e To the best of our knowledge, we are the first to
propose a generic energy saving scheme for sensors

1A physical sensor is nothing but an wireless sensor nodegnISN.
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based on data prediction that can be applied to any I1l.  VIRTUAL SENSING FRAMEWORK (VSF)
type of data collection network. The generality of
the method lies in prediction ahultiple consecutive

sensor values for dormant sensors without having prio

VSF aims to reduce energy consumption of a sensor
petwork by reducing its activity, i.e., reducing frequermly
knowledge (or model) of the sensed data physica[sensing, processing and data transmissions. The datataoile

nature of the sensing and deployment information ofS cOmplemented by predicting sensor data at the sink. To
the nodes. predict the sensor data, a virtual sensor (VS) is createeidomn

physical sensor (PS) in a deployment at the sink as shown in
e Our proposal exploits both the spatial and temporalFig.[1. A VS instructs its associated PS on its state andigctiv
correlations among sensors. It can track the change@r the forthcoming sensing intervals. VSs also collab®rat

in the correlation and adapts to the situation throughamong themselves in order to save more energy and maintain
the use of blind adaptive filtering technique. high data accuracy. In the subsequent sections, we disouss h

e The energy saving technique proposed in this article€NsOrs collaborate among themselves and then discuss how
he prediction is done.

ensures that every node spends energy almost evenIE/.
We show that the overall energy consumption of the
whole deployment is reduced, while maintaining suf- A, Energy saving technique

ficiently high accuracy of the predicted sensed values. } )
Usually physical parameter values (e.g., ambient tempera-

e We propose to predict consecutive sensor data t@yre) do not change abruptly in a short time span. Therefore,
keep the sensor nodes dormant for a longer duratioghese values have correlation with their immediate pastesal
whereby reducing the overhead of switching betweentemporal correlation). Thus, a sensor value can be pstlict

low power and active modes. by exploiting its temporally correlated data. In order torase
the energy savings, VS should predict successive valude whi
Il. RELATED WORK its PS remains dormant. As a result, changes in the physical

While many energy saving techniques/protocols have beeRarameter, during the longer dormant periods, might not be
proposed for wireless sensor networks, we only review th&aptured by the temporal correlation based method. Predict
works that are relevant to our proposal. One common approadf this case can be improved with spatial correlations: i tw
to reduce energy consumption is to select a subset of nodé§nsors have had very high correlation in the recent past, it
among all the sensors deployed in the network. As the sensols Safe to say that both the sensors will behave in a similar
usually have spatial correlation, missing sensor datadcbel ~ fashion for some time in the future too. Hence in VSF, we
reconstructed from the subset of sensor data. Most of thehoose to exploit temporal as well as spatial correlations i
proposals found in the literature do not find the correlationthe data collected from the sensors to fine-tune the predicti
among sensors explicitly. Rather a good correlation strect With increased accuracy of predictions and correlatedasens
among the sensors is assumed to be knawpriori [4],  ©nhe sensor can remain dormant for the duration of prediction
[B], [6], [8], [10], [14]. However, we do not assume any with thg help of the other sensor. The Iatter_ senska the
predefined correlation structure and our adaptive scheankgr helper is referred to asompanionThe companion, therefore,
the correlation amongst the sensors in real-time. Furiher, Nas to be an active PS. Please note that the companion of a
should be noted that, to support our prediction, we do noflormant sensor is not predefined and fixated i.e., it can @&ang
draw any inference based on the physical nature of sensirfgV/€r time based on changing correlation between the sensors

and deployment of sensors. VSF also conserves energy in the companion PS, whenever

A LMS-based adaptive prediction technique has been expossible, by incorporating a temporal correlation basediipr
ploited by Santiniet al. [15], which does not consider prior tor within it, and VS in the sink. Here the node continues to
knowledge about the sensor data. While our strategy isaimil sense the physical parameter, and also predicts the vdlue. |
we exploit spatial correlation to estimate the sensingaglu the prediction error lies within a sufficiently tolerablerar
blindly. That is, our scheme can predict multiple conseeuti bounds, then the sensor does not transmit the sensed data.
sensing values while the sensor node remains dormant. A reaBy withholding data transmissions, significant energy isesa
time, blind prediction scheme has also been proposed Iy Li even in the active sensors. The dormant and active nodes
al. [11]. However, they assume predefined spatial correlationgre associated with two different types of VSs based on

among the sensors and it is required to have a very high spatitheir functionality. We use the terms Type-l VS when the
correlation between the sensors. corresponding PS is in dormant state, and Type-ll VS when

the corresponding PS is active. Note that Type-Il VS may or

Guestriret al. [7] proyided a.technique Whgre_sensor nOOIeSmay not send the sensed data depending on the predictian erro
save energy by restricting their data transmission. Theesod sought.

only transmit the parameters of estimation model — instdad o
the data itself — only if significant changes are noticed i th Every Type-l VS requires at least one companion, while
sensor data. In contrast with this method, our approach capne companion can help multiple Type-I VS. Multiple spdyial
predict consecutive sensor values accurately while thee nodcorrelated sensors can act as companion nodes for a Type-I VS
is in sleep mode. There are some works where estimatioto improve the prediction accuracy, however after a certain
technigues have been used to predict sensor data in ordkr to fihreshold number of companions, more such companions will
the missing data points and complete the sensor data set [13Jot necessarily improve the prediction significantly. Tinégle-
Thus, they are not suitable for online sensor data predictiooff between prediction accuracy and energy savings (more
for consecutive sensing instances. active node implies more energy consumption) needs to be
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are found by minimizing the mean-square eridr [9]. Thgse
filter coefficients, i.e.q = [a1, ag, ..., ap]T are used to predict
- the sensor data during the operational period. If the catios

is known a priori, aWiener filtercan be developed, which is
[ [ real sensed data [] virtually sensed data [ modelled data said to be th@p“mum in the mean-square error sends the
autocorrelation function is unknown, the filter coefficetin
become outdated and may result in erroneous predictiongUsi
an adaptive filtering technique, the coefficients are ugtate
later stages.
balanced. We follow a greedy approach to maximize the energy
saving: VSF maximizes the number of Type-I VS nodes, ang,,
thus reducing the number of companions.

Fig. 2: Data collection phases in virtual sensing technique

A Type-l VS also needs to develop a prediction mechanism
sed on spatial correlation. To calculate a spatial catiozl
based predictor, VSF uses linear regression analysis.atine

It is clear that a dormant sensor can conserve more enerdggdression is a statistical method that models the relstipn
than an active sensor. In order to keep the sensor netwank ali 0etween a dependent variable and one/more independent vari
for a longer period, energy consumption of the sensor nades iable(s) [12]. In our approach, we treat the dormant node as
the network need to be balanced over time. Thus, state of tHéependent variable and a potential companion as an indepen-
nodes switch between dormant and active after certain numb&ent variable. The inputs for linear regressor are coltefrem

of timeslots. the companion node and stored in the form,
As we do not assume arg priori knowledge about the 1 a(p+1)
sensor data statistics, VSF needs to capture the correlatio 1 a(p+2)

among sensors. It should also monitor the change in the | : (4)
correlation and adapt dynamically. To accomplish this, the 1 a(T)

whole data collection period is classified into three phases P

training period, operational period and revalidation pgras  Then, by minimizing the mean-square error, we calculate the
shown in Fig2. During the training period, all the PSs cdllec coefficient of the linear regression as,

data and transmit their data to the sink. Using the training

data sets, states of the nodes (active or dormant), suitable B=WVTv)"'vid. )
companion for each dormant node, type of their VSs, and )

prediction models for each VS are decided. During operation The vectord is used as the regressor outpiit= 5o, 51]" are
period, the VSs become functional as the dormant and activésed for spatial prediction during the operational peria]
nodes restrict their activity to conserve energy. The idatibn  they are also updated during the revalidation period (dised
period resumes all PSs to active mode for a shorter period df SectiorlTIl=D).

time as compared to the training period. The prediction nsode
are validated using the sensor data collected in this p;eriodom
and the operational period resumes. If the revalidatiord (anbe
calibration) of the prediction model fails, i.e., the cdateons
among the sensor data changes drastically, another waini
period is initiated. The following sections describe eatthe
phases in detail.

Finding a suitable companionSince we do not assume
y prior spatial correlation, a companion cannot be chosen
forehand. A common assumption is that two geographically
co-located sensors show high spatial correlation. Negkis,
i reality, they may show poor correlation sometimes, wasre
two sensors located relatively far can show high corretatio
By finding a suitable companion, we find a spatially correlate
sensor that can best predict the sensor data. Again, since
B. Training period we do not consider any prior knowledge about the physical
. - . - parameters of the sensed data, we can indeed make any sensor

During the training period/, training data samples’f, > 5 companion for any other sensor during the training period.
0) are collected from all the sensors. Using these sampleSihe |inear regression coefficients are created separately f
a temporal prediction mechanism is created for each type Qfach potential companion usirig (5). The sensor, which score
VS at the end of the training period. To create a prediction,o highest in thegoodness of fitest, is selected as the
mechanism based on temporal correlation, a transversal @bmpanion.Chi-squared statisticis a well-known method
tapped-delay line filter is created. First, the trainingade&t 5 test goodness of fit [16]. To this end, the error values

stored in &), —p) x p matrix and(T, —p) x 1 column vector ¢ the estimated signal need to be known. Using the model

as inputs ) and outputsd) of the filter as shown below,  h3rameters and the training data set, first, the sensorsvatee
d(p) dp—1) - d(1) estimated ag,,, = V3. Then, the Chi-squared statistics can
dp+1) d(p) d(2) be obtained by taking normalized sum of the squared-errors.
= i (1)  Chi-squared statistic is calculated as,
d(T, —1) d(T,~2) - d(T,-p) - i (d(i) — dypa(i))? ©
d=[d(p+1),d(p+2),..d(T,)]", (2) Kove 2

i=p+1



is active. Then, it calculates the prediction error as given
by (1) using the model parameters. If the absolute error
of the prediction is within a permissible (predefined) limit
then sensor node suspends transmission and the corresgondi
Type-1l VS predicts the sensed value using the same filter
coefficients. Otherwise, the sensor node transmits theevalu
to the sink and the model coefficients are updated both at
Fig. 3: The filter used for an active virtual sensor is a hybridthe sensor node and at the corresponding VS in the sink. In
of a transversal filter (for temporal prediction) and linearthis way, the model parameters are synchronized at both the
regression (spatial prediction). places. At the same time, we can ensure that the prediction
error remains within the permissible error limits. To upat
the model parameters (at both the places), we have lesstt
5 _ ) mean-square (LMS) algorithrhMS is a widely used adaptive
where o is the variance of the observed signal. To get arijiering technique in time-series predictions. It reqainery
inference from the statistics, a reduced Chi-squaredstati |ogg memory and computational capabilities, and performs
can be calculated by dividing it by the number of degrees ofyg|| [15].
freedom. The score of the goodness of fit test, represented as
0, is given by, To update the temporal filter coefficients, i.e., theector,
first, the prediction error is calculated given by,

2
§=1-— Xepa

v etemp(t) = d(t> - dtemp (t)v (11)
where,v, the degrees of freedom is equivalent to the number i
of samples T}, — 1). & lies between(0, 1), where 0 implies whered(t) and dieny(t) are the actual and predicted sensor
complete failure of capturing the system behavior and qvalues respectively. Then the filter coefficients are uptlate

implies complete resemblance of the system behavior by theSing;

model parameters. a(t+1)=alt)+p-dt) - eemp(t), (12)
_ _ whered(t) = [d(t — 1),d(t — 2),...,d(t — p)]T is the input
C. Operational period vector of the filter, ang: is the learning rate of the adaptive

Once the prediction coefficients are found, the operationag®!dorithm [9]. Procedure to sgt can be found in[[15].
period starts (see Figl 2). In this period, a Type-I VS inferm
its corresponding PS to remain dormant €y timeslots, and D. Revalidation period
it predicts consecutiv®),, data points using a hybrid model
consisting of temporal and spatial predictions (see [HigAB)
t*" timeslot, first, the temporal prediction is done using

Since Type-l VS asks the corresponding PS to go to
dormant mode, there is a chance that the predicted value migh
diverge from the ground reality. To tackle this, revalidatof

4 the model parameters are done aftgrsensing intervals (here
diem (t) = Z ;- d(t — 1), (8)  we skip the discussion on fixin@, due to paucity of space).
i=1 During this period, i.e.R,(< T,) sensing intervals, all the PSs
whereq; is found using[(B). Then the VS collects the sensorP@€comes active. That is, they sense and transmit the data to
data from its companion. Using the data from the companiofh€ Sink (see Fig.12). Then, the temporal prediction coeffits

and the linear regression coefficients, the spatial prietigs  are updated as described in](11)[&I(12). The spatial presicti
found using coefficient, i.e.,3 = 5o, 51]”, is also updated based on the
dspa(t) = Bo + B1 - a(t). (9)  spatial prediction error. As the final prediction of a Type$
is dependent oy andé (10), an updatedoodness of fiscore,
The final predicted value of the missing sensor data is comie., theChi-squared statisticss calculated using,
puted by taking a weighted average of these two predicted

values as, o = X+ e%eo'rg(t) (13)
3 (7 - deem(t) +6 - dspa(t)) 2
d(t) = (10) €spa(t)
“ (v+9) Xipe = Xopat —o5— (14)
The weightsy and ¢ are thegoodness of fiscore of the
temporal and spatial predictions respectively. The valig o IV. EVALUATION

is calculated the same way ashas been calculated while

choosing the best companion usifig (6) and (7). In this section, we evaluate our virtual sensing technique o

the real data sets obtained from the Lausanne Urban Canopy
During the operational period, a Type-ll VS informs its Experiment[[2]. The data were collected in the EPFL campus
corresponding PS to continue its sensing measurement fdretween July 2006 and May 2007, where 97 sensor nodes
the predefined interval and to avoid any unnecessary dataonitored various environmental parameters, e.g., arhbien
transmissions if possible. At the beginning of the operatio temperature, solar radiation, relative Humidity,, etc.e3é
period, Type-ll VS sends the filter coefficients to the phgbkic sensor nodes collected data every 30s. We have applied VSF
sensor. At instant in operational period, the sensor predictson the ambient temperature data collected from multiplssen
the sensor value using the filter coefficients, (see [(B)). nodes. We provide the most interesting results here. Weechos
Moreover, the actual measurement is also available since ftvo nodes randomly (which turned out to be node 3 and
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node 44), and we associated Type-l and Type-Il virtual ssnso
with them respectively. We tested our prediction technibue
Matlab. 10® data samples from nodes are used. A snapsh

of the predicted sensor data by the VSs are shown in[Fig. Lt:o

We fixed the operational,) and revalidation £,) window
sizes to 20 and 5 respectively. The training was done at th
beginning of the data streams, which is not shown in the figur
The result shows that the virtual sensors can achieve signtfi
prediction accuracy.

TABLE I: System Parameters and Settings

Parameter Value
Message size 128B
Transmission power 0dBm
Energy cost for sending a message 341ud
Energy cost for sensing temperature 330ud
Energy cost in active mode 4.898 mW
Energy cost in low power mode (LPM3)[ 0.144 mW
Energy cost in switching (LPM to active) 0.016 mW
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Fig. 6: Combined energy consumption for one Type-l and one
Type-ll virtual sensors v/s LMS-based scheme for two sensor

The system parameters and their settings are listed in
Table[] to calculate the energy consumption. The value of
each parameter is calculated using methods described ,in [3]
[17]. Using these parameters and the number of times a sensor
senses and transmits data, energy consumption per node is
calculated. As a Type-1 VS (dormant node) is always accom-
panied by a Type-ll VS (active node), a combined energy
consumption is calculated and compared with the LMS-based

ethod described in_[15]. As the error threshold increases,
Ss consume lesser energy at the PSs. Note that energy
nsumption calculated here is based on only sensing aad dat
transmissions. Using VSF, a Type-l VS can achieve higher
gnergy conservation due to its dormant PS. Furthermoré, wit

8esser number of transmissions, the relay nodes in WSN have

to spend lesser energy in forwarding the data packets t@ward
the sink. As a result, further energy consumption is acligve

To further investigate the accuracy of the VSF basedvhich is not accounted in this study.

predictions, we have conducted simulations by varyipgand
R,. The average error with the standard deviation of error a
a confidence interval for various values of tkeO,, R, >
pair is shown in Figll5. From this study, as expected, wRen
increases, the average prediction error as well as thenearia
of prediction error is reduced. Nonetheless, it is at the obs
energy consumption since more data is transmitted. Toeackl
this we can also increage,. However, with increase@,, the

To improve prediction accuracy of a Type-l VS multiple

§patially correlated sensors can be used as companions. In

Fig.[d, prediction error based on one and two companions are
shown. It is evident that the prediction accuracy improvhemv
multiple spatially correlated sensors are used for preutict
Nevertheless, more energy is consumed due to multipleeactiv
PSs that act as companions. There is a trade-off between data

average prediction error also increases. The choice okthes

window sizes depends on the applications as accuracy ar -

energy cost go together. From our simulation results, we ca
conclude that VSF provides the tool to restrict data traesmi

sions from sensor nodes with an insignificant reduction é th
quality of data.

Next, we show that the virtual sensing technique can sav
more energy using blind estimation. Three simulations are
conducted for three different lengths 64, and R,,. For each
pair of O, and R,, the error threshold is also varied fradhC
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Fig. 7: Prediction error for a Type-1 VS, when one and two

to 2°C. Error threshold 0 represents the base case, where alttive nodes are used as companion.
1000 data samples from the sensors are sensed and tradsmitte
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(5]

accuracy and energy spent in the nodes.

. . (6]
As an extension of VSF, we have also triegterogeneous

virtual sensing where the companion sensor is monitoring a
different physical parameter. We have tried to predict terap
ture using a light sensor (see Hig. 8). The light and tempezat
sensor data are collected from [1]. This shows the effectiss

of heterogeneous virtual sensing. However, there are some
issues to be addressed such as light sensor data can change
quickly over a short period of time, while temperature ctes\g [g]
gradually. This affects accuracy of predictions. Fine rgni

our technique to adapt to the situation based on estimated
prediction errors may help in increasing the reliabilitydan [©]
usability of VSF in large scale deployment. Further, VSFIdou

also be used in case some type of sensors is not available 3]
a location. To achieve better error bounds, more investigat
are required with respect to heterogeneous virtual sensing

[7]

(11]

V. CONCLUSIONS

[12]

In this article we introduced virtual sensing framework,
which can be used in many periodically reporting WSN appli-[13]
cations. Moreover VSF can be used in conjunction with intel-
ligent sleep-wakeup schemes to increase energy savings. VS
predicts multiple consecutive sensor data while the playsic [14]
sensor remains dormant. We have utilized the inherentcspati
temporal correlation amongst the sensor data without lgavin
anya priori knowledge about the statistics of the data, location; s,
of the sensor nodes and type of observed physical parameters
A case in point is predicting temperature with a light sensor
with a tolerable error bound. The proposed prediction seghem
adapts to the changes in the sensor data. Using our techniqu#]
we have achieved a significant improvement on energy savin
as compared to other methods while maintaining high acgura
of the sensor data. We have reported around 4% of error in
predicted data. We believe that our technique will be useful
when large number of sensors are deployed and with the advent
of Internet of Things (IoT) paradigm. One criticism of this
work, as it stands now, is that we have data from both sensors
in our VSF. However, the idea is to make sensors sleep. When
some sensors sleep, a method to estimate the error between
predicted value and what measurement those sensors would

7]

have thrown is needed. This is a hard problem but is crucial to
achieve higher savings in energy and higher network lifetim
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