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Abstract—We consider a wireless channel shared by multiple (see also other referenceslin][11] for such a setup). In {44],

transmitter-receiver pairs. Their transmissions interfere with  have proposed a centralized algorithm for finding the Pareto
each other. Each transmitter-receiver pair aims to maximiz points that maximize sum rate.

its long-term average transmission rate subject to an aveige . .
power constraint. This scenario is modeled as a stochastiame. All the above cited works consider a one shot non-

We provide sufficient conditions for existence and uniquerss Cooperative game (or a Pareto point). As against that we con-
of a Nash equilibrium (NE). We then formulate the problem of sider a stochastic game over Gaussian interference clsannel

finding NE as a variational inequality (V1) problem and present \where the users want to maximize their long term average rate
an algorithm to solve the VI using regularization. We also povide 54 haye long term average power constraints (for potential
distributed algorithms to compute Pareto optimal solutiors for - L
the proposed game. advan_tages of this over one shot optimization, seé [L2])[13
For this system we obtain existence of NE and also develop
algorithms to obtain NE via variational inequalities andéhgs
regularization. The convergence of these algorithms isqito
under weaker conditions than would be obtained via the
methods of[[1]. Finally, we provide distributed algorithrus
obtain local Pareto points and show their convergence under
We consider a wireless channel which is being sharedmplete generality.
by multiple users to transmit their data to their respective The paper is organized as follows. In Secfidn Il, we present
receivers. The transmissions of different users may caube system model and formulate it as a stochastic game. In
interference to other receivers. This is a typical scenar8ectior(]ll, we study this stochastic game and define thecbasi
in many wireless networks. In particular, this can represeterminology. In Section IV, we formulate the NE problem as a
inter-cell interference on a particular wireless chanmelai variational inequality problem and present algorithmsdlves
cellular network. The different users want to maximize thethe variational inequality. In Sectidn] V, we discuss theeRar
transmission rates. This system can be modeled in the gaop¢éimal solutions to the proposed game. In Secfioh VI, we
theoretic framework and has been widely studlgd [1]I- [6]. present numerical examples and Secfion] VII concludes the
In [1], the authors have considered parallel Gaussigaper.
interference channels. This setup is modeled as a strdtegic
game and existence and uniqueness of a Nash equilibrium Il. SYSTEM MODEL AND NOTATION

(NE) is studied. The authors provide conditions under which We consider a Gaussian wireless channel being shared

the \{vfa\ter-filling fl_Jnction is a contraction and thus ObtaiB N transmitter-receiver pairs. The time axis is slotted and
_cond|_t|ons for fF:Ir_uque_lr_\ﬁss of NE znd for ccl)nvergen_celghl users’ slots are synchronized. The channel gains of each
lterative water-illing. They extend these results to a multy,nsmit_receive pair are constant during a slot and change
antenna system in[7] and consider an asynchronous Ver%'ﬁ&‘ependently from slot to slot

of iterative water-filling in [8]. Let H;;(k) be the channel gain from transmittgrto

Parallel Gaussian interference channels (PGIC) were al%%eiveri (for transmitteri, receiver; is the intended receiver)
treated in [[2], [3], [5], [9]. [10]. In [2], authors describe\y, asqme that{ H,;(k),k > 0} is ani.i.d sequence with

an online algorithm to find NEL[S] proposes a variation istribution 7;;. We also assume that these sequences are
inequality approach to choose a NE when there exist multi ependent Z)f each other. The direct channel power gains
NE. A 2-user PGIC is considered in [9] and proposes a chann A(B)? € Hy = {hi,ho,... hy,} and the cross channel
selection game and finds its NE. Iql [3] and [[10], authmj oz/t/er gains H,, (k) 6’ H’ :a{gvil Lo a1 We denote
consider minimizing power consumption subject to quality Hii(k).i, ] = EA N) b; H(k) and its realization vector
service (QoS) constraints. I [10], authors find NE andIn [3 w(k) ’W’hiCh tai<es ;/alues iftt, the set of all possible channel

when strategy space is limited to finite power levels, Pareéé\tes. The distribution & (k) is denoted byr. If useri uses

h
optimal points are proposed as a solution of the game. ;%BwerP» H) then it gets rate lo I (P (H))). where
[6], authors formulate the problem of interference chasne W(H) g gl + I (P (H)),

as a Stackelberg game and study its equilibrium. We consider I,(P(H)) = i Hii|* Pi(H) 1)
power allocation in a non-game-theoretic framework/[inl [11] ! L4322 [ Hi PP (H)’

Index Terms—Interference channel, stochastic game, Nash equi-
librium, distributed algorithms, variational inequality , Pareto
point.

I. INTRODUCTION
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H is the channel state vecta?,(H) = (P;(H),..., Py(H)) best-response is same as that used for power profiles,
andc; is a constant that depends on the modulation and codiWgF (P) = (WF(P(h)),h € H), where WF(P(h)) =
used by transmittei. The aim of each useris to choose a (WF(P_1;h),..., WFNn(P_yn;h)) andWE;(P_;;h) is as

power policy to maximize its long term average rate defined in[(2). We usdVF,;(P_;) = (WFE;(P_;;h),h € H).
L It is observed in[[] that the best-respoM&F; (P _;) is
ri(P;,P_;) & limsup — ZE[Iog (14T, (PHKEK))), also the solution of the optimization problem
n—oo N
k=1

i 1 i . . . 2 i . .
subject to average power constraint minimize |[P; + £(P_)[”, subject toP; € Ai. (4)

1 . As a result we can interpret the best-response as projection
limsupg ZE[H‘(/‘?)] < P;, for eachi, of (=fi1(P_i),...,—fin(P_;)) on to A;. We denote the
e k=1 projection of z on to A; by Tl4,(z). We define the cost
whereP _; denotes the power policies of all users except uskmction of playeri, C;(P;,P_;) = ||P; + £,(P_,)|°. We
i. consider[(#), as a game in which every player minimizes its

We address this problem as a stochastic game problenst function with strategy set of playebeing.4;. We denote
with the set of feasible power policies of usedenoted by this game byg’. This game has the same set of NEsGas
A; and its utility byr;. Let A = TIY | A;. because the best responses of these two games are equal.

We limit ourselves to stationary policies, i.e., the power We can rewrite the optimization problefd (4) as :
policy for every user in slok depends only on the channel 5
state H(k) and not onk. In the current setup, it does not . L+ 37 [hij | Pi(h)
entail any loss in optimality. In fact now we can rewrite minimize Z Pi(h) e ’

. L . . heH v
this optimization problem to find policy?(H) such that :
ri = Egllog(1+T; (P (H))) is maximized subject to  Sublectto Pi €A ()
Eg [P;(H)] < P; for all i. We express power policy of playerye note that this is a convex optimization problem. Necgssar
i by P; = (Pi(h),h € H), where transmitted transmits in and sufficient optimality conditions for a convex optimipat
channel staté with power P;(h). We denote the power profile yropjem ([I5], page 210) applied to the optimization prable

of all players byP = (Py,...,Px). @) simplifies to
1. GAME THEORETICFORMULATION 14+5 . i 2P (h
Definition 1. A pointP* is a Nash Equilibrium (NE) of game e

G = ((A)X,, (r)X,) if for each playeri
Ti(Pr, Pt1) > Tl'(Pi, Ptz) for all P; € A,;.

(Vi(h) = WEF,(P_i;h)) 2 0, (6)

_ ) for all V; € A;. We can rewrite theV inequalities in[(B) in
Existence of a pure NE for the strategic gagéollows compact form as

from the Debreu-Glicksberg-Fan Theorein {[14], page no, 69)
since in our game; (P;,P_;) is a continuous function in the WEF(P) + / + AP T _WF(P)) > 0 for all
profile of strategie® = (P,,P_;) € A and concave iP;. ( (P) +h+ ) (= (P)) = ve “4(1’7)
Definition 2. The best-response of playeris a function whereﬁ is a Vi -length block vector withV; = |#|, and each
BR; : A_; — A; such thatBR;(P_;) is a solution of the block h(h),h € H, is of lengthN and is defined byi(h) =

optimization problem of maximizing(P;, P_;), subject to (—‘hl To e Thi]? |2) and H is the block diagonal matrifl =
P, € .Ai. . " A " - } ;
dlag{H(h), h e 7—[} with each blockH (h) defined by
We see that the Nash equilibrium is a fixed point of the
best-response function. In our game, given the power profile R 0 if i =
of the other player® _;, the best response of players [H(h)]ij = {Ihw|2 else ’
Ih”|2 ) .

To find a NE, we need to find the fixed points of the
@) waterfilling function for which we use the characterizat{@h
where \;(P_;) is chosen such that the average power con- A condition for uniqueness of the NE, and for convergence
straint i; sa:tizsfied and, — 1 for all i. It is easy to observe of iterative water-filling for parallel Gaussian interfame
that the best-response of playieto a given strategy of other channels to the NE, was pre:ggte@ [1]. This conditionén th
players is water-filing onf,(P_;) = (f;(P_s;:h),h € H) current setup is given by(S™%*) < 1, where the elements

where LA PR of matrix S™** are
Y #i 1ig 1 g -
fl(P—uh) - / |h“|2 . (3) [Smaw]ij _ {0 \hij\2 If ¢ J5

BR/(P_ih) — max{o, NP (1+ 32,2 [hij P (h)) } 7

|hii|?

MaX heu 7z else.

For this reason, we represent the best-response of player
i by WF;(P_;). The notation used for the overallWe study this condition further.



Theorem IIl.1. p(S™**) < 1 if and only if To use [®), we first convet'I(A, F(P)) to a strongly
monotoneV 1. DefineF, (P) = HP +h+ e, P, for ¢, > 0.

(8) We find conditions folVI(A, F.,) to be strongly monotone.
Then, using[(9), we can find a solution Bf (A, F. ). It is

Proof: It can be seen that, all row sums®1'* are equal shown in [17] that as,, — 0, the solution of VI(A, F., )

max{gl,...7gn2} 1
min{hy,... m}

to converges to that oF (A, F).
(N_l)max{gla-'-vgn2} - - ) o )
min{hy, ..., hn, } Theorem IV.1. If H is positive semidefinitd/I(A, F. ) is a
Thus, from the Frobenius theorem on spectral radius ([18], &trongly monotond’, for e > 0.
24-26),p(S™*) < 1 if and only if inequality [8) holds. m Proof: (F., (P) — F., (V))T (P-V)

We need the following result in the next section. . _
= (HP+¢e,P—-HV —¢, V)T (P -V)

Theorem 111.2. p(H) < 1 if and only if p(S™**) < 1. = P-V)TETP - V) +en(P— V)T (P V)

R Proof: Since the matrij is a block diagonal matrix, > e|l(P - V)||2.
p(H) < 1if and only if p(H(h)) < 1 for h € H. It should
be noted thats* is also a diagonal block of the blockThus,VI(A, I, ) is a strongly monoton#&I. [
diagonal matrix 4. Maximum row sum ofH( ) is upper Thus, we can apply[19) to solVEI(A, F.,) for suffi-
bounded by that o6™**. BecauseS™** = H(h) for some ciently smalle, > 0, to get a close approximation of a NE
h € H, maximum row sum offf is the row sum ofS™a. WheneyerH is positive semidefinite.
Using Frobenius theoremyH) < 1 iff p(S™*) < 1. ] If H is positive definiteVI(A, F') is a strictly monotone

Therefore under[{8), we obtain a unique NE for ou¥ . A strictly monotonel/ T admits atmost one solutiori ([17],
problem and iterative water-filling converges to the uniqueage 156). Since existence of a solutionlaf(A, F') follows
NE. However, [[B) is a strong condition. In the next sectiofiom existence of a NE of our game, whdi is positive
we obtain a weaker condition via variational inequalities. ~definite this solution is infact unique.

Theorem IV.2. If p(H) < 1 thenH is positive definite matrix.
IV. NE USING VARIATIONAL INEQUALITIES

Theory of variational inequalities offers various leagin . Proof: If p(H 1) < 1, then all eigenvalues,. ..., Ay of
techniques to find NE of a given game. The equivalenc[é are in unit circle. Thus, the eigenvalues \;, i - _1 IV
of finding a NE and solving a/7 is noted in [17]. A of H = I+ H have positive real parts and henfleis posmve

variational inequality problem denoted by/ (K, F') is defined definite. o -
as follows. The other-way implication is not true. For example,

consider 3-user interference channel withy = {0.3,0.6}
Definition 3. Consider a closed and convex détC R”, and and#,. = {0.2,0.1}. It can be seen thqt(ﬁ) > 1 butH is

a function " : K — K. The variational inequality problem positive definite. Thus we can find the NE usifig (9).

VI(K,F) is defined as the problem of findinge K such The condition thatff is positive semidefinite is a much
that . weaker condition tharp(H) < 1. The former condition

F(z)' (y—z)>0forall y € K. requires the eigenvalues @ to lie in the right half plane,
Definition 4. We say that/I(K, F) is the latter requires the eigenvalues to lie in a unit circléhwi

. Monotone if(F(z)— F(y))T (z—y) > 0 for all z,y € k. (10) s center.

« Strictly monotone if (F(z) — F(y)'(z — y) >
0forall o,y € K,z # . V. PARETO OPTIMAL SOLUTIONS
« Strongly monotone if there exists an> 0 such that In this section, we consider Pareto optimal solutions to
(F(z) — F(y)T(xz —y) > el|lz —y||* forall z,y € K.  the gameg. A power allocatiorlP* is Pareto optimal if there
o : ; does not exist a power allocatidn such that-; (P;,P_;) >
We use the projection algorithn{([17], section 12.1 . T ) =
! projecti gon ] ! ) r;(Pf,P*,) for all ¢ = 1,...,N with atleast one strict
x(l+1)=1g (z(l) — 7F(z(1))), for i =1,2,..., (9) inequality. It is well-known that the solution of a weighted

to solve strongly monoton& (K, F'). Convergence of the sum optimization of the u_t|I|ty f”?‘“."’”? is Pareto optimiat.,
the solution of the following optimization problem,

projection algorithm is proved for strongly monotone varia
tional inequality. For that, first we formulate our probles a N
a strongly monoton& I when H is positive semidefinite. max » w;r;(P;, P_;), such thatP; € A; for all i, (11)
Consider the variational inequality probléiv (A, F(P)) =1
to find P such that, with w; > 0, is Pareto optimal. Thus, sincé is compact and
T r; are continuous, a Pareto point exists for our problem. We
(F(P))" (z—P) > 0forall z e A, (10) apply the weighted-sum optimization {11) to the ga¢hé¢o
where F(P) = h+ HP and H = I + H. The solutionP* find a Pareto-optimal power allocation.
of (I0) is a Nash equilibrium of the gan as it is a Nash To solve the non-convex optimization problem in a dis-
equilibrium of G'. tributed way, we employ augmented Lagrangian method and



solve for the stationary points using the algorithm [in][. 10
We present the resulting algorithm to find the Pareto pi oF
allocation in Algorithm[l. Define the augmented Lagran o o

as N N g L e

LPN) =D wiri(Py, P_)+> N(Pi=>_ w(h)Pi(h)) g
=1 =1 heH ” 5 e
.-*"|Sum rate at Pareto points
P 2 T’ -+-Sum rate a
+ CZ(Pl o Z ﬂ-(h)P?’ (h)) : ! - :um raze az Eireto points using Algorithm in [11]
i heH % ; ‘ 5 20

5 10 1
Averate transmit SNR constraint

We denote the gradient of(P, ) with respect to power rig. 1. sum rate comparison at Pareto optimal points and Ngstibrium
points for Example 1.

—=-Sum rate at Pareto points

optimal Power allocation J||-+-sum rate at e

= Sum rate at Pareto points using Algorithm in [11]

Algorithm 1 Augmented Lagrangian method to find Pa 8 /

Initialize A", P” forall i = 1,..., N.
for n=1— oo do
P = SteepestAscen{\(™), P("—1))

if |P,—>, 7(h)P\" (h)| < eforalli=1,...,N then

Sum Rate
w ()

IS

break 2
else — % Ave]?age transmilt0 SNR constrlasint 20
)‘gnﬂ) = )‘gn) o O‘(Pi o Zh ﬂ-(h)Pi(n) (h)) Fig. 2. Sum rate comparison at Pareto optimal points and Kegshibrium
n=n+1 points for Example 2.
end if
end for and for Example 2H,; = {0.3,1} and H. = {0.2,0.1}.
function STEEPEST ASCENT(\, P) Here, we assume that all elements Hf;, . occur with
Fix 4, ¢ equal probability, i.e., with probability 0.5. In Example 1
Initialize t = 1,P®) = P. p(H) = 0.6667, hence water-filling function is a contraction
loop and iterative water-filling converges to the unique NE. In
for i=1— N do Example 2,p(H) = 1.3333, but H is a positive definite
playeri updates his power variables as matrix as each block matrix of the diagonal is positive dédini
Q=P +6vi£(P(t),Pg?,A) Thus it has a unique NE. In Example 2, iterative water-
end for ! ! filling does not converge but we can use the regularization
ChoosePt+1) as algorithm to find the NE. To find Pareto optimal points, in both
i* = arg max, £(Q;, P(tz’ A) — L(PE”, P(jz’ A) exampl_e_s,_w_e choose_ weights equal tq 1 and we use Algorithm
P+ — (Q, P(t)_*) @ we _|n|t|aI|ze Algorithm[1 from10 different initial power
bt ol allocations chosgn at random. The best Pa_reto.pomt among
Till Hv-ﬁ'(P@ p® M| < € for eachi. the 10 Pareto points is chosen and plotted in Figule 1.. Wg
end loop ! voT compare the sum rates for the NE and the Pareto point in
return P (®) Figure[1 for Example 1 and in Figutd 2 for Example 2. In

Figures[1,[2, we also compare the sum rate at the Pareto

point achieved using the algorithm presented[in| [11] which

) ) is a centralized algorithm and decodes the strong and very

variables of playei by v;L(P;, P_;, A). In Aigorithm[l, the = g4rong interference instead of treating them as noise. Wbe t

step sizesy, § are chosen sufficiently small. Convergence gbareto optimal curves in FigurE [, 2 almost coincide, since

the steepest ascent function in Algorithin 1 is proved.if [18} hoth examples all the channel states have weak intederen
Since this is a nonconvex optimization problem, Algorithmjone, and this interference is treated as noise. We notice h

[l converges to a local Pareto poirit ([19]) depending on thes; pareto optimal points are more efficient in terms of sum
initial power allocation. We can get better local Paretonf®i [ate than NE.

by initializing the algorithm from different power allo¢ans
and choosing the Pareto point which gives the best sum rate
among the ones obtained. We consider this in our illuseativ

examples.

end function

VII. CONCLUSIONS

We have considered a channel shared by multiple users.
We presented a variational inequality approach using ezgul
ization to find the NE of the proposed power allocation game.
The conditions required for convergence of the algorithm
In this section we compare the sum rate achieved atbased on VI are weaker than those of iterative water-fillivg.

Nash equilibrium and a Pareto optimal point obtained by theve also presented a distributed algorithm to find locatear
algorithms provided above. We choose a 3-user interferermgtimal solutions. This algorithm converges under general
channel. For Example T, = {3,1.5} andH. = {0.1,0.5} conditions and provides more efficient solutions than the NE

VI. NUMERICAL EXAMPLES
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