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Abstract—We consider a wireless channel shared by multiple
transmitter-receiver pairs. Their transmissions interfere with
each other. Each transmitter-receiver pair aims to maximize
its long-term average transmission rate subject to an average
power constraint. This scenario is modeled as a stochastic game.
We provide sufficient conditions for existence and uniqueness
of a Nash equilibrium (NE). We then formulate the problem of
finding NE as a variational inequality (VI) problem and present
an algorithm to solve the VI using regularization. We also provide
distributed algorithms to compute Pareto optimal solutions for
the proposed game.

Index Terms—Interference channel, stochastic game, Nash equi-
librium, distributed algorithms, variational inequality , Pareto
point.

I. I NTRODUCTION

We consider a wireless channel which is being shared
by multiple users to transmit their data to their respective
receivers. The transmissions of different users may cause
interference to other receivers. This is a typical scenario
in many wireless networks. In particular, this can represent
inter-cell interference on a particular wireless channel in a
cellular network. The different users want to maximize their
transmission rates. This system can be modeled in the game
theoretic framework and has been widely studied [1] - [6].

In [1], the authors have considered parallel Gaussian
interference channels. This setup is modeled as a strategicform
game and existence and uniqueness of a Nash equilibrium
(NE) is studied. The authors provide conditions under which
the water-filling function is a contraction and thus obtain
conditions for uniqueness of NE and for convergence of
iterative water-filling. They extend these results to a multi-
antenna system in [7] and consider an asynchronous version
of iterative water-filling in [8].

Parallel Gaussian interference channels (PGIC) were also
treated in [2], [3], [5], [9], [10]. In [2], authors describe
an online algorithm to find NE. [5] proposes a variational
inequality approach to choose a NE when there exist multiple
NE. A 2-user PGIC is considered in [9] and proposes a channel
selection game and finds its NE. In [3] and [10], authors
consider minimizing power consumption subject to quality of
service (QoS) constraints. In [10], authors find NE and in [3],
when strategy space is limited to finite power levels, Pareto
optimal points are proposed as a solution of the game. In
[6], authors formulate the problem of interference channels
as a Stackelberg game and study its equilibrium. We consider
power allocation in a non-game-theoretic framework in [11]

(see also other references in [11] for such a setup). In [11],we
have proposed a centralized algorithm for finding the Pareto
points that maximize sum rate.

All the above cited works consider a one shot non-
cooperative game (or a Pareto point). As against that we con-
sider a stochastic game over Gaussian interference channels,
where the users want to maximize their long term average rate
and have long term average power constraints (for potential
advantages of this over one shot optimization, see [12], [13]).
For this system we obtain existence of NE and also develop
algorithms to obtain NE via variational inequalities and using
regularization. The convergence of these algorithms is proved
under weaker conditions than would be obtained via the
methods of [1]. Finally, we provide distributed algorithmsto
obtain local Pareto points and show their convergence under
complete generality.

The paper is organized as follows. In Section II, we present
the system model and formulate it as a stochastic game. In
Section III, we study this stochastic game and define the basic
terminology. In Section IV, we formulate the NE problem as a
variational inequality problem and present algorithms to solve
the variational inequality. In Section V, we discuss the Pareto
optimal solutions to the proposed game. In Section VI, we
present numerical examples and Section VII concludes the
paper.

II. SYSTEM MODEL AND NOTATION

We consider a Gaussian wireless channel being shared
by N transmitter-receiver pairs. The time axis is slotted and
all users’ slots are synchronized. The channel gains of each
transmit-receive pair are constant during a slot and change
independently from slot to slot.

Let Hij(k) be the channel gain from transmitterj to
receiveri (for transmitteri, receiveri is the intended receiver).
We assume that,{Hij(k), k ≥ 0} is an i.i.d sequence with
distribution πij . We also assume that these sequences are
independent of each other. The direct channel power gains
|Hii(k)|

2 ∈ Hd = {h1, h2, . . . , hn1
} and the cross channel

power gains|Hij(k)|
2 ∈ Hc = {g1, g2, . . . , gn2

}. We denote
(Hij(k), i, j = 1, . . . , N) by H(k) and its realization vector
byh(k) which takes values inH, the set of all possible channel
states. The distribution ofH(k) is denoted byπ. If useri uses
powerPi(H) then it gets rate log(1 + Γi (P (H))), where

Γi(P (H)) =
αi|Hii|

2Pi(H)

1 +
∑

j 6=i |Hij |2Pj(H)
, (1)
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H is the channel state vector,P (H) = (P1(H), . . . , PN (H))
andαi is a constant that depends on the modulation and coding
used by transmitteri. The aim of each useri is to choose a
power policy to maximize its long term average rate

ri(Pi,P−i) , lim sup
n→∞

1

n

n
∑

k=1

E[log (1 + Γi (P (H(k))))],

subject to average power constraint

lim sup
n→∞

1

n

n
∑

k=1

E[Pi(k)] ≤ P i, for eachi,

whereP−i denotes the power policies of all users except user
i.

We address this problem as a stochastic game problem
with the set of feasible power policies of useri denoted by
Ai and its utility byri. Let A = ΠN

i=1Ai.
We limit ourselves to stationary policies, i.e., the power

policy for every user in slotk depends only on the channel
stateH(k) and not onk. In the current setup, it does not
entail any loss in optimality. In fact now we can rewrite
this optimization problem to find policyP (H) such that
ri = EH[log(1 + Γi (P (H)))] is maximized subject to
EH [Pi(H)] ≤ P i for all i. We express power policy of player
i by Pi = (Pi(h), h ∈ H), where transmitteri transmits in
channel stateh with powerPi(h). We denote the power profile
of all players byP = (P1, . . . ,PN ).

III. G AME THEORETICFORMULATION

Definition 1. A pointP∗ is a Nash Equilibrium (NE) of game
G =

(

(Ai)
N
i=1, (ri)

N
i=1

)

if for each playeri

ri(P
∗
i ,P

∗
−i) ≥ ri(Pi,P

∗
−i) for all Pi ∈ Ai.

Existence of a pure NE for the strategic gameG follows
from the Debreu-Glicksberg-Fan Theorem ([14], page no. 69),
since in our gameri(Pi,P−i) is a continuous function in the
profile of strategiesP = (Pi,P−i) ∈ A and concave inPi.

Definition 2. The best-response of playeri is a function
BRi : A−i → Ai such thatBRi(P−i) is a solution of the
optimization problem of maximizingri(Pi,P−i), subject to
Pi ∈ Ai.

We see that the Nash equilibrium is a fixed point of the
best-response function. In our game, given the power profile
of the other playersP−i, the best response of playeri is

BRi(P−i;h) = max

{

0, λi(P−i)−
(1 +

∑

j 6=i |hij |
2Pj(h))

|hii|2

}

,

(2)
whereλi(P−i) is chosen such that the average power con-
straint is satisfied andαi = 1 for all i. It is easy to observe
that the best-response of playeri to a given strategy of other
players is water-filling onfi(P−i) = (fi(P−i;h), h ∈ H)
where

fi(P−i;h) =
(1 +

∑

j 6=i |hij |
2Pj(h))

|hii|2
. (3)

For this reason, we represent the best-response of player
i by WFi(P−i). The notation used for the overall

best-response is same as that used for power profiles,
WF(P) = (WF(P (h)), h ∈ H), where WF(P (h)) =
(WF1(P−1;h), . . . ,WFN (P−N ;h)) andWFi(P−i;h) is as
defined in (2). We useWFi(P−i) = (WFi(P−i;h), h ∈ H).

It is observed in [1] that the best-responseWFi(P−i) is
also the solution of the optimization problem

minimize ‖Pi + fi(P−i)‖
2
, subject toPi ∈ Ai. (4)

As a result we can interpret the best-response as projection
of (−fi,1(P−i), . . . ,−fi,N(P−i)) on to Ai. We denote the
projection of x on to Ai by ΠAi

(x). We define the cost
function of playeri, Ci(Pi,P−i) = ‖Pi + fi(P−i)‖

2. We
consider (4), as a game in which every player minimizes its
cost function with strategy set of playeri beingAi. We denote
this game byG′. This game has the same set of NEs asG
because the best responses of these two games are equal.

We can rewrite the optimization problem (4) as :

minimize
∑

h∈H

(

Pi(h) +
1 +

∑

j 6=i |hij |
2Pj(h)

|hii|2

)2

,

subject to Pi ∈ Ai. (5)

We note that this is a convex optimization problem. Necessary
and sufficient optimality conditions for a convex optimization
problem ([15], page 210) applied to the optimization problem
(5) simplifies to

∑

h∈H

(

WFi(P−i;h) +
1 +

∑

j 6=i |hij |
2Pj(h)

|hii|2

)

(Vi(h)−WFi(P−i;h)) ≥ 0, (6)

for all Vi ∈ Ai. We can rewrite theN inequalities in (6) in
compact form as
(

WF(P) + ĥ+ ĤP
)T

(x−WF(P)) ≥ 0 for all x ∈ A,

(7)
whereĥ is aN1-length block vector withN1 = |H|, and each
block ĥ(h), h ∈ H, is of lengthN and is defined bŷh(h) =
(

1
|h11|2

, . . . , 1
|hNN |2

)

andĤ is the block diagonal matrix̂H =

diag
{

Ĥ(h), h ∈ H
}

with each blockĤ(h) defined by

[Ĥ(h)]ij =

{

0 if i = j,
|hij |

2

|hii|2
, else.

To find a NE, we need to find the fixed points of the
waterfilling function for which we use the characterization(7).

A condition for uniqueness of the NE, and for convergence
of iterative water-filling for parallel Gaussian interference
channels to the NE, was presented in [1]. This condition in the
current setup is given byρ(Smax) < 1, where the elements
of matrix Smax are

[Smax]ij =

{

0 if i = j,

max h∈H
|hij |

2

|hii|2
, else.

We study this condition further.



Theorem III.1. ρ(Smax) < 1 if and only if

max{g1, . . . , gn2
}

min{h1, . . . , hn1
}
<

1

N − 1
. (8)

Proof: It can be seen that, all row sums ofSmax are equal
to

(N − 1)
max{g1, . . . , gn2

}

min{h1, . . . , hn1
}
.

Thus, from the Frobenius theorem on spectral radius ([16], pp.
24-26),ρ(Smax) < 1 if and only if inequality (8) holds.
We need the following result in the next section.

Theorem III.2. ρ(Ĥ) < 1 if and only if ρ(Smax) < 1.

Proof: Since the matrixĤ is a block diagonal matrix,
ρ(Ĥ) ≤ 1 if and only if ρ(Ĥ(h)) ≤ 1 for h ∈ H. It should
be noted thatSmax is also a diagonal block of the block
diagonal matrixĤ . Maximum row sum ofĤ(h) is upper
bounded by that ofSmax. Because,Smax = Ĥ(h) for some
h ∈ H, maximum row sum ofĤ is the row sum ofSmax.
Using Frobenius theorem,ρ(Ĥ) < 1 iff ρ(Smax) < 1.

Therefore under (8), we obtain a unique NE for our
problem and iterative water-filling converges to the unique
NE. However, (8) is a strong condition. In the next section
we obtain a weaker condition via variational inequalities.

IV. NE USING VARIATIONAL INEQUALITIES

Theory of variational inequalities offers various learning
techniques to find NE of a given game. The equivalence
of finding a NE and solving aV I is noted in [17]. A
variational inequality problem denoted byV I(K,F ) is defined
as follows.

Definition 3. Consider a closed and convex setK ⊂ R
n, and

a functionF : K → K. The variational inequality problem
V I(K,F ) is defined as the problem of findingx ∈ K such
that

F (x)T (y − x) ≥ 0 for all y ∈ K.

Definition 4. We say thatV I(K,F ) is
• Monotone if(F (x)−F (y))T (x−y) ≥ 0 for all x, y ∈ K.

• Strictly monotone if (F (x) − F (y))T (x − y) >

0 for all x, y ∈ K,x 6= y.

• Strongly monotone if there exists anǫ > 0 such that
(F (x) − F (y))T (x− y) ≥ ǫ‖x− y‖2 for all x, y ∈ K.

We use the projection algorithm ([17], section 12.1)

x(l + 1) = ΠK (x(l)− τF (x(l))) , for l = 1, 2, . . . , (9)

to solve strongly monotoneV I(K,F ). Convergence of the
projection algorithm is proved for strongly monotone varia-
tional inequality. For that, first we formulate our problem as
a strongly monotoneV I whenH̃ is positive semidefinite.

Consider the variational inequality problemV I(A, F (P))
to find P such that,

(F (P))
T
(x−P) ≥ 0 for all x ∈ A, (10)

whereF (P) = ĥ + H̃P andH̃ = I + Ĥ. The solutionP∗

of (10) is a Nash equilibrium of the gameG as it is a Nash
equilibrium ofG′.

To use (9), we first convertV I(A, F (P)) to a strongly
monotoneV I. DefineFǫn(P) = H̃P+ ĥ+ ǫnP, for ǫn > 0.
We find conditions forV I(A, Fǫn) to be strongly monotone.
Then, using (9), we can find a solution ofV I(A, Fǫn). It is
shown in [17] that asǫn → 0, the solution ofV I(A, Fǫn)
converges to that ofV I(A, F ).

Theorem IV.1. If H̃ is positive semidefinite,V I(A, Fǫn) is a
strongly monotoneV I, for ǫn > 0.

Proof: (Fǫn(P)− Fǫn(V))T (P−V)

= (H̃P+ ǫnP− H̃V − ǫnV)T (P−V)

= (P−V)T H̃T (P−V) + ǫn(P−V)T (P−V)

≥ ǫn‖(P−V)‖2.

Thus,V I(A, Fǫn) is a strongly monotoneV I.
Thus, we can apply (9) to solveV I(A, Fǫn) for suffi-

ciently small ǫn > 0, to get a close approximation of a NE
wheneverH̃ is positive semidefinite.

If H̃ is positive definite,V I(A, F ) is a strictly monotone
V I. A strictly monotoneV I admits atmost one solution ([17],
page 156). Since existence of a solution ofV I(A, F ) follows
from existence of a NE of our game, wheñH is positive
definite this solution is infact unique.

Theorem IV.2. If ρ(Ĥ) < 1 thenH̃ is positive definite matrix.

Proof: If ρ(Ĥ) < 1, then all eigenvaluesλ1, . . . , λN of
Ĥ are in unit circle. Thus, the eigenvalues1+λi, i = 1, . . . , N
of H̃ = I+Ĥ have positive real parts and henceH̃ is positive
definite.

The other-way implication is not true. For example,
consider 3-user interference channel withHd = {0.3, 0.6}
andHc = {0.2, 0.1}. It can be seen thatρ(Ĥ) > 1 but H̃ is
positive definite. Thus we can find the NE using (9).

The condition thatH̃ is positive semidefinite is a much
weaker condition thanρ(Ĥ) < 1. The former condition
requires the eigenvalues of̃H to lie in the right half plane,
the latter requires the eigenvalues to lie in a unit circle with
(1, 0) as center.

V. PARETO OPTIMAL SOLUTIONS

In this section, we consider Pareto optimal solutions to
the gameG. A power allocationP∗ is Pareto optimal if there
does not exist a power allocationP such thatri(Pi,P−i) ≥
ri(P

∗
i ,P

∗
−i) for all i = 1, . . . , N with atleast one strict

inequality. It is well-known that the solution of a weighted-
sum optimization of the utility functions is Pareto optimal, i.e.,
the solution of the following optimization problem,

max
N
∑

i=1

wiri(Pi,P−i), such thatPi ∈ Ai for all i, (11)

with wi > 0, is Pareto optimal. Thus, sinceA is compact and
ri are continuous, a Pareto point exists for our problem. We
apply the weighted-sum optimization (11) to the gameG to
find a Pareto-optimal power allocation.

To solve the non-convex optimization problem in a dis-
tributed way, we employ augmented Lagrangian method and



solve for the stationary points using the algorithm in [18].
We present the resulting algorithm to find the Pareto power
allocation in Algorithm 1. Define the augmented Lagrangian
as

L(P, λ) =
N
∑

i=1

wiri(Pi,P−i)+
N
∑

i=1

λi(P i−
∑

h∈H

π(h)Pi(h))

+ c
∑

i

(P i −
∑

h∈H

π(h)Pi(h))
2.

We denote the gradient ofL(P, λ) with respect to power

Algorithm 1 Augmented Lagrangian method to find Pareto
optimal Power allocation

Initialize λ
(1)
i ,P

(0)
i for all i = 1, . . . , N .

for n = 1 → ∞ do
P(n) = SteepestAscent(λ(n),P(n−1))

if |P i−
∑

h π(h)P
(n)
i (h)| < ǫ for all i = 1, . . . , N then

break
else

λ
(n+1)
i = λ

(n)
i − α(P i −

∑

h π(h)P
(n)
i (h))

n = n+ 1
end if

end for
function STEEPEST ASCENT(λ,P)

Fix δ, ǫ

Initialize t = 1,P(t) = P.
loop

for i = 1 → N do
player i updates his power variables as

Qi = P
(t)
i + δ▽iL(P

(t)
i ,P

(t)
−i, λ)

end for
ChooseP(t+1) as
i∗ = argmaxi L(Qi,P

(t)
−i, λ)− L(P

(t)
i ,P

(t)
−i, λ)

P(t+1) = (Qi∗ ,P
(t)
−i∗)

t = t+ 1.
Till ‖▽iL(P

(t)
i ,P

(t)
−i, λ)‖2 < ǫ for eachi.

end loop
returnP(t)

end function

variables of playeri by ▽iL(Pi,P−i, λ). In Algorithm 1, the
step sizesα, δ are chosen sufficiently small. Convergence of
the steepest ascent function in Algorithm 1 is proved in [18].

Since this is a nonconvex optimization problem, Algorithm
1 converges to a local Pareto point ([19]) depending on the
initial power allocation. We can get better local Pareto points
by initializing the algorithm from different power allocations
and choosing the Pareto point which gives the best sum rate
among the ones obtained. We consider this in our illustrative
examples.

VI. N UMERICAL EXAMPLES

In this section we compare the sum rate achieved at a
Nash equilibrium and a Pareto optimal point obtained by the
algorithms provided above. We choose a 3-user interference
channel. For Example 1:Hd = {3, 1.5} andHc = {0.1, 0.5}
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Fig. 1. Sum rate comparison at Pareto optimal points and Nashequilibrium
points for Example 1.

0 5 10 15 20
2

3

4

5

6

7

8

Average transmit SNR constraint

S
u
m
 
R
a
t
e

 

 

Sum rate at Pareto points

Sum rate at NE

Sum rate at Pareto points using Algorithm in [11]

Fig. 2. Sum rate comparison at Pareto optimal points and Nashequilibrium
points for Example 2.

and for Example 2:Hd = {0.3, 1} and Hc = {0.2, 0.1}.
Here, we assume that all elements ofHd,Hc occur with
equal probability, i.e., with probability 0.5. In Example 1,
ρ(Ĥ) = 0.6667, hence water-filling function is a contraction
and iterative water-filling converges to the unique NE. In
Example 2,ρ(Ĥ) = 1.3333, but H̃ is a positive definite
matrix as each block matrix of the diagonal is positive definite.
Thus it has a unique NE. In Example 2, iterative water-
filling does not converge but we can use the regularization
algorithm to find the NE. To find Pareto optimal points, in both
examples, we choose weights equal to 1 and we use Algorithm
1. We initialize Algorithm 1 from10 different initial power
allocations chosen at random. The best Pareto point among
the 10 Pareto points is chosen and plotted in Figure 1. We
compare the sum rates for the NE and the Pareto point in
Figure 1 for Example 1 and in Figure 2 for Example 2. In
Figures 1, 2, we also compare the sum rate at the Pareto
point achieved using the algorithm presented in [11] which
is a centralized algorithm and decodes the strong and very
strong interference instead of treating them as noise. The two
Pareto optimal curves in Figures 1, 2 almost coincide, since
in both examples all the channel states have weak interference
alone, and this interference is treated as noise. We notice here
that Pareto optimal points are more efficient in terms of sum
rate than NE.

VII. C ONCLUSIONS

We have considered a channel shared by multiple users.
We presented a variational inequality approach using regular-
ization to find the NE of the proposed power allocation game.
The conditions required for convergence of the algorithm
based on VI are weaker than those of iterative water-filling.We
have also presented a distributed algorithm to find local Pareto
optimal solutions. This algorithm converges under general
conditions and provides more efficient solutions than the NE.
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