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Abstract—Recent work has shown that adaptive CSMA al- whi
gorithms can achieve throughput optimality. However, thes [5].
adaptive CSMA algorithms assume a rather simplistic model
for the wireless medium. Specifically, the interference isypically
modelled by a conflict graph, and the channels are assumed to
be static. In this work, we propose a distributed and adaptie
CSMA algorithm under a more realistic signal-to-interference
ratio (SIR) based interference model, with time-varying clannels.
We prove that our algorithm is throughput optimal under this
generalized model. Further, we augment our proposed algofim
by using a parallel update technique. Numerical results she that
our algorithm outperforms the conflict graph based algorithms,
in terms of supportable throughput and the rate of convergerme
to steady-state.
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I. INTRODUCTION

A central problem in wireless networks is the design of
efficient link scheduling algorithms in the presence of in-
terference. In the design of scheduling algorithms, theee a b.
three key performance metrics of interest. The first among
them is the achievabl¢hroughput region The throughput
performance of a scheduling algorithm is characterized by
the largest set of arrival rates under which the algorithm ca
stabilize the queues in the network. Secondly, &wverage
delayincurred by the packets in the queue should be small.
The third metric of interest is the computational and commive

ch is a Monte Carlo Markov Chain sampling technidue [4],
Specifically, it is a Gibbs sampler][5] based algorithm.

A main shortcoming of the existing papers on adaptive

MA is that the results are derived based on rather sirmplist

models for the wireless channels and the interference ca@ypi
modelling assumptions used include:

Conflict graph interference modeThe interference is
modelled by a conflict graph or protocol model [3], where
the transmissions from two links fail, if the links share an
edge in the conflict graph. In reality however, the success
or failure of a link depends on the aggregate interference
from all the active links in the interference range. In other
words, the complex nature of wireless interference is not
adequately captured by a conflict graph. On the other
hand, the SIR-based interference model can be used to
overcome this limitation.

Channel modellt is assumed that the wireless channel
is either to be statici. not time-varying), or that
the instantaneous CSI (Channel state information) at
each time slot is available for scheduling collision free
transmissions. However, wireless channels are seldom
static due to fading, and the availability of CSI at each
transmitter is not necessarily realistic in an adhoc sgttin
present a brief summary of the assumptions made in the

nication complexityinvolved in implementing the algorithm. €Xisting literature in the following table:

Scheduling algorithms with low computational complexitda
low communication overheads are preferable.

A. Related Work

A large part of the existing literature on scheduling i$
based on the maximum weight scheduling algoritim [1],
which is known to be throughput optimal under fairly general
conditions. However, maximum weight scheduling general

Ref. Interference| Channel| CSI | Throughput
model model Optimality
31, [e] graph static - v
[7] graph varying | Inst. v
8] graph varying | Inst.
S]] SIR varying | Inst.
[10] SIR varying | Stat.
y This work SIR varying | Stat. v

requires solving an NP-hard problem during each scheduling,
instant, and is difficult to implement in practice. Furthielis

not directly amenable to a distributed implementation.esav
low complexity alternatived [2] have been proposed but they

Inst. - Instantaneous channel gains are assumed to be
known at each time slot.

Stat.- Channel statistics (such as average channel gains
or distribution) are assumed to be known.

achieve only a fraction of the capacity region, and are hencen (ime.varying channel is considered between the transmit-

not throughput optimal. ter
On the other hand, there are simple random access teg{s

niques such as Aloha, CSMA (Carrier Sense Multiple Accesgy

which can be implemented in a distributed manner. A digy

of a link and its corresponding receiver in [7]. However,
channel gains between the interfering links are assumed
static. In[[8], time varying channels are considered gmon
the links, and the interference is modelled by a conflict

tributed algorithm was developed in|[3] to adaptively ch®ogyyaph. However, the algorithriil[8] can support only a fractio
the CSMA parameters so as to achieve throughput optimalify. the achievable rate region. A SIR model is considered in

Central to this algorithm is the so call€lauber dynamics 9]
This work has been presented at NCC-2015, held at Mumbaig.Ind

to a propose conservative algorithm that is suboptirAal.

adaptive Aloha based algorithm is proposed.if [10] undegtim
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varying channels. However the algorithm can only maximizgere |h;;|>? R~ is the received power at the receiver in link
some utility functions and is not throughput optimal. from its intended transmitter and

B. Our Contributions IM\{i}) = Z |has|*r %,
In this work, we consider a single-hop wireless network and geM\Li}
propose a distributed scheduling algorithm. is the interference power from other concurrent transimissi
« We consider time-varying channels among all the links iQueuing DynamicsEach link has a separate arrival process
the network. Further, the interference is modelled usirgnd maintains its own buffefe;];Y, denote the arrival rates
the SIR model which is more realistic. of the links, [¢;(¢)], denote the queue lengths of the links
« A key contribution of this paper is in the design of an time slotz.
Gibbs sampler[]5] based throughput optimal scheduligssumptions on channel state informatiole assume that
algorithm @lgorithm 1). In the algorithm we propose, each link knows the distances to its neighbours (defined))ate
each link only requires the average channel gains frotiie path loss exponent and the SIR thresHhbld
its neighbouring links (defined later). In particular, in- We now compute the probability that a transmission is
stantaneous channel gains are not required, which makescessful in the presence of interference.
our algorithm practical in a fast fading scenario, where . )
the channel gains vary rapidly within a data slot. A. Probability of successful link
« We augmentAlgorithm 1, which allows only single The probability of success for a link € M denoted by
link updates, and proposilgorithm 2 which performs p;(M) is
parallel link updates and converges faster.
The remai . . (M) =P (3 = T),
e remainder of the paper is organised as follows. In

2 a .
SectiorT, the network model is described. In Secfioh He t =P (|hil> > ROTI(M\ {i})),
spatial CSMA algorithm is presented and its throughput op-
timality is proved. Numerical results are presented in i8act (@) Ep,,yexp | —TR® Z |hijri;* ]
[[V] and we conclude in Section V. JEM\{i}
Il. NETWORK MODEL ® H Ep,, exp (—RQT|hij|2n—j‘“) 7
We consider a single-hop ad-hoc wireless network, and JeM\{i}
model the links using a bipole model introduced|in!/[10]. In a © 1 Vi e M
bipole model, each transmitter is associated with a recéiee v 14 (i)aT, ’
is at a distancé? in some arbitrary direction. A transmitter and JeEM\LY i

its corresponding receiver is referred to as a link. We assufyhere (a) and (c) follow from the exponential distribution

denote all the links in the network. We assume that the tingge fading variables. Leff(r;;) := ——~=—. Then the
is slotted. ()T

We assume that the link distande is much smaller than Probability of success can be written as,
the distances of the transmitter and receiver to the othks.li .
With this assumption, we can think of links as points in the pi(M) = H frig), vie M. @)
Euclidean space (The results in this paper are not limited by JeM\{a}
this assumption. The assumption is taken to keep the expregr convenience, the probability of success is set to zero
sions simple). Letr;; denote the distance between the linkfor the links that are not in the currently active sét,
i,7. We consider a standard path-loss moe| <, o > 2. e, (M) =0, Vi¢ M. Note that[(l) is calculated,
Channel modelThe small-scale fading (power) between angssuming all the active links in the network can contribute t
pair of nodes is modeled by a unit power Rayleigh distributiothe interference of a receiver. However, from the studies on
and is assumed to be i.i.d across time and space. The charggistical distribution of co-channel interference, ygregate
gain between the transmitter of a liakand the receiver in link interference from the links beyond a certain distance can
j is denoted byh;;. Sinceh;; is Rayleigh distributed|h;;|*> be safely neglected [11]; [12]. The radius beyond which the
is exponentially distributed with unit mean. interference can be neglected is referred to as close-ingad
Interference modelA receiver successfully receives the packeind is denoted byR;. Hence for a linki, the interference
of the corresponding transmitter if the received SIR is &@v from the active links outside a ball of radidg aroundi can
pre-determined thresholfi. We consider interference limitedbe neglected. LetV; denote the set of links that are potential
networks, where the impact of thermal noise is negligible asterferers of linki, i.e., the set of links within the ball of
compared to interference. Supposé C N, be the set of radiusR; around linki. The links in\; are referred to as the
links that are transmitting in the current slot. The SIR of geighboursof link 4. Thus, from[(1) the probability of success
link ¢« € M denoted byy; r is given by, is,

I 1710 (s M) = T F(riy), VieM, 2)
M TMN ) IA[4



where M; := N; N M is set of active links that are within « Neighbour discoveryEach linkj € {i} UN; executes a

the close-in radius of link. Also note that, if none of the neighbour discovery [13] algorithm to compute the set of
potential interferers of a link are active, then it succeeds its active interferes in the previous slag., M;(t — 1).
with probability one,i.e., « Inactive weightsEach linkj € N; computesu; (M (t —
, 1)\ {4}) from (2) and subsequently computes the inactive
piM) =1, it MON;=0. weight
From [(2), we can observe that the probability of success of wf =g (g; () py(M(t — 1)\ {i}). (3)

a link depends only on the distances fromatsiveneighbours
M,;. This allows for computation ofu;(M) by a simple
neighbour discovery algorithm [13].

« Active weightsLink 7 obtains the inactive weights from
its neighbours and computes the active weights as defined

We now characterize the capacity region in terms of the link below.
success probabilitieg; (M). wy :=w)fij, VjeEN,
B. Capacity Region w; = g(qi(t)) pa(M(t — 1) U {i}).
Every subset of the links/{ C A, is associated with &- . !deate Probability-Link 7 computes its update probabil-
dimensional vectop:(M) = [pi(M)]ien Whosei-th element ity p(t) as,
correspond to the probability of success of the linkvhen exp (wll)
M is the set of links that are transmitting)(M) can also p(t) = (4)
be interpreted as the long-term rates that can be supported exp S (W) —wl) | +exp (w))
when the subset is active. We refer to these vectors as rate jemit—1y - 7 ’

vectors.

The capacity region of the network is the set of all the atriva
rate vectors for which there exists a scheduling algorithat t .
can stabilize the queues. It is known that the capacity regio M(t) = { M(t-1)U{i} wp.  p(),

Link ¢ chooses to transmit with probability(¢) and
chooses not to transmit with probability— p(t), i.e,,

is given by Mt -1\ {i} wp. 1-p(t).
A={aeRY | >0, a(l+e) €Co)}, Data slot: In the data slot, all the linkg € M () will transmit.
where,Co(x) is the convex hull of (M)} rc In Algorithm1, each time slot is divided into a control slot

An arrival rate vectol € R” is said to be feasible ij € A. and a data slot. In the control slot, a links chosen at random
A scheduling algorithm is said to béaroughput optimalif ~ (the implementation of this step is discussed later), arigl on
the algorithm can stabilize the network for any feasiblévatr this link is allowed to change its status (on/off) in this ém
rate. A maximum weight scheduling algorithm is known to pslot. All other links will retain their status of the previstime
throughput optimal. In each time slot, the algorithm pidke t Slot. Link i and its neighbours execute a neighbour discovery

schedule M (t) = argmax Y. p; (M) g;(t). algorithm to identify all their active neighbours. For exam
MCN jem _ the compressed neighbour discovery scheme [13] is a fast and
Some of the notations used so far, are summarized below. officient neighbour discovery algorithm which jointly dete
N— Set of all the links in the network all the active neighbours by allowing them to simultanepusl
M(t)— Set of links that are active in slot report their identity.

N;— Set of potential interferers of link All the neighbours of the link, use their neighbourhood
M;(t)— Set of active interferers of linkin slot ¢. information M;(¢ — 1) computed in the previous step to
ni(M)—  Rate of linki when the set of active calculate their rate vectors. Note that, all the links\ity (t—1)

links is M. retain their status except for the possible change of thtassta
for link . Hence, to account for this possible change of the
I1l. SPATIAL CSMA status of linki, we define two sets of weights naméhactive

In this Section, our distributed algorithrBpatial CSMAis weightsand active weights The contribution of interference
presented and its throughput optimality is proved. The Hewi from link 7 is excluded for computing the inactive weights but
is to sample subsets (of links) so that sampled subsetsdgovincluded for computing thactive weightsLink i uses these
a good approximation to the Maximum weight algoritim [3]Weights to compute its update probabilitit), and updates its
[6]. Let g(z) be a real valued function of queue lengthStatus accordingly. In the data slot, all the active linksigmit.
The details of the functio(x) are discussed subsequentlya. Throughput Optimality

Lemma 1. If the queue lengths are fixed at= [¢;]Y;, then
Algorithm1 corresponds to a Glauber dynamics Markov chain
on the subsets\ c A with a stationary distribution given

by,

Algorithm2 Spatial CSMA

Intialization: Each linki € N pre-computesf;; := f(ri;)
for all its neighbourg € A; .
Control slot: 1
« Decision scheduleA link i € N, is picked uniformly at (M) = 7 P Z pi (M)glg;) |, YMCN, (5)
random. JEM



where Z is the normalizing constant. A set of links, which satisfy the above constraint is refdrre

Proof: Proof can be found in AppendBCYEA - to as a decision schedule. The formal definition is as follows
If the queue lengths were indeed fixed (say)aas required Definition 1. Decision Schedule
in Lemmall,Algorithm1 provides a good approximation forA set of linksD C N, is said to be a decision schedule if,
the maximum weight scheduler![6]. This can be observed
from (), as the stationary distributiofl on the set of N U (
subsets, places the largest mass on thegetthat maxi-

U/vj\{i})c/v\p, VieD. (6)
mizes > u; (M) g(g;), which is precisely the max-weight
jeM

JEN;
je The intuition for this definition is as follows. Froml(4), one
scheduler except fay; being replaced by(q;). However, this can observe that the update probability) of a link i, depends
replacement can be justified if an appropriate funcgén) is only on the weights of active links in;. Further, the weight
chosen([14]. of each linkj € V;, depends on the the status of its neighbours
Lemmall assumes that the queue lengths are fixed. How;. (See the computation of incative weightsAfgorithm1)
ever, the queue lengths are time-varying. Moreover, the tirslence, the required constraint translates o (6).
required for the Glauber dynamics to reach steady-statbean Remark:This constraint is only on the set of links that can
very long in general to assume that the queue lengths do @etparallel updates in a given slot. However, there are nd har
change. However, if appropriate slowly varying functioik® | constraints on the set of links than can transmit in a givet sl
log(0.1x),loglog(z+¢) are used ag(x), it can be showr [6], This is a key difference of this model compared to conflict
[15] that Algorithm1 does approximate the maximum weighgraph based model.
scheduler in each time slot with a high probability and isdeen Generating a decision scheddkcan be done in two steps.
throughput optimal. Step 1:Generate a subset of link$, such that no two links
d in S are within the close-in radius of each other.
Step 2:Initialize D to S, and updateD by removing some
links from D as follows. Each linkk ¢ S checks if any of its
Proof: Follows from our Lemmé]l, and Theorem lneighbours are irS. If more than one of its neighbours are
Proposition 2 in[[6]. B present inS, then the neighbours are removed frd@m
Remarks:While the techniques used are standard, the keyThe first step ensure§’; C N \ D, while the second step
contribution of this paper is the application of these teghes
to design a throughput optimal scheduling algorithm for th@nsures(_u N\ {i} | CN\D so that[(6) is satisfied.
SIR model with time-varying channels. N
Although Algorithm1 is proposed for a Rayleigh fadingth
model, it can be easily extended to other fading models wttho[h
any additional effort.
In [7], CSMA algorithm is considered on a conflict grap

with time-varying link capacities. The authors bf [7] shdvat . h h link h bability of bei
the back-off parameter should have a exponential form of thy to ensure that each link has a non zero probability of being
Q&lected in the decision schedule.) In each time slot, all th

channel gain. They obtain this by solving a maximum entropf. f<s in the network will executélgorithm2independently.
problem. However, as we see from Lemiila 1, the exponentia

form follows naturally from the max-weight formulation.

Lemma 2. If g(x) = log(0.1z) or loglog(x+e¢), the propose
spatial CSMA algorithm is throughput optimal.

JEN:
In [6], a distributed algorithm is suggested for generating
e subsetS (step ). We extend that algorithm to generate
e subsetD. For the sake of completeness, we present the
step 1from [6]. In Algorithm2 the control slot is divided into
W+2) control mini-slots for som& > 2. (This bound orfiV/

Algorithm2 Decision Schedule Algorithm (at link )

B. Parallel Updates

In the control slot ofAlgorithm1, it is assumed that a link Stepl:Generating S _ _ _
(decision schedule) can be randomly picked at each time® Link ¢ selects a random (integer) backoff tirfi¢ uni-
slot to update its status. However, the algorithm does not formly in [0, — 1] and waits forZ; control mini-slots.
explicitly describe how to implement that step. Moreoveilyo ~ * If link i hears an INTENT message frpm a link if;
one link is allowed to update its status in a given time slot. Pefore the(7; + 1)th control mini-slot, i will not be
In Algorithm2 we relax the limitation of single-update, and  included inS and will not transmit an INTENT message.
provide a distributed algorithm to pick a decision schedule * |f link i does not hear an INTENT message from any

The limitation of single-update can be relaxed by consiuga link in i, before the(7; + 1)th control mini-slot, it will
block (parallel update) Gibbs sampler based algorithmgewhi ~ send (broadcast) an INTENT message to all links\in
allows for parallel updates and also converges faster. Mexye at the beginning of th¢T; + 1)th control mini-slot.

to ensure a distributed implementation of the (parallelatgpi — If there is a collision e, if there is another link
Gibbs sampler, the set of links that can do parallel updates in \V; transmitting an INTENT message in the same
has to satisfy the following constraint. (See Lemima 3 for a mini-slot), link i will not be included inS.

formal proof.) — If there is no collision, linki will be included inS.

If link 7 updates its status in a given slot, all the links whos8tep2:Generating D from S

current status information is being used in the computatione If link ¢ € S, it sends (broadcasts) an INTENT message
of the update probability(t) of link ¢, cannot update in the to all links in A; at the beginning of W + 1)th control
same slat mini-slot.
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Fig. 1: Numerical Results

« Iflink i ¢ S, it senses the channel for a possible collisiothe threshold SIR is set to7 dB. The functiong(x) (used in
(i.e, if more than one of its neighbours are &) then AlgorithmJ) is set tolog(0.1z). In each time slot, the channel
all of them send INTENT messages which result in gains corresponding to unit power Rayleigh distributiop ar
collision) in (W + 1)th mini-slot. generated.

— Ifthereis a collision, link will broadcasta DETECT
message to all its neighbours {f + 2)th control B. Throughput performance

mini-slot. In Figure[Ia, we illustrate the throughput performance of

« Iflink 7 € S and it doesn’t hear a DETECT message i\igorithml, by plotting the average queue lengths to see
(W +2)th control mini-slot, it will be included iD. o \which arrival rates the system is stable. If the alganith

cannot stabilize the network for a given arrival rate, theuwg
Lemma 3. If all the links in a decision schedul® selected length blows up. We consider homogeneous arrival rates for

from Algorithm2, simultaneously update their schedules usirfy! the links. It can be observed that the SIR based algorithm
Algorithm1, then the stationary distribution of the resultingSUPPOrts a larger set of arrival rates compared to the graph

(parallel update) Glauber dynamics is given (). based algorithm. This is because, in a conflict graph model,
_ concurrent transmissions from two neighbouring links are
Proof: Proof can be found in Appendix VIiB. B strictly prohibited irrespective of the exact distancewssn

IV. NUMERICAL RESULTS them. H_owe_ver, in SIR mo_del, the links make_a bette_r chqce
by considering the exact distances from its neighbourimigsli

In this Section, we evaluate the performance of the spati@hereby taking into account the severity of interferenebjie
CSMA algorithm. The results are compared to conflict gra mputing the update probabilities.

based CSMA. This comparison requires the generation of an
equivalent conflict graph for a given set of locations (of th
links) as described below.

Construction of conflict graphin a conflict graph based In Figure[Ih, we compare the convergence rate of the spatial
interference model, each link in the network is represent&BEMA with the graph model by plotting the total queue
by a vertex in a graph. Two vertices are connected by amolution as a function of time. We consider a homogeneous
edge, if their concurrent transmissions can possibly end apival rate of0.2 which is in the stable region of both these
in a collision. Concurrent transmissions from any two linkeodels. It can be observed that the queue reaches steagly stat
that are with in the close-in radius of each other can beuch faster in the SIR model as compared to the conflict graph
unsuccessful (depending on the channel conditions). Hengedel.

a pair of vertices are connected by an edge if they are in the
close-in distance of each other. V.. CONCLUDING REMARKS

8. Convergence rate

A. Simulation settings In this paper, we considered the SIR model with time-
We consider a two dimensional square plane with sid@rying channels, and proposed a distributed CSMA algarith
length 13. A homogeneous Poisson point process of densiye further proved that the proposed algorithm is throughput
0.1 is generated. The generated points correspond to thgtimal. We also proposed a parallel update algorithm with
locations of the transmitters. Each transmitter has iteivec a better convergence rate. Using simulations, we observed
at a distance 0D.25 in a random direction. The path lossthat the SIR model supports a larger set of arrival rates, and
exponent is set t02.5, the close-in radiu®; is set to4, and converges much faster than the conflict graph based model.



VI. APPENDIX From [8),: € D = Ng(i) € N\ D. Using this property along
A. Proof of Lemma E]1 with @), we can write[(II0) as a product of single-site update

The Glauber dynamics (section 3.3.2 lof [4]) correspondir?g:;robabIIItIeS as follows.

to the distributionll, is a reversible Markov chain with state P(o(D)(t) | o(N \ D)(t)) = H P (0i(t) | o(Ng(i))(t)).
space{M | M cC N7}, and stationary distributiodl. The €D (1)

transition probabilities of that Markov chain are desctdibe

here. From a given stata1(¢t — 1), the chain moves to a
new state as follows. A link is chosen uniformly at random
from A/ and a new state is chosen according to the medsur
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