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Abstract—Content delivery networks are a key infrastructure
component used by Video on Demand (VoD) services to deliver
content over the Internet. We study a content delivery system
consisting of a central server and multiple co-located caches,
each with limited storage and service capabilities. This work
evaluates the performance of such a system as a function of the
storage capacity of the caches, the content replication strategy,
and the service policy. This analysis can be used for a system-level
optimization of these design choices.

The focus of this work is on understanding the benefits of
allowing caches to pool their resources to serve user requests.
We show that the benefits of resource pooling depend on the
popularity profile of the contents offered by the VoD service.
More specifically, if the popularity does not vary drastically
across contents, then resource pooling leads to an order wise
reduction in central server transmission rate as the system size
grows. On the other hand, if the content popularity is skewed,
the central server transmission rate is of the same order with
and without resource pooling.

Index Terms—Content replication strategies, performance
analysis, resource pooling

I. INTRODUCTION

The popularity of Video on Demand (VoD) services
like YouTube [3] is ever increasing. It is predicted that VoD
services will account for over 81% of all the Internet traffic by
2022 [4]. Most popular VoD services use distributed content
delivery networks to serve their customers. In this work, we
study a distributed content delivery network with multiple
caches deployed in a geographical area (see Figure 1). Content
is delivered to the users either by these caches or by a
common root node, which is connected to the central server
that stores the entire content catalog offered by the VoD
service. As discussed in [1], [5], this model captures the
setting where the ISP, represented by the root node, uses the
distributed local caches to serve user requests and thus help
reduce communication with the core network represented by
the central server. This cache cluster can also be a part of a
larger tree network [5].

Most popular VoD services have massive content catalogs
and serve a large number of users. Motivated by this, we study
a time-slotted system where a batch of requests arrives in
each time-slot. Each request is for a content from the catalog
offered by the VoD service. The system uses the caches to

Preliminary versions of this work appeared in [1] and [2]. This work was
supported in part by a SERB grant on “Content Caching and Delivery over
Wireless Networks” and seed grants from IIT Bombay.
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Fig. 1. An illustration of a cache cluster consisting of three caches serving two
users. Each user can either be served by the caches or by the central server via
the root node.

serve as many of these requests as possible, and the remaining
requests are directed to the central server. The goal is to design
a placement and service policy to minimize the number of
contents which need to be fetched from the central server.

The design choices in such systems include dimensioning
the cache storage resources, optimizing content replication on
the caches, designing policies for routing and serving user
requests. This work develops a model to enable a system-level
optimization of these design choices.

Recent works on content replication strategies in content
delivery systems focus on the setting where each user request
is served by only one cache and each cache serves only one
request at a time [1], [5]–[17]. In a departure from these works,
we explore the benefits of relaxing this constraint by allowing
caches to pool their resources, i.e., allowing a request to be
served by multiple caches. We refer to this phenomenon of
multiple caches pooling their resources to serve a request as
“resource pooling”. (Simply,) in resource pooling, different
parts of the requested file can be delivered to the user by differ-
ent caches. While resource pooling can enhance performance,
it comes at the cost of an increase in coordination overheads,
thus motivating the need to achieve the desired performance
with as little resource pooling as possible. To characterize the
benefits of limited resource pooling, we limit the number of
requests each cache can serve concurrently and evaluate the
performance of the system as a function of this limit.

The key takeaway of this work is that the benefits of
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resource pooling vary drastically with the popularity profile of
contents. More specifically, we show that when popularity is
comparable across contents, even a small amount of resource
pooling leads to a huge improvement in performance. In
contrast, if content popularity is lopsided, the benefits of
resource pooling are very limited.

II. RELATED WORK

Content caching has a rich and varied history, see for
example [18] and references therein. More recently, it has been
studied in the context of video-on-demand systems for which
efficient content placement schemes have been proposed in [5],
[19] among others. See [20] for a recent overview of various
challenges in content caching and delivery networks, and a
summary of known results. Due to limited space, we mention
here only those works which are closest to our setting.

Motivated by studies like [21], which observe that users
of VoD services are delay intolerant, we focus on the setting
where requests are never queued and each request is served
immediately, either by the caches or the central server. In
the studies of [6]–[10] the focus is on the setting where
each request can be served by any one cache and the central
server communicates with each user separately. The focus
in the studies of [7]–[9] is on the setting where content
popularity is known, whereas the studies of [6], [10] focus
on the setting where content popularity is unknown. In the
optimal caching policies proposed in these works, the number
of caches storing a file is a non-decreasing function of file
popularity. In this work, we see that this is not necessarily true
for our setting where requests arrive in a batch and the central
server communicates with the multiple users simultaneously
via an error free broadcast link.

The setting where each user is pre-matched to a cache and
the central server communicates with the users via an error
free broadcast link has been studied recently in [11]–[16]. The
key intuition derived in these studies is that content should be
placed in the caches not only to provide local access but to also
help generate coded-multicasting opportunities in the delivery
phase which can serve multiple user requests simultaneously.
It is also shown that exploiting such coding opportunities in
the delivery phase is necessary for optimal performance.

Our setting differs from the two settings discussed above
as each request can be served by multiple caches (resource
pooling) and the central server communicates with the multiple
users simultaneously via an error free broadcast link. Unlike
our setting, the studies in [22], [23] characterize the benefits
of resource pooling in the setting where jobs are allowed
to be queued at the caches. In addition, the studies of [22],
[23] focus on the case where all contents are equally popular,
whereas we allow for more general popularity profiles. In a
preliminary version of this work, we showed that, for this
setting, coding caching is not always necessary for optimal
performance [1]. Refer to [1] for a detailed discussion on
the difference in nature of the optimal caching policies for
the settings discussed thus far. In this work, we generalize
the setting studied in [1] by allowing requests to be served
by multiple caches and letting each a cache serve multiple

users simultaneously. In [24], we also characterize the effect
of storage heterogeneity in distributed cache systems.

The rest of the paper is organized as follows. Section III
briefly describes our problem setting. Sections IV and V
describe some useful notations and preliminaries. Sections VI
and VII describe our theoretical results and simulation results.
Section VIII summarizes our paper and Section IX gives the
proofs of our results mentioned in Section VI.

III. SETTING

We study a system consisting of a central server, and
multiple caches with limited storage as well as limited service
capabilities. The system offers a content catalog consisting
of n contents2 of equal size (say 1 unit = b bits), where the
number of contents (n) and the number of caches (m) are of
the same order (i.e., n = mc, for some constant c > 0). Users
make requests for various contents from the catalog, which
have to be served using the caches and the central server.

The system operates in two phases: the placement phase
and the delivery phase. During the placement phase, each
cache stores content related to the n files in the catalog. After
the placement phase has concluded, the system moves to the
delivery phase in which a batch of requests arrives and has
to be allocated to the caches for service. While we allow the
splitting of files into parts, unlike [11], [16], we restrict our
attention to uncoded policies, which do not employ any coding
in either placement phase or delivery phase.

We are interested in the asymptotic performance of this
system as n, m → ∞.

A. Storage Model

The central server stores the entire catalog of n contents
offered by the content delivery system and each of the m
caches has the capacity to store k units of data. As mentioned
before, we allow files to be split into smaller parts and caches
to store a subset of the parts of any file.

B. Request Model

In each time-slot, requests arrive in batches of size r = ρm,
for some constant 0 < ρ < 1. Each request is generated
according to an independent and identically distributed process
where the probability of the requested content being Content
i be denoted by pi. We analyze the performance of the system
when the pi’s satisfy the Zipf distribution which is defined
as follows: the fraction of requests for the ith most popular
content is proportional to i−β , where β ≥ 0 is a constant,
known as the Zipf parameter. This choice is motivated by
the fact that empirical studies of many VoD services have
shown that the content popularity distributions match well with
the Zipf distribution [25]–[28]. As the value of β increases,
the content popularity profile becomes more lopsided. Typical
values of β lie between 0.6 and 2 ( [25]–[28]).

2Throughout the paper, we will use ‘content’ and ‘file’ interchangeably to
denote individual elements of the catalog.
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Fig. 2. An illustration of a cache cluster consisting of four caches serving
three users. The catalog consists of 4 files, vi, i = {1, 2, 3, 4}, each of which
is divided into two equal parts (vi,a, vi,b) to store on the caches. Each cache
can serve upto two requests (a = 2) as long as the total data delivered by each
cache is not more than 1 file. The first two users request file v1 and are served
by the first two caches. The third user requests file v2 and receives the first
part of the file from the central server and the second part from the third cache.
The third user cannot be served by the second cache even though it stores the
requested file as that will violate the total data output constraint of that cache.

C. Service Model

All the user requests have to be served jointly by the caches
and the central server. Every user request is assigned to one or
more caches, each of which uses its stored content to provide
various parts of the requested file. Due to hardware, power
and/or bandwidth constraints, the user-cache assignment needs
to satisfy two restrictions: each cache can only serve up to a
requests and the total data served by a cache should not exceed
1 unit. There is no restriction on the number of caches that
serve a particular request.

The root node can also enlist the help of the central server
to assist with serving the user requests. Some requests are
served by the caches. To serve the remaining requests, the
central server transmits the requested files or parts thereof to
the root node, which then forwards them to the users. See
Figure 1 for an illustration. Using the data received from the
assigned caches and the central server, each user should be
able to reconstruct its requested file. Refer to Figure 2 for an
example.

D. Goal

The reason for deploying local caches is that they can help
reduce the communication on the bottleneck link between the
central server and the root node. Our goal in this paper is
to design placement and delivery schemes which minimize
the expected transmission rate of the central server needed
to satisfy all the user requests, where the expectation is with
respect to the popularity distribution of the user requests. Note
that if a file needs to be sent by the central server via the
root node to more than one users in a batch, the central server
transmits it to the root node only once. In order to achieve this
objective, we utilize the knowledge of the content popularity
profile to design appropriate storage and service policies.

E. Contributions

The main goal of this work is to analyze the impact of
resource pooling on the performance of the content caching
and delivery system described above. In particular, we propose
efficient placement and delivery schemes for our setting and
characterize the variation of the central server transmission
rate with the resource pooling parameter a which denotes the
number of requests that each cache can serve simultaneously.
Recall our assumption that the requests follow a Zipf distri-
bution with parameter β; we find that the impact of resource
pooling on the server transmission rate is qualitatively very
different for the cases of 0 ≤ β < 1 and 1 < β < 2.
The former corresponds to the case where the popularity is
comparable across contents, whereas the latter represents a
scenario where the content popularity profile is lopsided with
a few very popular contents. We deal with these two cases
separately.

0 ≤ β < 1: We extend the proportional placement and
optimal matching delivery scheme proposed in [7] for a = 1
to the case of resource pooling with a > 1. The scheme
splits each file into a equal-sized sub-files, creates copies of
each sub-file in proportion to its popularity and then stores
them across the caches in the system. The delivery procedure
splits each file request into a sub-requests, one for each of
its a sub-files and then matches as many sub-requests as
possible to caches hosting the corresponding sub-files, while
ensuring that no cache is assigned to more than a requests.
The unmatched sub-requests are served directly by the central
server. Theorem 1 presents an upper bound on the expected
server transmission rate of the proposed scheme as well as a
lower bound on the performance of any uncoded policy for
this setting. In particular, we show that the expected server
transmission rate of the proposed scheme decays exponentially
with ak, i.e., the product of the resource pooling parameter a
and the storage capacity per cache k. Thus, if the popularity
follows the Zipf distribution with parameter 0 ≤ β < 1, a
small amount of resource pooling can lead to a significant
reduction in the transmission rate of the central server. As a
corollary of this result, we find that for k ≥ 1 and each cache
serving a number of requests growing only logarithmically in
the total number of requests, i.e., a = Ω(lnn), all the user
requests can be served with just a vanishing expected server
transmission rate.

1 < β < 2: For this setting, our proposed placement scheme
is based on the solution to an appropriate fractional Knapsack
problem [29] which specifies the number of copies of each
content to be stored across the various caches. The delivery
scheme matches requests to appropriate caches one by one,
starting from the least popular files. As before, the unmatched
requests are served directly by the central server. Theorem 4
provides an upper bound on the expected server transmission
rate for our scheme. Comparing this to the lower bound for
any uncoded policy presented in Theorem 3, we conclude that
if content popularity follows the Zipf’s distribution with 1 <
β < 2, our Knapsack Storage + Match Least Popular policy
(KS+MLP) is order-optimal. Furthermore, as a corollary, we
find that in most cache memory regimes, the order-optimal
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rate can be achieved with a = 1, i.e., without any resource
pooling. Thus, if the popularity follows the Zipf distribution
with parameter β ∈ (1, 2), there is very limited order-wise
benefit of resource pooling (a > 1). This is in contrast to the
case of 0 ≤ β < 1.

Note that the assumptions made in this paper are commonly
used in the existing literature for technical simplicity. Please
see for example [7], [8]. These papers consider a similar
setting without resource pooling (i.e., a = 1 case). The policies
proposed in our paper can be used for more general settings.
In particular, (i) the assumption that the all files are equal
size is often made for analytical tractability and a possible
solution for unequal file sizes is splitting files into segments
of equal size, (ii) the assumption that the number of caches
and number of contents have same order makes our analysis
simple. Our analysis can be easily extended to the setting
where the number of contents is of a higher order. In [24],
we relaxed this assumption for the setting without resource
pooling, (iii) the homogeneous assumptions on the caches
(i.e., storage and service capabilities of all caches are equal)
is also to make our analysis simple. Our policies also work
for heterogeneous cache sizes. In [24], we study the effect of
storage heterogeneity for the setting without resource pooling.

Due to practical limitations, like hardware, power and/or
bandwidth constraints, there exists a limit on the amount of
data that can be sent from a cache to the users in each
time-slot. We have therefore imposed an upper limit on the
output data rate of each cache and normalized it to 1 unit per
time-slot. Serving a request via multiple caches increases the
synchronization overheads. Hence, we have imposed an upper
limit on the number of caches used to serve a request as a.
Studying the effect of heterogeneous service capabilities and
the effect of coded policies is a promising direction of study
and is beyond the scope of this work.

IV. NOTATIONS

We use the notations mentioned in Table 1 and definitions
in Table 2 in the rest of this paper.

Symbol Meaning
m number of caches
n number of files
r number of requests
k storage capacity of each cache
a maximum number of requests

each cache can serve
β Zipf parameter
b File size (1 unit = b bits)
pi the request probability for File i

TABLE 1
NOTATIONS

V. PRELIMINARIES

Our proposed scheme is based on the solution to the
fractional Knapsack problem [29], which can informally be
defined as follows: choose items to keep in the knapsack such
that the cumulative value of the items is maximized, while
ensuring that the cumulative weight of the items is not more

Notation Definition

f(n) = o
(
g(n)

)
lim

n→∞
f(n)
g(n)

→ 0

f(n) = O
(
g(n)

)
∃C s.t. lim

n→∞
f(n)
g(n)

≤ C

f(n) = Θ
(
g(n)

)
∃C1, C2 s.t. C1 ≤ lim

n→∞
f(n)
g(n)

≤ C2

f(n) = Ω
(
g(n)

)
∃C s.t. lim

n→∞
f(n)
g(n)

≥ C

f(n) = ω
(
g(n)

)
lim

n→∞
f(n)
g(n)

→∞

TABLE 2
DEFINITIONS

than the knapsack’s capacity. Formally, if the total capacity of
the knapsack is W , item j has value vj and weight wj , the
fractional knapsack problem is defined as:

max
{xj}

J∑
j=1

xjvj s.t.
J∑
j=1

xjwj ≤W, & 0 ≤ xj ≤ 1, ∀j.

Without loss of generality, let the items be indexed in decreas-
ing order of value to weight ratio, i.e., v1

w1
≥ v2

w2
≥ ... ≥ vJ

wJ
.

Let j∗ be such that
∑j∗−1
j=1 wj ≤ W, and

∑j∗

j=1 wj > W.
The solution to the fractional Knapsack problem is:

xj =


1, for j < j∗,

W −
∑j∗−1
j=1 wj

wj∗
, for j = j∗,

0 otherwise.

Remark 1: The time complexity of the fractional Knapsack
problem solution is O(J log J).

VI. MAIN RESULTS AND DISCUSSION

In this section we state and discuss our main results. We
relegate the proofs to Section IX.

A. Zipf distribution with β ∈ [0, 1)

We first state our results for the case where content popular-
ity follows the Zipf distribution (defined in Section III) with
parameter β ∈ [0, 1). We propose a storage/service policy for
this setting and evaluate its performance.

Our storage policy is inspired by the Proportional Placement
(PP) policy proposed in [7]. We divide each file into a sub-
files of equal size. Note that the popularity of a sub-file is the
same as the popularity of the corresponding file as a whole.
The number of caches storing each sub-file is proportional to
its popularity. We ensure that no cache stores more than one
sub-file of the same file.

Our service policy is as follows: we treat each request for
a file as a sub-requests, one for each of the a sub-files and
create a bipartite graph G(V1, V2, E), where V1 is the set of
sub-requests, V2 is the set of caches, and E is the set of edges.
There is an edge between v1 ∈ V1 and v2 ∈ V2 if Cache v2 can
serve Sub-request v1, i.e., if it stores a copy of the requested
content. We construct a new set of nodes V (a)

2 which contains
a copies of each node in V2 and find the maximum cardinality
matching between the set of requests (V1) and the set of caches
(V (a)

2 ). All the sub-requests matched to a copy of v2 ∈ V (a)
2
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are served by Cache v2 and all the sub-requests which are
not matched to any cache are served by the central server via
the root node. We refer to this service policy as the Optimal
Matching Routing (OMR) policy. Note that this policy satisfies
our service constraints on caches: (i) each cache can only serve
up to a requests and (ii) the total data served by a cache should
not exceed 1 unit. We refer to this scheme as the Proportional
Placement + Optimal Matching Routing (PP+OMR) policy.

Theorem 1: Consider a system with n files with popularity
following the Zipf distribution with parameter β ∈ [0, 1), and
m = n/c (c > 0, c is a constant) caches of size k units each.
Every cache can serve at most a requests and the total data
served by a cache cannot exceed 1 unit. The system receives
a batch of r = ρm (0 < ρ < 1, ρ is a constant) i.i.d. requests.
(a) Let Rz1 be the central server’s transmission rate for our

policy described above. Then,

E[Rz1 ] =

{
O(n) if k < c, ∀a,
O
(

min{n, nk exp(−c1ak)}
)

if k ≥ c,

where c1 is a constant3, and is greater than zero.
(b) Let R∗z1 be the central server’s transmission rate for the

optimal uncoded policy. Then,

E[R∗z1 ] =

{
Ω(n) if k < c−Θ(1), ∀a,
Ω
(
n exp(−c2ak ln ak)

)
if k ≥ c,

where c2 is a constant and is greater than zero.
From the first part of the theorem we conclude that the

performance of our policy depends on the product ak, where k
is the number of files each cache can store and a is the number
of requests each cache can serve simultaneously. As expected,
the performance of our policy improves with increasing cache
memory. In addition, for a fixed amount of cache memory,
the performance of our policy can be improved by increasing
resource pooling. The second part of the theorem gives a lower
bound on the expected transmission rate of the central server
under any uncoded storage/service policy which satisfies the
assumptions in Section III.

Corollary 2: Consider a system with n files with popularity
following the Zipf distribution with parameter β ∈ [0, 1), and
m = n/c (c > 0, c is a constant) caches of size k(≥ c) units
each. Every cache is capable of serving at most a requests
and the total data served by a cache cannot exceed 1 unit.
The system receives a batch of r = ρm (0 < ρ < 1, ρ is a
constant) i.i.d. requests.

1) If ak = O((lnn)α) for α < 1, E[R∗z1 ] = ω(1).
2) If ak = Ω

(
ln(n)

)
, then for our storage/service policy,

E[Rz1 ] = o(1).
We conclude that for ak = O((lnn)α) for α < 1, no

uncoded storage/service policy can bring the expected trans-
mission rate of the central server down to zero. In addition,
for k ≥ c, ak = Ω(lnn) is sufficient to ensure that with high
probability, all requests are served by the caches under our
storage/service policy. We thus conclude that if the popularity
follows the Zipf distribution with parameter β ∈ [0, 1), a small
amount of resource pooling can lead to a significant reduction
in the transmission rate of the central server.

3independent of n, a, k

B. Zipf distribution with β ∈ (1, 2)

We now focus on the case where content popularity follows
the Zipf distribution with parameter β ∈ (1, 2). The following
proposition gives a lower bound on the expected transmission
rate from the central server for a slightly less restricted system
than the one mentioned in Section III. Hence, Proposition 1
provides a lower bound for our system as well.

Proposition 1: Consider a distributed cache system with n
contents each of size bi bits, m caches of size k units each, and
a batch of r requests arriving at the beginning of each time-
slot. Each request is generated according to an i.i.d. process,
and the request probability for Content i is denoted by pi.
Let R∗NC denotes the minimum transmission rate required to
serve all requests arriving in a batch using uncoded storage
and service policies, under the constraint that any cache can
serve upto a requests for each of its stored content4. Then, we
have that,

E[R∗NC] = Ω

( n∑
i=1

bi(1− (1− pi)r)− O∗
)
,

where, O∗ = max
{xi,u}

n∑
i=1

bi∑
u=1

xi,u(1− (1− pi)r)

s.t.
n∑
i=1

bi∑
u=1

xi,u max

{⌊rpi
a

⌋
, 1

}
≤ mkb,

0 ≤ xi,u ≤ 1, ∀i, u.

The quantity O∗ defined in Proposition 1 is the solution to
the fractional Knapsack problem described in Section V with:

– The value of Bit u of Content i,

vi,u = 1− (1− pi)r,

is the probability that Content i is requested at least once.
– The weight of Bit u of Content i,

wi,u = max

{⌊rpi
a

⌋
, 1

}
,

where rpi is the expected number of requests for Content
i in a time-slot.

– The capacity of the knapsack,

W = mkb,

is the total memory of the m caches.

xi,u = 1 implies that max
{⌊

rpi
a

⌋
, 1
}

copies of Bit u of
Content i are stored in the knapsack, and, xi,u = 0 implies that
Bit u of Content i is not stored in the knapsack. Proposition
1 lower bounds the expected transmission rate by

n∑
i=1

bi∑
u=1

(1− xi,u)(1− (1− pi)r),

which is the expected number of files not stored in knapsack
and requested at least once.

Next, we evaluate a lower bound for the Zipf distribution
with parameter β ∈ (1, 2). Our system mentioned in Section

4In our system, the total number of served requests across all stored content
in a cache is at most a
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Fig. 3. Value to weight ratio when content popularity follows the Zipf
distribution for n = m = r = 100, and β = 1.2.

III is more restricted than the system mentioned in Proposition
1 and its content popularity follows the i.i.d. Zipf distribution.
Hence, replacing the pi’s accordingly in Proposition 1 gives a
valid lower bound for our system.

Recall that the solution to the fractional Knapsack problem
(Section V) is obtained by ranking the items in decreasing
order of the value to weight ratio and choosing the maximum
number of highest ranked items such that their cumulative
weight is less than the knapsack capacity.

For the Zipf distribution with parameter β, let ĩ =⌈
( rp12a )1/β

⌉
and let zi be the value to weight ratio of Content

i (for all u). We have that, for pi = p1
iβ

,

zi =
vi,u
wi,u

=


1− (1− pi)r⌊

rpi
a

⌋ , for i ≤ ĩ,

1− (1− pi)r, for i > ĩ,

Given this, zi increases from i = 1 to ĩ and decreases from
i = ĩ+ 1 to n. For example, Figure 3 illustrates how the ratio
of the value to weight ratio for n = m = r = 100, a = 1 and
β = 1.2 varies as a function of content index.

Hence, the optimal solution has the following structure: ∃
imin, imax with imin ≤ ĩ ≤ imax, such that, for 0 ≤ f1, f2 ≤ 1,

xi,u =


1, if imin < i < imax,

f1, if i = imin,

f2, if i = imax,

0, otherwise,

We optimize over imin and imax to get a lower bound on the
expected transmission rate for particular values of c, k, ρ and
m. Theorem 3 shows the results for the case where content
popularity follows the Zipf distribution with parameter β, such
that 1 < β < 2.

Theorem 3: [Lower bound] Consider a system with n
files, each of size 1 unit with popularity following the Zipf
distribution with parameter β ∈ (1, 2), and m = n/c (c > 0,
c is a constant) caches of size k units each. Every cache is

capable of serving at most a requests and the total data served
by a cache cannot exceed 1 unit. The system receives a batch
of r = ρm (0 < ρ < 1, ρ is a constant) i.i.d. requests. Let
R∗z2 be the central server’s transmission rate for the optimal
policy. Then,

E[R∗z2 ] =


Ω(n2−β) if k < c−Θ(1), ∀a,
Ω
(
n(2−β−γ)/β

)
if k = c, a = mγ , γ ∈ [0, 1],

Ω(0) if k > c+ Θ(1), ∀a.

Remark 2: For contents expected to be requested at least
once, i.e., Contents i such that rpi

a ≥ 1, it is optimal to
store contents with lower popularity. Intuitively, given that two
contents are going to be requested at least once each, all the
requests for the less popular content can be served using fewer
caches and a lesser amount of storage than the more popular
content. Therefore, between the two contents, storing the less
popular content reduces the transmission rate by 1 unit using
fewer memory resources.

For contents expected to be requested at most once, i.e.,
Contents i such that rpi

a < 1, it is optimal to store the more
popular contents. Intuitively, between two contents with the
same weight, storing the more popular content increases the
probability of reducing the transmission rate required to serve
incoming requests, while using the same amount of memory
resources.

Amongst the contents for each of which adequate number
of copies have been stored, it is optimal to serve the one with
fewer requests. Intuitively, between two such contents, serving
the content with less requests reduces the transmission rate by
1 unit using fewer resources.

Inspired by the above insights, we propose a storage and
service policy, whose transmission rate is order-wise equal to
the lower bound in Theorem 3. We refer to this policy as
Knapsack Storage + Match Least Popular (KS+MLP) policy.

Our storage policy is inspired by the Knapsack Storage
policy, and is described in two parts.

Knapsack Storage: Part 1 – The first part of the Knapsack
Storage policy determines how many caches each content is
stored on by solving a fractional Knapsack problem [29]. The
parameters of the fractional Knapsack problem are as follows:

– An unstored content will be broadcasted if it is requested
at least once. Hence, the value of Content i,

vi = 1− (1− pi)r, (1)

is the probability that Content i is requested at least once
in the time-slot.

– The weight of Content i (wi) represents the number of
caches Content i will be stored on if selected by the
Knapsack problem. If we decide to store a content on the
caches, we would like to ensure that all requests for that
content can be served by the caches, so that the content
need not to be transmitted by the central server. To ensure
this, we fix wi to be high enough to ensure that with high
probability, i.e., with probability → 1 as m̃,m, n → ∞,
the number of requests for Content i in a time-slot is less
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than or equal to wi. We use the following values for the
wi’s:

wi =


m
a , if i = 1⌈(

1 + p1
2

)
rpi
a

⌉
, if 1 < i ≤ n1,⌈

4p1(logm)2

a

⌉
, if n1 < i ≤ n2,⌈

4
aδ

⌉
, if n2 < i ≤ n.

(2)

where n1 = (rp1)
1
β

(logm)
2
β

, and n2 = m
1+δ
β for some 0 < δ <

β − 1.
Since the value of Content i, vi = 1 − (1 − pi)

r, is the
probability that Content i is requested at least once in the time-
slot,

∑n
i=1(1−xi)vi, is the expected number of contents that

are not stored in the knapsack and are requested at least once.
As a result, maximizing

∑n
i=1 xivi minimizes the expected

number of contents that are not stored in the knapsack and
are requested at least once, which is equivalent to minimizing
the expected transmission rate.

Figure 4 formally describes Knapsack Storage: Part 1.

1: Solve the following fractional Knapsack problem

max
{xi}

n∑
i=1

xivi

s.t. b

n∑
i=1

xiwi ≤ mk,

0 ≤ xi ≤ 1, ∀i,

where vis and wis are as defined in equations 1 and 2
respectively.

2: The set of contents to be stored

S = {bxicwi copies of Content i, 1 ≤ i ≤ n}.

Fig. 4. Knapsack Storage: Part 1 – Determines how many caches each content
is stored on.

Remark 3: Recall from Remark 2 that the optimal solution to
the fractional Knapsack problem prioritizes selecting contents
with larger value to weight ratios. Therefore, for certain values
of the system parameters (n, m, r, k), the optimal solution to
the fractional Knapsack problem in Figure 4 does not store the
most popular contents on the caches. As discussed in Remark
2, intuitively, in order to serve all the requests for a popular
content via the caches, the content needs to be replicated on
a large number of caches, since each cache can only serve a
requests at a time. It follows that, at times, it is better to serve
all the requests for a popular content via a single transmission
from the central server, instead of replicating it on a large
number of caches, thus using up a lot of memory resources.

Knapsack Storage: Part 2 – The next decision to be
made is which contents to store on which caches, i.e., how
to partition the set of contents selected by Knapsack Storage:
Part 1 (Figure 4) into m groups.

The following example illustrates Knapsack Storage:Part 2.
Example: Consider a system consisting of four caches, each

with 1 unit memory and can serve at most 2 users as long as

1: Sort content copies in S obtained in Knapsack Storage:
Part 1 (Figure 4) in increasing order of content index.

2: Divide each file into a sub-files of equal size.
3: Store sub-file copy ranked l in the ordered sequence on

cache ((l − 1) mod m+ 1).

Fig. 5. Knapsack Storage: Part 2 – Determines which contents to store on
each cache.

output data not exceed 1 unit. Say the solution for Figure 4
gives x1 = x2 = x3 = 1 and 0 otherwise, and w1 = 2, wi =
1,∀i ∈ {2, 3, ..., n}. Figure 6 illustrates Knapsack Storage:
Part 2.

Sorted S: 1 1 2 3
(i)

Divide each file into 2 sub-files
1a 1b 1a 1b 2a 2b 3a 3b

(ii)

Cache 1 1a 2a
Cache 2 1b 2b
Cache 3 1a 3a
Cache 4 1b 3b

(iii)

Fig. 6. Illustration of Knapsack Storage: Part 2 for a system with four caches
each with a = 2 and k = 1. Here, we assume that the Knapsack Storage:
Part 1 is x1 = x2 = x3 = 1 and 0 otherwise, and w1 = 2, wi = 1,∀i ∈
{2, 3, ..., n}. Hence, S contains 1 two (w1) times and 2 and 3 one (w2 = w3)
time(s). (i) sorted S (ii) the files in sorted S are divided into two equal (a
and b) parts without changing the order in sorted S, and (iii) sub-file copy
ranked l in the ordered sequence is stored in cache ((l − 1) mod 4 + 1).
For example sub-file 2a is ranked 5th in (ii) and is stored in Cache ((5− 1)
mod 4 + 1) = 1.

Matching Policy: Match Least Popular – The next task is
to match requests to caches. The key idea of the Match Least
Popular policy is to match requests for the less popular con-
tents before matching requests for the more popular contents.
Please refer to Figure 7 for a formal description of the Match
Least Popular policy.

Since each content is divided into a sub-files, we divide
each request for a content into a sub-requests and allocate
these sub-requests to caches storing the corresponding sub-
files. Since each cache can serve a sub-requests, we make a
copies of each cache and find a matching between the set of
sub-requests and the set of cache copies.

We index sub-files and cache copies as follows:

– The jth sub-file of File i is indexed (i − 1)a + j, for
1 ≤ i ≤ n, and 1 ≤ j ≤ a.

– The jth copy of cache i is indexed (i − 1)a + j, for
1 ≤ i ≤ m, and 1 ≤ j ≤ a.

Figure 7 describes the Match Least Popular policy.
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1: initialize i = an, set of idle caches copies =
{1, 2, ..., am}.

2: if the number of requests for Sub-file i is more than the
number of idle cache copies storing Sub-file i, then

3: goto Step 8.
4: else
5: match requests for Sub-file i to idle cache copies storing

Sub-file i, chosen uniformly at random.
6: update the set of idle cache copies.
7: end if
8: i = i− 1, goto Step 2.

Fig. 7. Match Least Popular – Matches requests to caches. Here, idle cache
copies means cache copies not allocated to any request.

Service Policy – All the sub-requests matched to copies of
Cache i are served by the Cache i and all unserved requests
are served by the server.

Theorem 4: [Upper bound] Consider a system with n files
with popularity following the Zipf distribution with parameter
β ∈ (1, 2), and m = n/c (c > 0, c is a constant) caches of
size k units each. Every cache is capable of serving at most
a requests and the total data served by a cache cannot exceed
1 unit. The system receives a batch of r = ρm (0 < ρ < 1,
ρ is a constant) i.i.d. request. Let Rz2 be the central server’s
transmission rate for our policy described above. Then,

E[Rz2 ] =


O
(
n2−β

)
if k < c−Θ(1), ∀a,

O
(
n(2−β−γ)/β

)
if k = c, a = mγ , γ ∈ [0, 1],

O(1) if k > c+ Θ(1), ∀a.

From Theorems 3 and 4, we conclude that if content
popularity follows the Zipf’s distribution with 1 < β < 2,
the Knapsack Storage + Match Least Popular policy is order-
optimal in the class of policies which do not use coded
placement or delivery.

Theorems 3 and 4 show that for k ≤ c−Θ(1), the central
server’s transmission rate for any value of a and any policy is
Θ(n2−β). On the other hand, Theorem 4 shows that for k ≥
c + Θ(1), there exists a storage/service policy for which the
transmission rate of the central server for a = 1 (no resource
pooling) is O(1) with high probability. We thus conclude that
for the Zipf popularity distribution with β ∈ (1, 2), there is
no order-wise benefit of resource pooling (a > 1) for k ≤
c − Θ(1) and k ≥ c + Θ(1). In addition, for k = c, we
need a to be at least poly(n), more specifically Ω(n2−β), to
bring the server transmission rate to a constant. Therefore,
the benefits of resource pooling in the case where content
popularity follows the Zipf distribution with β ∈ (1, 2) are
limited. Note that this is in sharp contrast to the results for
the case when β ∈ [0, 1), where a small amount of resource
pooling, in particular a = Θ(lnn), is sufficient to bring down
the central server’s transmission rate to O(1).

Remark 4: Theorems 3 and 4 also hold for β ≥ 2 and ρ = 1.

VII. SIMULATION RESULTS

In Section VI, we evaluated the performance of our policies
asymptotically, i.e., as m → ∞. In this section, we simulate

the system for finite values and compare the performance
of various placement and delivery policies. We begin by
simulating the performance of the Proportional Placement
+ Optimal Matching Routing (PP+OMR) policy described
in Section VI-A and whose asymptotic performance for the
case of β < 1 was presented. Recall that, in the PP+OMR
policy, the service policy (OMR) is based on the maximal
matching between the set of servers and the set of sub-requests
in each time-slot. Since this is an expensive operation with
time complexity O(kmin{(an)2.376, (an)2+β}), we propose
three other computationally inexpensive service policies and
evaluate their performance via simulations. Our motivation is
to determine if the benefits of resource pooling extend to the
computationally inexpensive service policies as well.

The first alternate service policy is the Match Least Popular
(MLP) policy, which is described in Section VI-B. The second
service policy as Online Randomized Routing (ORR). Let
requests be indexed from 1 to r. Starting from the first request,
this policy sequentially allocates requests to caches as follows:
each request is divided into a sub-requests, one each for the
a sub-files. Each sub-request is then allocated to any cache
which stores the requested sub-file and can accommodate
one more request, chosen uniformly at random. The third
service policy, called Online Least-loaded Routing (OLLR)
also allocates requests in a sequential manner. The difference
between the ORR and the OLLR policy is that the OLLR
policy allocates each sub-request to the least loaded cache
which stores the requested sub-file and can accommodate one
more request, breaking ties uniformly at random. The time
complexity of these new policies is O(akn1+β). Note that the
OMR and MLP service policies are offline policies, which do
the cache assignment based on the entire collection of requests.
The ORR policy and OLLR policies are online policies, which
serves requests in an arbitrary sequential order. We combine
the Proportional Placement (PP) policy with each of these
delivery policies and compare their performance, denoting the
corresponding policies as PP+OMR policy, PP+MLP policy,
PP+ORR policy and PP+OLLR policy.

We simulate the distributed content delivery network de-
scribed in Section III to compare the performance of the
PP+MLP, PP+ORR, PP+OLLR and PP+OMR policies as a
function of various system parameters like the storage capacity
of the caches (k), the maximum number of users each cache
can serve in a time-slot (a), and the product (ak). We focus
on the case where the number of caches (m) is equal to the
number of files (n) and the content popularity follows the Zipf
distribution with parameter β = 0.3. For each set of system
parameters, we report the mean transmission rate averaged
over 1000 iterations.

Theorem 1 states that the upper bound on the transmission
rate for the OMR service policy decreases exponentially with
the product of the storage capacity of the cache (k) and the
maximum number of users each cache can serve in a time-
slot (a). In Figure 8(i), we plot the mean transmission rate
for PP+MLP, PP+ORR, and PP+OLLR policies as a function
of the storage capacity of each cache (k), for a system where
the number of files and caches is 1000, and a batch of 800
requests is served. We see that for a fixed value of a, the
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Fig. 8. Plot of the mean transmission rate for the PP+ORR, PP+OLLR,
PP+MLP, and PP+OMR policies as a function of (i) the storage capacity of
the cache (k), (ii) the maximum number of users each cache can serve in a
time-slot (a), and (iii) the product ak. The system parameters for Figures (i)
and (ii) are n = 1000 files and m = 1000 caches, and r = 800 requests. The
system parameters for Figure (iii) are n = 100 files and m = 100 caches,
and r = 80 requests. Due to high time complexity, we plot the performance
of the PP+OMR only for n = m = 100 (Figure (iii)). In all these plots, the
transmission rate is 0 after a few values. Since, we plot the log of expected
transmission rate, the corresponding lines are terminated earlier.

transmission rate decreases exponentially with k. In addition,
for a fixed value of k, the performance of all policies improves
with increase in a.

In Figure 8(ii), we plot the mean transmission rate for
PP+MLP, PP+ORR, and PP+OLLR policies as a function of
the maximum number of users each cache can serve in a time-
slot (a), for a system where the number of files and caches
equal to 1000, and a batch of 800 requests is served. From the
plot, we see that for a fixed value of k, the transmission rate
decreases exponentially with a. In addition, for a fixed value
of a, the performance of all policies improves with increase
in k. In Figure 8(iii), we plot the mean transmission rate for
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Fig. 9. Plot of the mean transmission rate for the KS+MLP policy, KS+ORR
policy and the lower bound on the expected transmission rate (i) as a function
of the number of files (n), for a system where the number of caches (m) is
one fifth of the number of files (n = 5m), and each cache can store three
files (k = 3), (ii) as a function of storage capacity per cache (k) for a system
with n = 1000 files and m = 100 caches, and (iii) as a function of Zipf
parameter (β) for a system with n = 1000 files and m = 200 caches. In all
the figures, the number of requests (r) in a time-slot is equal to the number
of caches (m).

PP+MLP, PP+ORR, PP+OLLR and PP+OMR policies as a
function of the product ak, for a system where the number
of files and the number of caches is 100, and a batch of 80
requests is served. Note that out of all the combinations of a
and k which lead to the same product (ak), we consider the
values of a and k, which give the minimum mean transmission
rate. From the plot, we see that the transmission rates for
all the four policies decrease exponentially with ak, with
the offline OMR and MLP policies performing better than
the online OLLR and ORR policies as expected. We thus
conclude that benefits of resource pooling also extend to
the computationally inexpensive service policies PP+MLP,
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PP+ORR, and PP+OLLR.
Next, we evaluate the performance of Knapsack Storage

+ Match Least Popular (KS+MLP) policy described in Sec-
tion VI-B whose asymptotic performance for the case of
β ∈ (1, 2) was presented in Theorem 4. We also simulate the
performance of Knapsack Storage + Online Random Routing
(KS+ORR), where the ORR delivery policy is as described
earlier. We compare the performance of the KS+MLP and
KS+ORR policies as well as the lower bound on the perfor-
mance of all uncoded policies derived in Theorem 3.

As before, we simulate a distributed cache system with con-
tent popularity following the Zipf distribution to understand
how the performance of the KS+MLP and KS+ORR policies
depends on various parameters like number of contents (n),
number of caches (m), storage capacity per cache (k), and
Zipf parameter (β). We focus on the case where the number
of requests per time-slot is equal to the number of caches.
For each set of system parameters, we report the mean
transmission rate averaged over 10000 iterations.

In Figure 9(i), we plot the mean transmission rates for the
KS+MLP and KS+ORR policies as well as the lower bound
on the expected transmission rate as a function of the number
of contents (n), for a system where the number of caches
(m) is one fifth of the number of contents (n = 5m), and
each cache can store three contents (k = 3). In this regime,
Theorems 3 and 4 suggest that the mean transmission rate for
the KS+MLP policy is O(n2−β) and the lower bound on the
expected transmission rate is Ω(n2−β). We see that the mean
transmission rates for the KS+MLP and KS+ORR policies
as well as the lower bound follow the expected trend. In
Figure 9(ii), we plot the mean transmission rates for KS+MLP
and KS+ORR policies and the lower bound on the expected
transmission rate as a function of the storage per cache (k)
for a system with 1000 contents (n = 1000) and 100 caches
(m = 100). As expected the mean transmission rates for
KS+MLP and KS+ORR policies and the lower bound on the
expected transmission rate are decreasing functions of k. We
see that the mean transmission rate for the KS+MLP policy is
very close to the lower bound on the expected transmission rate
while the KS+ORR5 policy performs significantly worse. In
Figure 9(iii), we plot the mean transmission rates for KS+MLP
and KS+ORR policies and the lower bound on the expected
transmission rate as a function of the Zipf parameter β. We
simulate a system with 1000 contents (n = 1000) and 200
caches (m = 200) for two different values of storage per
cache. As expected, the mean transmission rates for KS+MLP
and KS+ORR policies and the lower bound on the expected
transmission rate are decreasing functions of β. We see that
the mean transmission rate for the KS+MLP policy is very
close to the lower bound on the expected transmission rate.
Note that our simulations are for the case where the number
of caches (m) is equal to the number of files (n). But, similar

5The plot of the expected rate of the KS+ORR policy in Figure 9(ii) has a
small unexpected jump. As the memory increases the number of files stored in
the cache is increasing but the service policy is online and it matches requests
randomly. So the chance of high popular file getting requested first is high
and can lead to a blocking of the caches hosting the lower popularity files.
This leads to the misbehavior in the performance. We also observe similar
behavior in Figure 9(iii) for large values of β.

tendency is maintained, when the parameter setting is changed
in cases with n > m or n < m.

VIII. CONCLUSIONS AND FUTURE WORK

In this work we focus on a content delivery system consist-
ing of a central server which communicates over an error-free
broadcast channel with multiple co-located caches, each with
limited storage and service capabilities. A key feature of this
work is that we allow resource pooling across caches which al-
lows a request to be simultaneously served by multiple caches.
We propose two policies, (i) PP+OMR (for 0 ≤ β < 1, where
β is the Zipf parameter) and (ii) KS+MLP (for 1 < β < 2),
and characterize their asymptotic performance. We also derive
fundamental lower bounds on the optimal server transmission
rate for our system. We conduct extensive simulations to
compare the performance of our proposed schemes as well
as other natural online and computationally-efficient variants.
More specifically, if the popularity does not vary drastically
across contents, then resource pooling leads to an order wise
reduction in central server transmission rate as the system size
grows. On the other hand, if the content popularity is skewed,
the central server transmission rate is of the same order with
and without resource pooling. In this paper, we restrict our
analysis to uncoded placement policies. In the future, we plan
to study the advantages of coded placement, both in terms of
improving system performance as well as providing reliability
against cache failures.

IX. PROOFS

A. Proof of Theorem 1

We characterize the performance of our storage/service
policy discussed in Section VI.

Case 1: c− k = Θ(1): Theorem 1(a) is trivial in this case.
We use the following lemmas to prove Theorem 1(b).
Lemma 1: For X = Bin(n, p = c

n ), such that c > 0 is a
constant, then, as n→∞, P(x ≥ 1) = 1− e−c.

Lemma 2: Let P = {p1, p2, ..., pn} be the Zipf distribution
with parameter β. Then for β ∈ [0, 1), pi ≥ 1−β

n ∀i.
Proof: (Proof of Theorem 1(b)) Let c−k = x. Any uncoded

storage policy can’t store more than mk units of data at least
once due to memory constraint. From Lemmas 1 and 2, the
unstored n − mk = xm units of data is requested at least
once with probability ≥ 1−e−

(1−β)ρ
c . Hence, E[R∗z1 ] ≥ x

(
1−

e−
(1−β)ρ

c

)
m.

Case 2: k − c = Θ(1): This proof uses ideas from the
proof of Proposition 1 in [7] which looks at the setting where
each cache can serve at most one request. We first compute
a lower bound on the probability that there exists a fractional
matching between the set of sub-requests and the caches such
that the total data served by each cache is less than 1 unit.
By the total unimodularity of adjacency matrix, the existence
of a fractional matching implies the existence of an integral
matching [7]. Since each sub-request is for 1/a units of data,
to ensure that the total data served by each cache is less than 1
unit in the integral matching, each cache will be allocated not
more than a sub-requests. The integral matching thus satisfies
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the restrictions discussed in Section III and therefore is a valid
allocation of requests to caches.

Proof: (Proof of Theorem 1(a)): Recall our storage policy
in Section VI. We divide each file into a sub-files of equal size
and the number of caches storing a sub-file is proportional to
its popularity, i.e., for all i, each sub-file of Content i is stored
on di ≈ mkpi caches. Recall that the number of requests for
Content i in a time-slot, denoted by bi, is Bin(r, pi), where,
pi = p1i

−β . We treat each request for a file as a sub-requests,
one for each of the a sub-files.

For each sub-file of Content i and each of the corresponding
bi sub-requests, we split each sub-request into di sub-sub-
requests of size 1

di
each. Let ∂s denote the set of sub-

files stored on Cache s. For each i ∈ ∂s, we associate bi
sub-sub-requests for Sub-file i to Cache s. This allocation
leads to a fractional matching where the the total data served
by each cache is less than 1 unit if ∀s ∈ {1, 2, ...,m},∑
i∈∂s

bi
di
≤ a =⇒

∑
i∈∂s

bi
adi
≤ 1, and,

P
(∑
i∈∂s

bi
adi

> 1

)
≤ inf
s>0

E
[
e
s
∑
i∈∂s

bi
adi

]
es

≤ inf
s>0

e−s
∏
i∈∂s

er ln
(
p∗e

s
amkp∗ +1−p∗

)
= e−

ak(1−β)ρ
c h( 1

ρ ),

where, p∗ = 1−β
n , h(x) = x lnx − x + 1 is the Cramer

transform of a unit Poisson random variable. If we broadcast
the data of the caches with

∑
i∈∂s

bi
adi

> 1, the requests for all
other files can be served via the caches since these requests can
be matched to caches while ensuring

∑
i∈∂s

bi
adi
≤ 1 for each

of them. Hence, there exists a fractional matching which, as
discussed before, implies the existence of an integral matching
for the remaining caches and requests. Therefore, the expected

transmission rate is E[Rz1 ] ≤ mkP
(∑

i∈∂s
bi
adi

> 1

)
≤

mke−
ak(1−β)ρ

c h
(

1
ρ

)
.

Next, we obtain a lower bound on the transmission rate
for any storage/service policy for 0 ≤ β < 1. We use the
following lemma to prove Theorem 1(b).

Lemma 3: In a system with n files of size 1 unit and m
caches of size k units each, at most m

2 units of data can be
stored at least 2k times each. (Note: Proof by contradiction)

To prove Theorem1(b), instead of lower bounding the
expected transmission rate of the original system, we lower
bound the expected transmission rate for an alternative system,
which is less restrictive, and therefore, more powerful than the
original system described in Theorem 1.

Proof: (Proof of Theorem 1(b)): In the original system the
total output rate of each cache is restricted to at most 1 unit,
and each cache can serve at most a requests. We consider
an alternative system (System A), in which we allow each
cache to serve multiple requests in each time slot, as long as it
serves at most a requests for each content stored in the cache.
Let E[R∗A] be the expected transmission rate in the alternative
system. Since, the alternative system is less restrictive than the
original system, it follows that E[R∗z1 ] ≥ E[R∗A].

From Lemma 3, we can conclude that there exist at least
n−m

2 units of data which stored not more than 2k times each.

Each of these n−m
2 units of data is requested with probability

≥ pn. Consider another system (System B) in which these
n − m

2 units of data are requested with uniform probability
pn = p1

nβ
. Let E[R∗B ] be the expected transmission rate in

System B. Then, E[R∗A] ≥ E[R∗B ]. From Lemma 2, we know
that, pn ≥ 1−β

n . Now, consider a new system (System C), in
which these n− m

2 units of data are requested with probability
1−β
n . Let E[R∗C ] be the expected transmission rate in System

C. It follows that E[R∗B ] ≥ E[R∗C ].
The number of requests for Content i in new system,

denoted by b′i, is Bin(r, 1−βn ). Then, for large enough n, we
have that,

P(b′j > 2ak) =

r∑
i=2ak+1

(
r

i

)(
1− β
n

)i(
1− 1− β

n

)r−i

≥ e
(1−β)ρ

c

( (1−β)ρ
c

)2ak+1

2(2ak + 1)!
.

Since, there are at least
(
n − m

2

)
such units, the expected

central server’s transmission rate can be lower bounded as
follows:

E[R∗z1 ] ≥ E[R∗C ] ≥
(
n− m

2

)
e

(1−β)ρ
c

(
(1−β)ρ

c

)2ak+1

2(2ak+1)! .

B. Proof of Proposition 1

Next, we consider the case β ∈ (1, 2). We use the following
lemma to prove Proposition 1.

Lemma 4: For a Binomial random variable X = Bin(m, p)
s.t., mp ≥ 1, limm→∞ P(x ≥ bmpc) ≥ 1

2 .
(
Recall:

median(X)≥ bmpc
)

Proof: (Proof of Proposition 1) From Lemma 4, it is clear
that, if Bit u of Content i s.t., rpi ≥ a is stored on less than
brpic
a caches, it will have to be fetched from the central server

with probability ≥ 0.5. Therefore, if we are interested in the
order of the number of contents transmitted by the central
server, storing Bit u of Content i on fewer than brpica caches
is equivalent to not storing it at all. Therefore, to make the
most use of the available cache memory, we restrict ourselves
to the case where if caching policy decides to cache Bit u of
Content i it is stored on at least max

{⌊
rpi
a

⌋
, 1
}

caches.
If the caching policy decides not to cache Bit u of Content

i , the central server will transmit this content if it is requested
at least once in the batch of r requests, i.e., with probability
≥ 1 − (1 − pi)r. Let xi,u = 1 imply that Bit u of Content i
is cached and xi,u = 0 otherwise.

E[R∗NC ] = Ω

(
min

n∑
i=1

bi∑
u=1

(1− xi,u)
(

1− (1− pi)r
))

s.t.
n∑
i=1

bi∑
u=1

xi,u max
{⌊rpi

a

⌋
, 1
}
≤ mkb,& xi,u = {0, 1}, ∀i.

Let O∗1 = max

n∑
i=1

bi∑
u=1

xi,u

(
1− (1− pi)r

)
s.t.

n∑
i=1

bi∑
u=1

xi,u max
{⌊rpi

a

⌋
, 1
}
≤ mkb & xi,u = {0, 1}, ∀i.
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O∗1 ≤ O∗ = max

n∑
i=1

bi∑
u=1

xi,u

(
1− (1− pi)r

)
s.t.

n∑
i=1

bi∑
u=1

xi,u max
{⌊rpi

a

⌋
, 1
}
≤ mkb & 0 ≤ xi,u ≤ 1, ∀i.

∴ E[R∗NC ] = Ω

( n∑
i=1

bi

(
1− (1− pi)r

)
− O∗1

)
= Ω

( n∑
i=1

bi

(
1− (1− pi)r

)
− O∗

)
.

C. Proof of Theorem 3

We use the following lemmas to prove Theorem 3 and
Theorem 4.

Lemma 5: For a Binomial random variable X with mean
µ, by the Chernoff bound, ∀ δ ≥ 0,

P(X ≥ (1 + δ)µ) ≤

(
eδ

(1 + δ)(1+δ)

)µ
,

P(X ≤ (1− δ)µ) ≤ e−δ
2µ/2.

Lemma 6: Let content popularity follow the Zipf distribution
with Zipf parameter β > 1. In a given time-slot, let di be the
number of requests for Content i. Let E1 be the event that:

(a) di ≥ 1 for i = O(m
1
β−ε), where ε > 0 is arbitrarily

small constant,
(b) di ≤ 2p1(logm)2 for n1 < i ≤ n2,

(c) di ≤
(

1 +
p1
4

)
mpi for 1 ≤ i ≤ n1,

where n1 and n2 are as defined in Equation 2. Then, P(E1) =
1−O(ne−(logm)2).

Proof: Since content popularity follows the Zipf distribution
with Zipf parameter β > 1,

(a) For all i = O(m
1
β−ε), expected number of requests is

O(mεβ), and P
(
di < 1

)
= O

(
e−m

εβ
)
.

(b) For all contents less popular than Content n1, pi ≤
p1(logm)2

m . Therefore, by the Chernoff bound (Lemma
5), we have that, for n1 < i ≤ n2, P

(
di >

2p1(logm)2
)

= O(e−(logm)2).
(c) For i ≤ n1, mpi = Ω((logm)2), by the Lemma 5,

P
(
di >

(
1 +

p1
4

)
mpi

)
= O(e−mpi).

Therefore, by the union bound over all contents, we have that,
P(E1) = 1−O(ne−(logm)2).

Proof: (Proof of Theorem 3)
Case 1: c−k > Θ(1): Consider a new system with one cache
of size mk units which can serve all the requests for the stored
contents. It is clear that a lower bound on the transmission rate
in the new system is also a lower bound on the transmission
rate of the original system.
In the new system, we can store at most mk files. Therefore,

all requests for the n−mk files that are not stored have to be
served by the central server. Therefore,

E[R∗z2 ] ≥
∫ n

n−mk+1

(
1−

(
1− p1

iβ

)r)
di = Ω

(
n(2−β)

)
.

Case 2: k = c, a = mγ : We use Proposition 1 to prove this
result. It can be shown that the optimal solution to O∗ has
the following structure: ∃ imin ≥ 1 and imax ≤ n, such that,
xi = 1 if imin < i < imax, ximin = f1 where 0 ≤ f1 ≤ 1,
ximax = f2 where 0 ≤ f2 ≤ 1, and xi = 0 otherwise. Let
ĩ =

⌈(
rp1
2a

) 1
β

⌉
. By the definition of the fractional Knapsack

problem,

f1
rp1

aiβmin

+

ĩ−1∑
i=imin+1

⌊rpi
a

⌋
+

imax−1∑
i=ĩ

1 + f2 = mk,

∴ imax ≤ mk + 3̃i− f1
rp1

aiβmin

+
rp1

a(β − 1)
×[

− (imin + 1)(−β+1) + (̃i− 1)
(−β+1)

]
.

Let imin = mα. Recall that the fractional Knapsack solution
has imin ≤ ĩ. Hence, α ≤ 1−γ

β . If α < 1−γ
β , imax =

n(1−o(1)) and, imax

n = 1−c1m−αβ+α−γ(1−o(1)) for some
c1 > 0. Let E[R∗1] denote the expected number of contents
requested at least once that are more popular than Content
imin. By Lemma 6 Part (a), E[R∗1] = mα. Let E[R∗2] denote
the expected number of contents requested at least once that
are less popular than Content imax.

E[R∗2] ≥
∫ n

imax+1

rp1
iβ
di = Ω

(
m−β+2−αβ+α−γ

)
.

∴ E[R∗z2 ] ≥ E[R∗1] + E[R∗2] ≥ Ω
(
n

2−β−γ
β

)
.

If α = 1−γ
β , and i = o(m

1−γ
β ) then Content i is not cached.

From Lemma 6 Part (a), all these files are requested at least
once. Hence, ∀ ε > 0, E[R∗z2 ] ≥ Ω

(
m

1−γ
β −ε

)
, i.e., E[R∗z2 ] ≥

Ω
(
n

2−β−γ
β

)
.

Case 3: k − c > Θ(1) –The bound of 0 follows trivially.

D. Proof of Theorem 4

We use the following lemmas in the proof of Theorem
4. These lemmas tell that if a file is stored in KS + MLP
policy, then all its requests are served by the caches with high
probability.

Lemma 7: Let R = {i : xi = 1}, where xi is the solution of
the fraction Knapsack problem solved in Knapsack Storage:
Part 1. Let E2 be the event that the Match Least Popular
policy matches all requests for all contents in R to caches.
Then, P(E2) = 1−O(me−3 logm).
Proof: Since the Match Least Popular policy matches requests
to caches starting from the least popular contents, we first
focus on requests for contents less popular than Content n2.
Since content popularity follows the Zipf distribution with Zipf
parameter β > 1, for i > n2, pi < pn2

=
p1

m(1+δ)
. Since each
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cache stores at most ak contents, the cumulative popularity of
all contents less popular than Content n2 stored on a cache is <
akpn2 . Let X̃ denote the number of requests for a cache for the
contents with index greater than n2. Then, E[X̃] = O

(
ak
mδ

)
,

and P(X̃ ≥ a) ≤ O
((

e
mδ

)a)
. Since, each content is stored

on
⌈

4
aδ

⌉
caches, the probability of a content with index greater

than n2 being unmatched is O

((
e
mδ

)ad 4
aδ e
)

. By the union

bound, the probability that at least one request for Content
i ∈ R such that i > n2 is not matched by the Match Least

Popular policy is ≤ O

(
m
(

e
mδ

)ad 4
aδ e
)

= O
(
me−3 lnm

)
.

Next, we focus on contents ranked between 2 and n2. Note
that, if the Knapsack Storage policy decides to store Content
i, it stores it on awi caches.
n2∑
i=2

xiawi ≤
n1∑
i=2

⌈(
1 +

p1
2

)
mpi

⌉
+

n2∑
i=n1+1

d4p1(log n)2e

≤
(
1− p1

2

)
m. (3)

Therefore, if contents are stored according to Knapsack
Storage: Part 2, each cache stores at most one part of contents
with index i such that 2 ≤ i ≤ n2. We first focus on the
contents ranked between n1 and n2. Let D1,i be the set of
caches storing parts of Content i for n1 ≤ i ≤ n2. Each
content part is stored on

⌈ 4p1(logn)2
a

⌉
caches. Let E3,i be

the total number of requests from contents whose index is
> n2 and which are stored on Caches belonging to D1,i.

Hence, E[E3,i] ≤ r

⌈
4p1(logn)

2

a

⌉
akpn2

. Therefore, P(E3,i ≥

2p1(log n)2) ≤ O

((
1
nδ

)(logn)2)
. Hence, from Lemma 6, the

probability that Content i for n1 < i ≤ n2, i ∈ R is not
served ≤ O

(
n−δ(logn)

2)
. By the union bound, the probability

that contents belong to R and ranked between n1 and n2
unmatched to copies of the caches is ≤ O

(
n−δ(logn)

2+1
)

=
O
(
e−3 lnm

)
.

We next focus on the contents ranked between 2 and n1.
Let D2,i be the set of caches storing parts of Content i for
2 ≤ i ≤ n1. Each content part is stored on

⌈ (1+ p1
2 )mpi
a

⌉
.

Let E4,i be the total number of requests from contents whose
index is > n2 and which are stored in caches belong to D2,i.

Hence, E[E4,i] ≤ r

⌈
(1+

p1
2 )mpi
a

⌉
akpn2

. Therefore, P(E4,i ≥

p1
4 mpi) ≤ O

((
1
nδ

)mpi) ≤ O
((

1
nδ

)(logn)2)
. Hence, from

Lemma 6, the probability that Content i for 2 ≤ i ≤ n1,
i ∈ R is not served ≤ O

(
n−δ(logn)

2)
. By the union bound,

the probability that contents belong to R and ranked between
2 and n1 unmatched is ≤ O

(
n−δ(logn)

2+1
)

= O
(
e−3 lnm

)
.

Finally, We focus on the requests for Content 1. Recall that if
the Knapsack Storage policy decides to cache Content 1, it is
stored on m

a caches. Since the total number of requests in a
batch is r, even if all requests for contents ranked lower than
1 are matched to caches, the remaining caches can be used to
serve all the requests for Content 1.

The next lemma evaluates the performance of the Knapsack
Store + Match Least Popular (KS+MLP) policy for the case

where content popularity follows the Zipf distribution.
Lemma 8: Consider a distributed cache consisting of a

central server and m caches that offers a catalog of n con-
tents. Let a batch of r requests arrive in each time-slot and
RKS+MLP be the transmission rate for the KS+MLP policy
when content popularity follows the Zipf distribution with Zipf
parameter β > 1. Then, we have that, for n large enough,

E[RKS+MLP] ≤
∑
i/∈R 1−

(
1− p1

iβ

)r
+ O(n2e−3 logn), where

p1 =
(∑n

i=1 i
−β)−1, R = {i : xi = 1}, such that xi is the

solution of the fraction Knapsack problem solved in Knapsack
Storage: Part 1.
Proof: From Lemma 7, we know that, for n large enough,
with probability ≥ 1 − O

(
me−3 logm

)
, all requests for the

contents cached by the KS+MLP policy are matched to caches.
Let ñ be the number of contents not in R (i.e., not cached
by the KS+MLP policy) that are requested at least once in a
given time-slot. Therefore, E[ñ] =

∑
i/∈R 1− (1−p1)r, and,

E[RKS+MLP] ≤ E[ñ]P (E2) +m(1− P (E2))
≤ E[ñ] + O(m2e−3 logm).

Proof: (Proof of Theorem 4) Let Rz2 denote the number
of files that are not stored by the KS+MLP policy and are
requested at least once.
Case 1: c− k > Θ(1): From Lemma 7, if we store wi times
Content i according to the Knapsack Storage Policy: Part 2,
all the requests for it are served with high probability. Let R
be the transmission rate of the policy which stores from File
2 onwards, each file wi times according to Knapsack Storage
Policy: Part 2 until memory is full. From equation (3), we
store more than p′1

2 m files wi times. From the definition of
fractional Knapsack problem, E[Rz2 ] ≤ E[R].

E[R] ≤ 1 +
∫ cm(
c− p

′
1
2

)
m

1− (1− pi)rdi ≈ O
(
n2−β

)
.

Case 2: c = k, a = mγ : Let the Knapsack solution be store
files from imin + 1 to imax.

∴
∫ m

1
β

(logm)
2
β

imin

((
1 +

p1
2

)rpi
a

)
di+

(
4p1(logm)2

a

)
n

1+δ
β

+
⌈ 4

aδ

⌉
imax ≥ mk.

=⇒
⌈ 4

aδ

⌉
imax ≥ mk −

4p1 logm

a
n

1+δ
β +

(
1 +

p1
2

)
×

mp1
a(β − 1)

[(
m

1
β

(logm)
2
β

)1−β

− i(1−β)min

]
.

Let imin = mα for some α < 1−γ
β , and substitute it in the

above equation, we get imax = c1n(1 − o(1)) and imax

n =

1 − c2m
−α(β−1)

a (1 − o(1)) for some c1 > 0, c2 > 0. From
Lemma 8,

E[Rz2 ] ≤ imin +

∫ n

imax

1− (1− pi)rdi+ o(1)

= mα + O
(
m2−β−α(β−1)−γ

)
.

By taking α = 2−β−γ
β , we will get E[Rz2 ] = O

(
n

2−β−γ
β

)
.
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Case 3: k − c > Θ(1): Let mk = n + lm. If we store
Contents t to n, the total memory required is less than

∫ m
1
β

(logm)
2
β

t

((
1 +

p1
2

)rpi
a

)
di+

(
4p1(logm)2

a

)
n1−ε+

⌈ 4

aδ

⌉
n ≤

(
1 +

p1
2

) mp1
a(β − 1)

[
t(1−β) −

(
m

1
β

(logm)
2
β

)1−β]

+

(
4p1(logm)2

a

)
n1−ε +

⌈ 4

aδ

⌉
n.

For l ≥
⌈

4
aδ

⌉
, ∃t, such that the total memory required is less

than mk. Therefore, E[Rz2 ] ≤ t = Θ(1).
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[19] B. Tan and L. Massoulié, “Optimal content placement for peer-to-peer

video-on-demand systems,” IEEE/ACM Transactions on Networking
(TON), vol. 21, no. 2, pp. 566–579, 2013.

[20] G. S. Paschos, G. Iosifidis, M. Tao, D. Towsley, and G. Caire, “The
role of caching in future communication systems and networks,” IEEE
Journal on Selected Areas in Communications, vol. 36, no. 6, pp. 1111–
1125, 2018.

[21] S. S. Krishnan and R. K. Sitaraman, “Video stream quality impacts
viewer behavior: inferring causality using quasi-experimental designs,”
IEEE/ACM Transactions on Networking, vol. 21, no. 6, pp. 2001–2014,
2013.

[22] V. Shah and G. de Veciana, “Performance evaluation and asymptotics
for content delivery networks,” in IEEE Conference on Computer
Communications (INFOCOM), 2014, pp. 2607–2615.

[23] ——, “High-performance centralized content delivery infrastructure:
models and asymptotics,” IEEE/ACM Transactions on Networking,
vol. 23, no. 5, pp. 1674–1687, 2015.

[24] K. S. Reddy, S. Moharir, and N. Karamchandani, “Effects of storage
heterogeneity in distributed cache systems,” in IEEE 16th International
Symposium on Modeling and Optimization in Mobile, Ad Hoc, and
Wireless Networks (WiOpt), 2018, pp. 1–8.

[25] Y. Liu, F. Li, L. Guo, B. Shen, S. Chen, and Y. Lan, “Measurement
and analysis of an internet streaming service to mobile devices,” IEEE
Transactions on Parallel and Distributed Systems, vol. 24, no. 11, pp.
2240–2250, 2013.

[26] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, “Web caching and
Zipf-like distributions: Evidence and implications,” in IEEE Conference
on Computer Communications (INFOCOM), 1999, pp. 126–134.

[27] H. Yu, D. Zheng, B. Zhao, and W. Zheng., “Understanding user behavior
in large scale video-on-demand systems,” in EuroSys, 2006.

[28] C. Fricker, P. Robert, J. Roberts, and N. Sbihi, “Impact of traffic mix on
caching performance in a content-centric network,” in IEEE Conference
on Computer Communications Workshops (INFOCOM WKSHPS), 2012,
pp. 310–315.

[29] M. T. Goodrich and R. Tamassia, Algorithm design: foundation, analysis
and internet examples. John Wiley & Sons, 2006.


	I Introduction
	II Related Work
	III setting
	III-A Storage Model
	III-B Request Model
	III-C Service Model
	III-D Goal
	III-E Contributions

	IV Notations
	V Preliminaries
	VI Main results and discussion
	VI-A Zipf distribution with [0,1)
	VI-B Zipf distribution with (1,2)

	VII Simulation Results
	VIII Conclusions and future work
	IX proofs
	IX-A Proof of Theorem ??
	IX-B Proof of Proposition ??
	IX-C Proof of Theorem ??
	IX-D Proof of Theorem ??

	References

