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Abstract—Coded caching is a technique where we utilize
multi-casting opportunities to reduce rate in cached net-
works. One limitation of coded caching schemes is that they
reveal the demands of all users to their peers. In this work,
we consider coded caching schemes that assure privacy
for user demands with a particular focus on reducing
subpacketization. For the 2-user, 2-file case, we present
a new linear demand-private scheme with the lowest
possible subpacketization. This is done by presenting the
scheme explicitly and proving impossibility results under
lower subpacketization. Additionally, when only partial
privacy is required, we show that subpacketization can be
significantly reduced when there are a large number of
files.

I. INTRODUCTION

Data traffic has been growing rapidly in recent years

with content delivery, especially that of multimedia files,

contributing a significant part. One important aspect

of such traffic is its temporal variation. Network us-

age during peak demand times could be much higher

than the demand in off-peak hours. Caching is a way

to alleviate network congestion during peak hours by

prefetching popular content nearer to the user during off-

peak hours. Depending on the limitations on memory,

a part of these files would be prefetched and once the

user makes a demand, the rest of the requested file

will be transmitted. Early literature on caching focused

on cache placement/replacement policies [1], caching

architectures [3], [14], [16], web request models [2] etc.

Maddah-Ali and Niesen had shown in their seminal

paper that coding can achieve significant gain over

uncoded caching by making use of multicast opportu-

nities [12]. Coded caching achieves an additional global

caching gain, which is proportional to the number of

users. Their scheme is shown to be order optimal with

an information-theoretic lower bound on the number of

files needed to be transmitted (known as rate). Though

the exact lower bound on peak rate is still an open

problem several works had investigated this and came

up with tighter bounds [7], [19], [26], [29]. The problem

has been studied in several settings like decentralized

caching [13], non-uniform demands [15], multiple levels

of cache [10] to name a few. Most of the schemes

in these works involve storing the prefetched parts of

files in uncoded form. Coded prefetching is investigated

in [4], [8], [24], where linear combinations of subfiles

are stored in caches. In a few regimes this approach

can improve the rate-memory trade-off over uncoded

prefetching.

Yan et al. developed a structure called placement

delivery arrays that could model both the placement and

delivery schemes in a single array [27]. Graphical models

for caching have been investigated in [20], [22], [28].

Schemes can also be derived using combinatorial designs

and linear block codes [23]. A limitation with the origi-

nal centralized scheme was the high subpacketization of

files [21]. In the original scheme due to [12], the number

of subfiles a file is split into, increases exponentially

with the number of users. These combinatorial models

have helped in developing schemes that have lower

subpacketization but with a small penalty on rate [5],

[22].

One area of particular interest is security and privacy

in coded caching. In typical coded caching schemes,

other users involved in the multicast or eavesdroppers

might get to know the identity of the file a particular

user demanded and its contents. Furthermore, users will

be able to partially access files which they have not

demanded. This is in part due to the cache that contains

contents of files not requested by them and also because,

during delivery, they may be able to decode packets

not meant for them. Sengupta et al. [18] proposed a

method for preventing information leakage to an external

wiretapper with the use of cryptographic keys. Visakh et

al. [17] had recently shown that the contents of a file

could be revealed only to the user/users who requested

it, using secret sharing techniques.

One aspect that has not been investigated much is

the privacy of the user requests in the specific con-

text of coded caching, while it has been studied in
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closely related areas like index coding [11] and private

information retrieval (PIR) [6]. As we were preparing

this manuscript, we became aware of work due to Wan

and Caire [25] who take a different approach for user

request privacy from ours. Another paper by Kamath [9]

also addressed the problem of demand privacy and their

approach is similar to the one in this work. We point out

the specific differences in our results when compared to

those from [25] and [9] below.

In this work, we explore methods to obtain privacy

of each user’s requests from the other users in coded

caching keeping subpacketization constraints as an im-

portant parameter.

Our specific contributions are as follows:

i) We focus on the 2-user, 2-file case in detail and

provide an achievable multicast transmission rate

versus cache storage curve under a demand privacy

constraint.

ii) For the 2-user, 2-file case with cache storage of

1 file, we show an explicit demand-private scheme

achieving a multicast transmission rate of 2/3 with

a subpacketization of 3. This scheme cannot be

obtained using the general scheme proposed in [9],

which, in fact, requires a subpacketization of 6.

iii) For the 2-user, 2-file case, we prove some impossi-

bility results on subpacketization of 2 and uncoded

cache storage for linear coded caching with demand

privacy. These are some of the first negative results

in this new area.

iv) Finally, we propose a general K-user, N -file par-

tially demand-private scheme that provides a trade-

off between the level of privacy and reduction in

subpacketization.

The rest of the paper is organized as follows. In

Section II, we describe the system setup and the problem

statement. In Section III, we provide demand-private

schemes and an achievable rate vs cache memory curve

for the case of two users and two files. We prove certain

impossibility results with respect to packetization and

coded prefetching. In Section IV, we describe the general

scheme for constructing demand-private coded caching

schemes from non-private coded caching schemes from

[9], and provide specific instances of the construction

from PDAs resulting in lesser subpacketization. We also

introduce the notion of partially private schemes and

show how to construct a partially private scheme. We

conclude with a brief discussion on scope for future work

in Section V.

II. PROBLEM STATEMENT

A. System setup

Assume that we have a server with N files. Each file

is assumed to be of F bits and the i-th file is denoted

Wi. The server is connected to K users via a multicast

link. Each user has a cache of size MF bits. The cache

contents of the i-th user are denoted Zi. The system

setup is shown in Fig. 1. The cache system works in

Z1Z0 ZK´1

XD

Server

W0

W1
...

WN´1

. . .

Fig. 1. Caching system.

two phases. In the first phase called the placement phase,

the cache of each user is populated with content by the

server. In addition, the server sends metadata or header

information ΘpZiq about how the cache content was

derived from the files to User i. The header information

is assumed to be small in size when compared to the file

size but crucial for decoding purposes. Note that during

the placement phase the server is unaware of the files

demanded by the users. We assume that the transmission

of cache content and header takes place over a private

link between the server and each user.

In the second phase, called the delivery phase, each

user requests the server for one of the files from the set

of N files. The demand of the i-th user is denoted Di,

where Di P rN s fi t0, 1, . . . , N ´ 1u. The demands of

all the users 0 to K´1 is denoted by the demand vector

D “ pD0, D1, . . . , DK´1q. We assume that the Di are

all i.i.d. random variables uniformly distributed over

rN s and that the demands are sent over a private link

between the user and the server. Based on the demands,

the server multicasts ℓ packets, typically of the same

size. The entire multicast transmission from the server

is denoted XD for a demand vector D. It consists of

RF bits. The transmission XD depends on the cache

Zi and the demands Di. The quantity R is called the

rate of transmission. In addition to XD, some additional

metadata or header information about the transmission

is typically multicast in coded caching schemes. This

metadata, denoted ΘpXDq, is usually small compared
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to the file size and provides critical information for

decoding by the users.

The main requirement in a coded caching scheme is

that User i should be able to decode the file WDi
using

Zi, ΘpZiq, XD and ΘpXDq. In other words, we require

HpWDi
| Zi,ΘpZiq, X

D,ΘpXDqq “ 0. (1)

We denote a coded caching scheme with K users, N

files, local cache size M , and rate R as a pK,N ;M,Rq
coded caching scheme, or as a pK,Nq scheme in short.

B. Demand privacy in coded caching

We will introduce the notion of demand privacy in

coded caching with a simple example. Consider the

p2, 2q coded caching scheme due to Maddah-Ali and

Niesen [12] shown in Fig. 2.

A

B

A0, B0

Z0

A1, B1

Z1

XD

D0D1 X

AA A1 ‘ A0

AB A1 ‘ B0

BA B1 ‘ A0

BB B1 ‘ B0

Fig. 2. Non-private scheme from [12] fo r N “ 2 files, K “ 2 users
and demand vector, D “ pD1,D2q.

Suppose that the demand is pA,Aq. This results in

the transmission A1 ‘ A0. To recover the files, each

user must know what linear combination of subfiles has

been transmitted. So, we will suppose that the server

sends the linear combination information as header along

with the transmission. It is easy to see that each user

can recover the missing portion of the file demanded

by them. However, the scheme has the unfortunate side

effect of revealing the demands of each user to the other

parties. From the header and scheme details, it is clear to

User 0 that User 1 demanded the file A and vice versa.

If the transmission is Ai ‘ Bj , then the i-th user

can infer that the j-th user has requested A based on

the linear combination header information. In general,

users can use the combined information of their cache,

demands and header data from the server to learn about

another user’s demands.

Based on the preceding discussion, to achieve demand

privacy in a coded caching scheme, we impose the

following additional condition for all demand vectors D:

IpDi, Zi,ΘpZiq, X
D,ΘpXDq;Djq “ 0, i ‰ j. (2)

In other words, we require that the i-th user is completely

uncertain about what the j-th user demands, given all

information available to User i in the coded caching

scheme. It can be shown that the standard Maddah-Ali-

Niesen scheme [12] does not satisfy the demand privacy

condition in Eq. (2).

III. pK “ 2, N “ 2q CODED CACHING WITH DEMAND

PRIVACY

We will first consider the case when there are two files

and two users. A complete characterization of the M vs

R region in the case of two files/users was one of the

starting points of the area of coded caching. Therefore,

it is important to fully characterize the same region with

demand privacy. We have made some partial progress

towards this problem.

First, we will show the design of a linear p2, 2; 1, 2{3q
coded caching scheme with demand privacy having a

subpacketization (number of parts into which each file is

divided) of 3. In comparison, directly converting a p4, 2q-

Maddah-Ali-Niesen scheme into a p2, 2; 1, 2{3q demand-

private scheme requires a subpacketization of 6 [9].

A. pM “ 1, R “ 2{3q scheme with subpacketization 3

The two files, A and B, are divided into 3 parts Ai,

i “ 0, 1, 2 and Bi, i “ 0, 1, 2. Table I summarizes the

entire scheme.

TABLE I
pK “ 2, N “ 2;M “ 1, R “ 2{3q DEMAND-PRIVATE CACHING

SCHEME WITH SUBPACKETIZATION 3. IF SERVER ASSIGNS THE

CACHE Zi0 TO USER i, THEN XD0D1 IS THE TRANSMISSION FOR

THE DEMAND D0D1 .

Notation

Possible
cache
contents

Z00

A0 ‘ A1

B0 ‘ B1

A2 ‘ B1

Z01

A0 ‘ A1

B0 ‘ B1

A1 ‘ B2

Z10

A0 ‘ A2

B0 ‘ B2

A1 ‘ B2

Z11

A0 ‘ A2

B0 ‘ B2

A2 ‘ B1

D0D1 XD0D1

AA
A0

B0

AB
A1

B1

BA
A2

B2

BB
A0 ‘ A1 ‘ A2

B0 ‘ B1 ‘ B2

In the placement phase, the server places either Zi0 or

Zi1, with equal probability, as the cache Zi for User i.

The actual choice is private between the server and

User i. If User i was assigned the cache Zi0, then
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TABLE II
FILES RECOVERED FROM POSSIBLE CACHE PAIRS AND

TRANSMISSION X FOR THE SCHEME FROM TABLE I

Caches
Z0,Z1

X A0

B0

A1

B1

A2

B2

A0 ‘ A1 ‘ A2

B0 ‘ B1 ‘ B2

Z00,Z10 A,A A,B B,A B,B
Z00,Z11 A,B A,A B,B B,A
Z01,Z11 B,B B,A A,B A,A
Z01,Z10 B,A B,B A,A A,B

the multicast transmissions XD0D1 for each possible

demand pD0, D1q are as shown in Table I. It can be seen

that all the demands are served. It can also be checked

that the demands are private under this assignment. For

instance, from Table II, we see that there exists another

assignment of cache for each user which recovers an-

other file with the same transmission.

Table III is the set of recoverable files under each

possible cache content for a given transmission. For the

TABLE III
FILES RECOVERED FROM POSSIBLE CACHES FOR A p2, 2; 1, 2{3q

PRIVATE SCHEME.

XAB XBA XBB XAA

Z00 A B B A
Z01 B A A B
Z10 B A B A
Z11 A B A B

same transmission, each user is able to recover either

file A or file B with the two possible cache contents.

Since the actual cache content is private, we readily see

that this scheme satisfies the demand privacy condition

in Eq. (2).

B. Dual private schemes

We show that a p2, 2;M “ M1, R “ R1q scheme

with demand privacy can be converted into a p2, 2;M “
R1, R “ M1q demand-private scheme and this results in

symmetric R vs M capacity bounds for the p2, 2q case.

One can observe that the roles of caches and transmis-

sions can be interchanged in the symmetric file recovery

matrix in Table III. Hence, from the scheme given in

Table I, we can arrive at a scheme given in Table IV

with rate R “ 1 for M “ 2{3. We call this scheme the

dual of the original scheme.

Our next result generalizes the above for all p2, 2q
private schemes that use one of two caches uniformly at

random.

Lemma 1 (Duality of transmissions and caches). Sup-

pose that there exists a p2, 2;M “ M1, R “ R1q private

scheme where the server places one of two possible

TABLE IV
DUAL PRIVATE p2, 2; 2{3, 1q SCHEME FROM THE PRIVATE

p2, 2; 1, 2{3q SCHEME GIVEN IN TABLE I. FOR CACHE Zi0 AT

USER i, XD0D1 IS THE TRANSMISSION FOR THE DEMAND D0D1 .

Notation
Possible Cache
Contents

Z00

A1

B1

Z01

A2

B2

Z10

A0 ‘ A1 ‘ A2

B0 ‘ B1 ‘ B2

Z11

A0

B0

D1D2 XD0D1

AA

A0 ‘ A2

B0 ‘ B2

A2 ‘ B1

AB

A0 ‘ A1

B0 ‘ B1

A2 ‘ B1

BA

A0 ‘ A1

B0 ‘ B1

A1 ‘ B2

BB

A0 ‘ A2

B0 ‘ B2

A1 ‘ B2

cache contents uniformly at random. Then, there exists

a p2, 2;M “ R1, R “ M1q private scheme.

Proof. Consider a p2, 2;M,Rq private scheme con-

structed with users having two options to populate their

caches. Let tZ00, Z01u be the set of two cache options

for User 0 and tZ10, Z11u be the set of two cache

options for User 1. Let XD1D2 be the transmission

corresponding to the user demands D “ pD1, D2q and

cache Zi0 at User i. The sets Z “ tZ00, Z01, Z10, Z11u
and X “ tXAA, XAB, XBA, XBBu are able to recover

files A and B as given in Table III. Let the size of Zi

be R1F bits and that of XW0W1 be M1F bits. We can

interchange the role of these caches and transmissions.

Let tXAB, XBAu be the set of two cache options for

User 0 and tXBB, XAAu be the set of two cache options

for User 1. Then if Z11 is transmitted and the Users 0

and 1 are assigned tXABu and tXBBu as their caches,

both can recover file A. Instead if User 1 had XBA

in its cache, the users would have recovered B and

A, respectively. This way of interchangeability between

caches and transmissions gives rise to a new scheme for

2 users and 2 files, where the cache size is M1 bits and

transmission size is R1 bits.

A consequence of the above duality is that the achiev-

able trade-off between memory and rate for p2, 2q private

schemes is symmetric about the line M “ R.

Lemma 2 (Time sharing with file splitting). Given two

achievable pM,Rq pairs for a p2, 2q private scheme, all

values of pM,Rq along the line joining these points are

achievable.

Proof. Consider 0 ď α ď 1. Split the file A into

two parts Aα and Aᾱ of size αF bits and p1 ´ αqF

4



2

3
1 2

2

3

1

2

M

R

Fig. 3. Achievable pM,Rq region for p2, 2;M,Rq private schemes.
The p2, 2; 1, 2{3q scheme and its dual scheme p2, 2; 1, 2{3q have
a subpacketization of three subfiles. The straight lines are due to
Lemma 2. For these schemes, the subpacketization need not be three.

bits respectively. Similarly, split B into Bα and Bᾱ.

Denote the two achievable private caching schemes as

p2, 2;M,Rq and p2, 2;M 1, R1q respectively. We can use

the p2, 2;M,Rq scheme for sharing Aα and Bα and

the p2, 2;M 1, R1q scheme for sharing Aᾱ, and Bᾱ.

The overall scheme shares A and B with effective

cache size pαM ` p1 ´ αqM 1qF bits and transmission

pαR ` p1 ´ αqR1qF bits giving a p2, 2;αM ` p1 ´
αqM 1, αR ` p1 ´ αqR1q private scheme.

Note that the time sharing scheme in Lemma 2 has

a subpacketization that is equal to the sum of the

two schemes used for time sharing. Using Lemma 2,

and Lemma 1 we can plot the upper bounds for the

achievable pM,Rq pair for p2, 2q private schemes. The

plot is symmetric about the line M “ R as can be seen

in Fig. 3

C. Towards lower bounds and optimal subpacketization

In the non-private case, the M vs R region is fully

characterized for two users and two files. For the case

with demand privacy, it is not clear whether any of the

points in the achievable M vs R curve shown in Fig. 3

are optimal, or if the subpacketizations are optimal.

While we do not have lower bounds and optimality

results yet, we present a few basic impossibility results

involving subpacketization and coding of cache contents.

In the non-private case for two users/files, subpacketi-

zation of 2 suffices to result in optimal rate of R “ 1{2
for M “ 1. For the private case, we have the following

result.

Lemma 3. Consider N “ 2, K “ 2 with subpacketiza-

tion of 2 and M “ 1. A rate R “ 1{2 cannot be achieved

with demand privacy when using a linear scheme.

Proof. A proof is given in Appendix A.

For subpacketization of 3, the scheme in Section III-A

uses coded cache contents, which is not typical in the

non-private setting. In the setting considered here for

demand privacy, we have the following result on coding

in cache contents.

Lemma 4. Consider N “ 2, K “ 2 with subpacketi-

zation of 3 and M “ 1. If the cache contents are not

allowed to be coded (i.e. linear combinations of two or

more file parts are not allowed to be stored in cache), a

rate R “ 2{3 cannot be achieved with demand privacy

when using a linear scheme.

Proof. A proof is given in Appendix B.

IV. GENERAL SCHEME AND PARTIAL PRIVACY

In this section, we describe the general scheme from

[9] that provides the design of a demand-private coded

caching scheme from non-private schemes.

Theorem 5 (Existence of private schemes [9]). If there

exists a pKN,N ;M,Rq coded caching scheme, then

there exists a private pK,N ;M,Rq scheme.

Proof. Assume that we have a pKN,N ;M,Rq non-

private scheme. Let the cache contents of each of the

users be given as Z 1
i, where 0 ď i ă NK .

Partition the users into sets of size N . Without loss of

generality we partition the NK users as

Uk “ tpk ´ 1qN ď j ă kNu. (3)

Denote the cache of the kth user of the private scheme

as Zk. This is chosen as follows:

Zk “ Z 1
pk´1qN`rk

(4)

where rk is uniformly distributed on t0, 1, . . . , N ´ 1u.

During delivery the server receives the demand vector

pd0, . . . , dK´1q. The server then generates the transmis-

sion corresponding to the demand vector of the non-

private scheme. This demand vector is of length NK

and denoted D1 “ pd1
jq. We can assign any random

permutation of the demands rN s to the users in Uk

subject to the condition that d1
rk`pk´1qN “ dk. Formally,

πk : Uk Ñ rN s (5a)

d1
j “ πkpjq (5b)

d1
rk`pk´1qN “ πkprk ` pk ´ 1qNq “ dk (5c)

5



Denote the demand vector of the non-private

pKN,Nq scheme as D1 “ pd1
jqjPrNKs Since the non-

private scheme can accommodate all demands, it can

also serve this demand. Transmit XD1

as per the non-

private scheme. Then each user of the private scheme is

able to receive the file requested.

Demand privacy can be shown as follows. The i-th

user of the private scheme is able to recover the file he

or she requested. The same transmission can be used to

recover all the files by the caches Z 1
pj´1qK , . . . , Z 1

jK´1
.

However, the i-th user does not know which of these

caches has been assigned to the j-th user. Since all of

them are equally likely to be assigned to j-th user by

construction, the uncertainty about the demand Dj given

Di, X, Zi is HpDjq. Thus, the privacy of demands is

preserved.

Observe that the cache size of users in the private

scheme is same as the size of the cache in the non-private

scheme. Similarly, the rate of transmission for the private

scheme is exactly the same as that of the non-private

scheme. From this it follows the demand private scheme

has the parameters pK,N ;M,Rq as claimed.

Remark (Extended demand vector). While creating the

extended demand vector D1 we can make a simple choice

for πk. The demand of the jth user of the non-private

scheme is given as

d1
j “ dk ´ rk ` j mod N for pk ´ 1qN ď j ă kN, (6)

where 0 ď k ă K .

A. Constructions using Maddah-Ali-Niesen schemes and

PDAs

Using the Maddah-Ali-Niesen scheme [12] as the non-

private scheme in Theorem 5, we obtain the following:

Corollary 6. There exists a demand private

pK,N ;M,Rq scheme for integer values of KM ,

where the rate

R “

#

KpN´Mq
p1`KMq if M ě K´1

K

N ´ M if M ă K´1

K

. (7)

Proof. This follows from Theorem 5 using the scheme

proposed by Maddah Ali and Niesen [12, Theorem 1].

In this case, for integer values of KM we can construct

a pNK,N ;M,Rq non-private scheme. If KM ě K´1,

then R “ KpN´Mq
p1`KMq . If 1 ď KM ă K ´ 1, then R “

N ´ M . We can map each user to a user in the non-

private scheme using Eq. (4) and extend the demand

vector of the private pK,N ;M,Rq scheme to the non-

private scheme using Eq. (6). Then the scheme from [12]

gives the cache contents that should be stored in each

user and a transmission for each demand from which

each user can recover their files. The cache memory and

rate required in the private scheme will be the same as

that in the non-private scheme.

Note that there is no coding gain when KM ă K´1.

A general framework for non-private coded caching

schemes was proposed in [27] using placement delivery

arrays (PDAs). We can convert many of these schemes to

private coded caching schemes. Some of them improve

upon those derived from schemes [12] in subpacketiza-

tion or other parameters. For positive integers K , f , Z

and S, a pK, f, Z, Sq placement delivery array is a fˆK

matrix pP “ rpj,ks with j P rF s, k P rKsq containing

either a “˚” or integers from t0, 1, . . . , S ´ 1u in each

cell such that they satisfy a few conditions [27]. Here,

f is the subpacketization, and S is the total number of

transmissions each of size 1{f of the file. For any N ,

we can obtain a pK,N ; NZ
f

, S
f

q coded caching scheme

from a pK, f, Z, Sq placement delivery array.

Corollary 7 (Private schemes from PDAs). If there exists

a pNK, f, Z, Sq placement delivery array, we can obtain

a private pK,N ; NZ
f

, S
f

q coded caching scheme, for any

N .

Proof. Given a pNK, f, Z, Sq placement delivery ar-

ray, there exists a non-private pNK,N ; NZ
f

, S
f

q (see

[27] for details). From this we can obtain the private

pK,N ; NZ
f

, S
f

q scheme using Theorem 5.

We now present an example of a private scheme with

N “ 2, K “ 3, derived from a PDA. Consider the

PDA from [27, Eq. (7)] corresponding to 6 users and 4

subfiles.

P “

»

—

—

–

˚ 1 ˚ 2 ˚ 0

0 ˚ ˚ 3 1 ˚
˚ 3 0 ˚ 2 ˚
2 ˚ 1 ˚ ˚ 3

fi

ffi

ffi

fl

(8)

We assume that each file Wi is split into f subfiles which

are denoted as Wi,j , where 0 ď j ă f . In the non-

private scheme, the cache contents of the i-th user are

given below.

Z 1
0

“ tWi,0,Wi,2 : i P r0, 6qu

Z 1
1 “ tWi,1,Wi,3 : i P r0, 6qu

Z 1
2

“ tWi,0,Wi,1 : i P r0, 6qu

Z 1
3 “ tWi,2,Wi,3 : i P r0, 6qu

Z 1
4

“ tWi,0,Wi,3 : i P r0, 6qu

Z 1
5 “ tWi,1,Wi,2 : i P r0, 6qu

6



The transmission for demand vector d
1 “ pd1

0, . . . , d
1
5q

is

Xd1

“

$

’

’

&

’

’

%

Wd1

0
,1 ‘ Wd1

2
,2 ‘ Wd1

5
,0

Wd1

1
,0 ‘ Wd1

2
,3 ‘ Wd1

4
,1

Wd1

0
,3 ‘ Wd1

3
,0 ‘ Wd1

4
,2

Wd1

1
,2 ‘ Wd1

3
,1 ‘ Wd1

5
,3

,

/

/

.

/

/

-

. (9)

For N “ 2 files, A and B, we can create a private (3,

2; 1, 1) scheme as shown in Fig. 4.

A

B

A2, A3,

B2, B3

Z10

A1, A3,

B1, B3

Z00

A0, A2,

B0, B2

Z01

A0, A1,

B0, B1

Z11

A1, A2,

B1, B2

Z20

A0, A3,

B0, B3

Z21

B1‘A2‘A0,

A0‘A3‘B1,

B3‘B0‘B2,

A2‘B1‘A3,

User 0 User 1 User 2

Fig. 4. A p3, 2; 1, 1q private scheme for D “ pA,A,Bq from a
p6, 2; 1, 1q non-private scheme from the PDA given in (8).

B. Case of two files, two users

For the N “ 2, K “ 2 case considered earlier, the

M “ 1, R “ 2{3 construction presented in Section III-A

is not derived from a non-private scheme but constructed

directly. In fact, a construction from the Maddah-Ali-

Niesen scheme using Theorem 5 results in a subpacke-

tization of 6, when compared to the subpacketization of

3 needed for the scheme in Section III-A. This shows

that direct construction has the benefits of improved

subpacketization.

C. Partial privacy and reduction in subpacketization

The scheme modified from the non-private scheme can

have less subpacketization if full privacy is not needed.

For instance, suppose that 2-file privacy suffices. That is,

at the end of the multicast transmission, every user has

an ambiguity of one of two files about any other user’s

demand.

For 2-file privacy, we need to provide only two options

to populate the cache content of a user. Hence, we

can use a p2N,Kq non-private scheme to arrive at

an pN,Kq partially private scheme where any user’s

demand is possibly one of two files to another user.

These schemes are important particularly when we have

large number of files compared to users. For example,

if N “ 10 and K “ 2, then a fully private scheme

modified from the non-private scheme would require the

non-private scheme to have K 1 “ NK “ 20. With

M “ 5, such a scheme would require a subpacketization

f “
`

K1

K1M

N

˘

“
`

20

10

˘

“ 184756. But under 2-file privacy

for this setup, K 1 “ 2K “ 4, and we can use a

subpacketization as low as f “
`

4

2

˘

“ 6. In Fig. 5,

we show a partially private p2, 4; 2, 2{3q scheme from a

p4, 4; 2, 2{3q non-private scheme providing an ambiguity

of two files.

A

B

C

D

A01, A12,

A13, B01,

B12, B13,

C01, C12,

C13, D01,

D12, D13

Z01

A01, A02,

A03, B01,

B02, B03,

C01, C02,

C03, D01,

D02, D03

Z00

A02, A12,

A23, B02,

B12, B23,

C02, C12,

C23, D02,

D12, D23

Z10

A03, A13,

A23, B03,

B13, B23,

C03, C13,

C23, D03,

D13, D23

Z11

D12 ‘ B02 ‘ D01,

D13 ‘ B03 ‘ C01,

D23 ‘ D03 ‘ C02,

B23 ‘ D13 ‘ C12

User 0 User 1

Fig. 5. A p2, 4; 2, 2{3q partially private scheme from a p4, 4; 2, 2{3q
non-private scheme. The scheme has a privacy of two files. The gray
boxes show the cache assigned by the server. The demands correspond-
ing to unassigned caches for User k are selected at random from the
set tWj,jPrNsuzDk . Transmission shown is for the demand vector

D “ tB,Du and the extended demand vector D “ tD,B,D,Cu.
Observe that cache contents Z00, Z01, Z10, Z11 recover the files D,
B, D, C, respectively. From the point of view of the User 1, the User 0
could have requested either D or B giving the necessary privacy.

V. CONCLUSION

We have investigated here the problem of demand

privacy in systems employing coded caching techniques

7



with a focus on minimizing subpacketization. For the 2-

user, 2-file case, we provided a new construction with a

subpacketization of 3. Additionally, we proved that the

subpacketization of 3 is indeed minimal for a linear code

for the 2-user, 2-file case. Also, we proposed partially

private caching schemes and showed how to construct

such private schemes with less subpacketization in the

general K-user, N -file case.
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using ruzsa-szeméredi graphs. In 2017 IEEE International

Symposium on Information Theory (ISIT), pages 1237–1241.
IEEE, 2017.

[23] Li Tang and Aditya Ramamoorthy. Coded caching schemes
with reduced subpacketization from linear block codes. IEEE
Transactions on Information Theory, 64(4):3099–3120, 2018.

[24] Chao Tian and Jun Chen. Caching and delivery via interfer-
ence elimination. IEEE Transactions on Information Theory,
64(3):1548–1560, 2018.

[25] Kai Wan and Giuseppe Caire. On coded caching with private
demands. arXiv preprint arXiv:1908.10821, 2019.

[26] Kai Wan, Daniela Tuninetti, and Pablo Piantanida. On the opti-
mality of uncoded cache placement. In 2016 IEEE Information

Theory Workshop (ITW), pages 161–165. IEEE, 2016.

[27] Qifa Yan, Minquan Cheng, Xiaohu Tang, and Qingchun Chen. On
the placement delivery array design for centralized coded caching
scheme. IEEE Transactions on Information Theory, 63(9):5821–
5833, 2017.

[28] Qifa Yan, Xiaohu Tang, Qingchun Chen, and Minquan Cheng.
Placement delivery array design through strong edge coloring of
bipartite graphs. IEEE Communications Letters, 22(2):236–239,
2017.

[29] Qian Yu, Mohammad Ali Maddah-Ali, and A Salman Aves-
timehr. The exact rate-memory tradeoff for caching with un-
coded prefetching. IEEE Transactions on Information Theory,
64(2):1281–1296, 2017.

APPENDIX A

IMPOSSIBILITY RESULTS FOR p2, 2q PRIVATE LINEAR

SCHEMES WITH TWO SUBFILES

A coded caching scheme is said to be linear if all the

cache contents, transmissions and the decoding involves

only linear operations. Here we provide a proof for

Lemma 3 in Section III and show that there does not

exist a private p2, 2; 1, 0.5q linear coded caching scheme

with subpacketization of two. The proof method is by

contradiction. So, we begin by assuming the existence

of a p2, 2; 1, 0.5q linear coded caching scheme with

subpacketization of two.
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A. Notation and setup

Suppose A,B are split into two subfiles each as

A0, A1 and B0, B1, respectively. Let S be defined as

S “

»

—

—

–

A0

A1

B0

B1

fi

ffi

ffi

fl

. (10)

Let the i-th user’s cache Zi and the transmission XD1D2

be written as

Zi “ CiS, (11)

XD1D2 “ TD1D2S, (12)

where Ci and TD1D2 are 2 ˆ 4 and 1 ˆ 4 coefficient

matrices, respectively, with entries from a suitable field.

User i can decode Di given TD1D2 using the cache Zi.

The matrix Ci is split into 2ˆ2 matrices CiA and CiB

as follows:

Ci “
“

CiA CiB

‰

, (13)

Similarly, TD1D2 is split into two 1 ˆ 2 submatrices as

shown below.

TD1D2 “
“

TD1D2

A TD1D2

B

‰

. (14)

We denote the rank of a matrix Q by rkpQq.

We assume that

rkpCiq “ 2 (15)

implying that each cache contains independent subfile

combinations.

B. Lemmas on structure of coefficient matrices

Lemma 8 (Rank constraints on coefficient matrices).

rkpCiAq “ rkpCiBq “ 1.

Proof. We will show rkpC0Bq “ 1. Consider the 3 ˆ 4

matrix

M0AB “

„

C0A C0B

TAB
A TAB

B



. (16)

The cache of User 0 and transmission for the demand

AB, when combined, result in the vector M0ABS. Since

User 0 can recover A “ rA0 A1s by linearly combining

the elements of M0ABS, there exists a 2 ˆ 3 matrix U

such that

U

„

C0A

TAB
A



“

„

1 0

0 1



, (17)

and

U

„

C0B

TAB
B



“

„

0 0

0 0



, (18)

resulting in the decoding of A and elimination of B0

and B1. From Eq. (17), the rank of U is 2. Using this

in Eq. (18), rkpC0Bq ‰ 2.

If C0B is the all-zero matrix, then User 0 can-

not recover B using only the transmission XBA. So,

rkpC0Bq ‰ 0. This only leaves the possibility rkpC0Bq “
1. The proof above can be readily adapted to show

rkpCiAq “ 1 for i “ 0, 1 and rkpC1Bq “ 1.

A consequence of Lemma 8, none of the files are

stored entirely on any cache.

For an invertible 2ˆ2 matrix U , the scheme obtained

by replacing Ci by UCi is also a demand-private coded

caching scheme because one cache can be obtained from

the other. This is captured in the following lemma for

future use.

Lemma 9 (Equivalent coefficient matrices). Cache Zi “
CiS can recover file W from a transmission X iff

Z 1
i “ UCiS can recover the same file from X for any

invertible 2 ˆ 2 matrix U .

Corollary 10 (Reduced coefficient matrices). Given the

coefficient matrix Ci, there exist invertible matrices Ui

and Vi such that

ViUiCi “

„

a b 0 0

0 0 c d



, (19)

where both pa, bq and pc, dq are nonzero.

Proof. Suppose that Ci is written as follows.

Ci “

„

a b ˚ ˚
a1 b1 ˚ ˚



. (20)

By Lemma 8, rkpCiAq “ 1. Hence, without loss of

generality we can assume that pa, bq ‰ p0, 0q, and pa1, b1q
is a scalar multiple of pa, bq. There exists some invertible

matrix Ui “

„

1 0

α 1



for some scalar α such that

UiCi “

„

a b c1 d1

0 0 c d



(21)

for some c, d, c1 and d1. Since rkpCiq “ 2, it follows that

pc, dq ‰ p0, 0q. Then for some β and Vi “

„

1 β

0 1



we obtain Eq. (19).

An immediate consequence of Lemma 9 and Corol-

lary 10, we can assume that the coefficient matrices are

of the form given below.

Ci “

„

ai bi 0 0

0 0 ci di



. (22)
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Lemma 11 (Constraints due to recovery). Given TD0D1

and Ci, we have the following constraints.

rk

˜«

CiDi

TD0D1

Di

ff¸

“ 2 (23a)

rk

˜«

CiDi

TD0D1

Di

ff¸

“ 1, (23b)

where Di P tA,Bu and Di “ tA,BuzDi is the file that

is not demanded by User i.

Proof. Consider the coefficient matrix Ci of User i, has

an equivalent form given in Eq. (22). Combining with

TD0D1 we have

„

Ci

TD0D1



S “

»

–

ai bi 0 0

0 0 ci di
TD0D1

A TD0D1

B

fi

fl

»

—

—

–

A0

A1

B0

B1

fi

ffi

ffi

fl

. (24)

From this system of equations, one can observe that A0

and A1 appear in two equations. If Di “ A, then User i

must recover the subfiles A0 and A1, and the following

condition must hold.

rk

ˆ„

ai bi
TD0D1

A

˙

“ 2 (25)

Similarly if Di “ B, the following condition must hold

for User i to recover file B from TD0D1 .

rk

ˆ„

ci di
TD0D1

B

˙

“ 2. (26)

Eq. (23a) follows from Eq. (25) and Eq. (26).

One can see that the condition in Eq. (25) is not

enough for recovering Di “ A at User i using Eq. (24).

We should be able to remove the part corresponding

to TD0D1

Di

“ TD0D1

B from the third row in Eq. (24) to

arrive at two equations in two variables A0, A1 and solve

for them. So if TD0D1

B is nonzero, then it should be a

scalar multiple of pci, diq. Since pci, diq is nonzero from

Lemma 8, we have

rk

ˆ„

ci di
TD0D1

B

˙

“ 1 (27)

Hence

rk

ˆ„

C0B

TAD1

B

˙

“ 1 and rk

ˆ„

C1B

TD0A
B

˙

“ 1. (28)

Similarly solving for B0 and B1 (i.e. Di “ B) at User i

requires

rk

ˆ„

ai bi
TD0D1

A

˙

“ 1 (29)

Hence

rk

ˆ„

C0A

TBD1

A

˙

“ 1 and rk

ˆ„

C1A

TD0B
A

˙

“ 1. (30)

Eq. (28) and Eq. (30) immediately imply Eq. (23b).

So far, we have not used the requirement of demand

privacy. The following lemma uses the demand privacy

condition to derive an important constraint on the trans-

mission.

Lemma 12 (Constraints on transmission). If XD0D1 “
TD0D1S where S is defined as in Eq. (10), then TAA

A

and TAA
B are both nonzero.

Proof. If TAA
A is zero, then User 0 cannot recover file

A. So, TAA
A is nonzero. We know that the entire file B is

not stored on any cache. If TAA
B is zero, then every user

must be demanding only A. This reveals the demands of

all the users, so TAA
B must be nonzero.

Note that Lemma 12 is only a necessary condition for

demand privacy.

C. Proof of Lemma 3

Let the coefficient matrix TAA “ pu, v, w, xq. From

Lemma 12, pu, vq ‰ 0 and pw, xq ‰ 0.

„

Ci

TAA



S “

»

–

ai bi 0 0

0 0 ci di
u v w x

fi

fl

»

—

—

–

A0

A1

B0

B1

fi

ffi

ffi

fl

(31)

By Eq. (23b), we have

rk

ˆ„

ci di
w x

˙

“ 1

Both pci, diq and pw, xq are nonzero due to Lemma 8

and Lemma 12 respectively. Thus, both pw, xq and

pci, diq are scalar multiples of each other for i “ 0, 1.

This implies that pc0, d0q is a scalar multiple of pc1, d1q.

Then rk

ˆ„

ci di
TAB
B

˙

is same for i “ 0, 1. However,

this contradicts Lemma 11, by which

rk

ˆ„

c0 d0
TAB
B

˙

“ 1 and rk

ˆ„

c1 d1
TAB
B

˙

“ 2.

This shows the in-feasibility of coefficient matrices sat-

isfying the rank constraints due to recovery and demand

privacy.

Therefore, we conclude that a linear private

p2, 2; 1, 1{2q coded caching scheme with subpacketiza-

tion of two does not exist.
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APPENDIX B

IMPOSSIBILITY RESULTS FOR UNCODED

PREFETCHING WITH THREE SUBFILES

In Appendix A, we have seen that with two subfiles

we cannot obtain a private p2, 2; 1, 1{2q scheme. Here we

show that without coded prefetching we cannot obtain

a private p2, 2; 1, 2{3q scheme with three subfiles and

thereby prove Lemma 4.

Informally, the proof is organized as follows. First, we

show that without coded prefetching the subfiles must

be cached in an uncoded form i.e. without linear com-

binations. This restricts the possibilities for the caches.

Furthermore any given cache restricts the possibilities for

the other user’s cache. Demand privacy is possible only

if the set of caches consistent with a user allow the recon-

struction of both the files for any demand. We show that

is not possible and hence a linear private p2, 2; 1, 2{3q
scheme with subpacketization of three subfiles does not

exist.

A. Permissible caches without coded prefetching

Without coded prefetching, the subfiles can only be

replicated in the cache. With three subfiles, M “ 1 im-

plies that each user can store 3 subfiles. R “ 2{3 implies

that there are two independent subfile combinations in

the transmission. If all the subfiles in a cache belongs

to a file, that user cannot recover the other file from a

transmission of rate R “ 2{3. So a cache should contain

two subfiles of one file and one subfile of the other file.

Let the two files be A and B. Without loss of generality,

let us assume the cache of first user, Z0 contains two

subfiles of file A and one subfile of B.

Z0 “ tA0, A1, B2u. (32)

Let the cache of User 1 be

Z1 “ tG0, G1, G2u, (33)

where Gi P tA0, A1, A2, B0, B1, B2u.

Lemma 13. If Z0 “ tA0, A1, B2u, then the permissible

cache for Z1 must be one of the following.

Z1 “ tG0, G1, A2 | G0, G1 P tB0, B1, B2uu (34a)

or Z1 “

"

G0, G1, A2

ˇ

ˇ

ˇ

ˇ

G0 P tA0, A1u
G1 P tB0, B1, B2u

*

. (34b)

.

Proof. Consider the transmission

XBA “

„

u

v



“ (35)

„

α0A0 ` α1A1 ` α2A2 ` β0B0 ` β1B1 ` β2B2

γ0A0 ` γ1A1 ` γ2A2 ` δ0B0 ` δ1B1 ` δ2B2



User 0 can use its cache contents to eliminate three

variables from the system of linear equations in Eq. (35).

The reduced/equivalent equations for User 0 is
„

u1

v1



“

„

α2A2 ` β0B0 ` β1B1

γ2A2 ` δ0B0 ` δ1B1



Since User 0 does not have access to A2, for recovering

B0 and B1 we need

rk

ˆ„

β0 β1

δ0 δ1

˙

“ 2 and

„

α2

γ2



“

„

0

0



(36)

The transmission XBA cannot involve A2. So A2 must

be in Z1 for it to recover file A from XBA.

G2 “ A2

All the subfiles in Z1 cannot be that of file A. So, we

have two cases for the possible values of tG0, G1u based

on the associated files. Either both of them are subfiles

of B as in Eq. (34a) or one of them is subfile of A and

the other is of B as in Eq.(34b).

B. Two subfiles of file B in Z1

In this section, we will show that if the cache of User 1

is of the form given in Eq. (34a), then the scheme is not

private.

Lemma 14. If Z0 “ tA0, A1, B2u, and Z1 “
tG0, G1, A2u and Gi P tB0, B1, B2u, then demand

privacy is not satisfied.

Proof. Let G0, G1 P tB0, B1, B2u. The reduced equa-

tions corresponding to XBA for User 1 will be
„

u2

v2



“

„

α0A0 ` α1A1 ` β0B0 ` β1B1 ` β2B2

γ0A0 ` γ1A1 ` δ0B0 ` δ1B1 ` δ2B2



(37)

For User 1 being able to obtain subfiles A0 and A1

from the transmission, we need

rk

ˆ„

α0 α1

γ0 γ1

˙

“ 2, and (38a)

„

β2

δ2



“

„

0

0



(38b)

Due to Eq. (36), Z2 must contain the subfiles B0 and B1,

for eliminating those variables from XBA and recover

the subfiles of A.

tG0, G1u “ tB0, B1u (39)

Now consider the transmission for D “ pA,Aq.

XAA “

„

u

v



“ (40)

„

α1
0
A0 ` α1

1
A1 ` α1

2
A2 ` β1

0
B0 ` β1

1
B1 ` β1

2
B2

γ1
0A0 ` γ1

1A1 ` γ1
2A2 ` δ1

0B0 ` δ1
1B1 ` δ1

2B2



11



For User 1, reduced equations are
„

u2

v2



“

„

α1
0A0 ` α1

1A1 ` β1
2B2

γ1
0
A0 ` γ1

1
A1 ` δ1

2
B2



(41)

For User 1 recovering A0 and A1, it requires

rk

ˆ„

α1
0

α1
1

γ1
0 γ1

1

˙

“ 2 and (42a)

„

β1
2

δ1
2



“

„

0

0



(42b)

For demand privacy we require the existence of some

cache Z 1
1

which can recover file B from XAA. Since

XAA doesn’t involve B2, it must be present in Z 1.

Z 1
1 “ tH0, B2, A2u

For no value of H0 P tB0, B1, A0, A1u, it can recover

both B0 and B1 (or file B completely) from XAA due to

Eq. (42a). Thus, if Z0 has two subfiles of A, Z1 cannot

contain two subfiles of B as given in Eq. (34a).

C. Two subfiles of file A in Z1

If the cache of User 1 is of the form given in

Eq. (34b), then we can restrict the cache even further

as the following lemma shows.

Lemma 15. If Z0 “ tA0, A1, B2u, then the permissible

cache for Z1 must be of the form Z1 “ tG0, G1, A2u,

where G0, G1 are distinct and G0 P tA0, A1u and G1 P
tB0, B1u.

Proof. We need to show G1 ‰ B2. Since Z1 already

contains A2, it can have either A0 or A1, both of which

are in Z0. Without loss of generality, let G0 “ A1.

Assume G1 “ B2. Then Z1 “ tB2, A1, A2u Consider

the transmission

XAB “

„

u

v



“ (43)

„

α0A0 ` α1A1 ` α2A2 ` β0B0 ` β1B1 ` β2B2

γ0A0 ` γ1A1 ` γ2A2 ` δ0B0 ` δ1B1 ` δ2B2



For User 0, these equations reduces to
„

u1

v1



“

„

α2A2 ` β0B0 ` β1B1

γ2A2 ` δ0B0 ` δ1B1



(44)

Since User 0 have no access to B0 and B1, for recovering

A2, we need

rk

ˆ„

β0 β1

δ0 δ1

˙

ď 1 and (45a)

„

α2

γ2



‰

„

0

0



(45b)

For User 1 the equations from XAB reduces to
„

u2

v2



“

„

α0A0 ` β0B0 ` β1B1

γ0A0 ` δ0B0 ` δ1B1



(46)

For User 1 recovering B0 and B1, it requires

rk

ˆ„

β0 β1

δ0 δ1

˙

“ 2 and (47a)

„

α0

γ0



“

„

0

0



(47b)

Equations (47a) and (45a) are contradictory, Hence G1 ‰
B2. So G1 P tB0, B1u.

By Lemma 15, there are four possible choices for Z1

as given below.

Za “ tA1, A2, B0u (48a)

Zb “ tA1, A2, B1u (48b)

Zc “ tA0, A2, B0u (48c)

Zd “ tA0, A2, B1u (48d)

Lemma 16. If Z0 “ tA0, A1, B2u and Z1 P
tZa, Zb, Zc, Zdu, then demand privacy is not possible.

Proof. It suffices to show demand privacy is not possible

for Z1 “ Za, since we can arrive at the other cache

combinations by relabeling.

Suppose the cache Za “ tA1, A2, B0u is assigned to

the User 1. Then, by arguments similar to Lemmas 13,14

and 15, the User 1 is aware that the cache of User 0 must

have two subfiles of A, with one being A0 and the subfile

of B in Z0 is not B0. The four possible caches for Z0

consistent with Z1 “ Za are given below.

Ze “ tA0, A1, B1u (49a)

Zf “ tA0, A1, B2u (49b)

Zg “ tA0, A2, B1u (49c)

Zh “ tA0, A2, B2u (49d)

Note that Z0 “ Zf . For demand privacy we need the

caches consistent with Z0 to be able to recover both

files and vice versa.

Consider the transmission

XAB “

„

u

v



“ (50)

„

α0A0 ` α1A1 ` α2A2 ` β0B0 ` β1B1 ` β2B2

γ0A0 ` γ1A1 ` γ2A2 ` δ0B0 ` δ1B1 ` δ2B2



For the User 0 with cache Z0 “ tA0, A1, B2u the

transmission XAB reduces to the following set of equa-

tions after eliminating the subfiles which are already

present in Z0.
„

u0

v0



“

„

α2A2 ` β0B0 ` β1B1

γ2A2 ` δ0B0 ` δ1B1



(51)
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For User 0 whose demand is A already has A0 and

A1. Only A2 needs to be recovered from XAB. This

is possible only if the following conditions are satisfied.

rk

ˆ„

β0 β1

δ0 δ1

˙

ď 1 and (52a)

„

α2

γ2



‰

„

0

0



(52b)

Similarly, for the User 1, whose cache is Z1 “ Za,

the transmission XAB reduces to
„

u1

v1



“

„

α0A0 ` β1B1 ` β2B2

γ0A0 ` δ1B1 ` δ2B2



(53)

For User 1 to recover B0 and B1, the following condi-

tions must be satisfied.

rk

ˆ„

β1 β2

δ1 δ2

˙

“ 2 and (54a)

„

α0

γ0



“

„

0

0



(54b)

The reduced equations for Zb are
„

ub

vb



“

„

α0A0 ` β0B0 ` β2B2

γ0A0 ` δ0B0 ` δ2B2



(55)

The reduced equations for Zc are
„

uc

vc



“

„

α1A1 ` β1B1 ` β2B2

γ1A1 ` δ1B1 ` δ2B2



(56)

The reduced equations for Zd “ Zg are
„

ud

vd



“

„

α1A1 ` β0B0 ` β2B2

γ1A1 ` δ0B0 ` δ2B2



(57)

The reduced equations for Ze are
„

ue

ve



“

„

α2A2 ` β0B0 ` β2B2

γ2A2 ` δ0B0 ` δ2B2



(58)

The reduced equations for Zh are

„

uh

vh



“

„

α1A1 ` β0B0 ` β1B1

γ1A1 ` δ0B0 ` δ1B1



(59)

From the above constraints and the reduced equations

for all users we can infer the following.

1) Due to Eq. (54b), Zb cannot recover file A since it

has no access to A0.

2) Due to Eq. (54a), and since Zc has no access to B1

and B2, it cannot cannot eliminate them from the

transmission to recover file A.

3) Due to Eq. (52b), Ze cannot recover file B.

4) Due to Eq. (52a), Zh cannot recover file B.

Hence, from the four possible caches for Z1, the only

cache that might be able to recover file A and might

achieve privacy for User 1 is Zd. But since there are

only five equations from the cache and transmissions,

it is impossible for Zd to recover all the six subfiles

A0, A1, A2, B0, B1, B2 and thus recover file B also.

That means, no possible cache for User 0 consistent with

Z1 is able to recover file B from XAB. This results in

no demand privacy for User 0.

On the other hand, if XAB is such that Zd can recover

file B, then it results in no privacy for User 1.

Note that any consistent set of caches for User 0 and

User 1 can be obtained by permuting subfile labels of

file A and file B (permutation πA to relabel A and πB

to relabel B). Applying the same relabeling, the above

proof will hold true for them as well. This concludes the

proof of Lemma 4.
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