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Abstract—Polar codes, introduced by Arikan, achieve the
capacity of arbitrary binary-input discrete memoryless channel
W under successive cancellation decoding. Any such channel
having capacity I(W ) and for any coding scheme allowing
transmission at rate R, scaling exponent is a parameter which
characterizes how fast gap to capacity decreases as a function
of code length N for a fixed probability of error. The relation
between them is given by N > α/(I(W )−R)µ. Scaling exponent
for kernels of small size up to L = 8 have been exhaustively
found. In this paper, we consider product kernels TL obtained
by taking Kronecker product of component kernels. We derive
the properties of polarizing product kernels relating to number
of product kernels, self duality and partial distances in terms
of the respective properties of the smaller component kernels.
Subsequently, polarization behavior of component kernel Tl is
used to calculate scaling exponent of TL = T2 ⊗ Tl. Using
this method, we show that µ(T2 ⊗ T5) = 3.942. Further,
we employ a heuristic approach to construct good kernel of
L = 14 from kernel having size l = 8 having best µ and find
µ(T2 ⊗ T7) = 3.485.

I. INTRODUCTION

Polar codes, introduced in [1] are a family of codes
which achieve capacity of binary input memory-less sym-
metric (BMS) channels with low complexity encoding and
decoding algorithms. Polar codes are constructed based on

polar transform given by kernel T2 =
[
1 0
1 1

]
and its Kronecker

product taken n times T⊗n2 = GN . The polar transform given
by GN transforms a set of N independent copies of the BMS
channel W into N bit channels which are either noiseless or
full-noisy. The fraction of the bit channels which are noiseless
approaches the symmetric capacity I(W ) as N →∞. In order
to prove that polar codes achieve capacity, it is enough to
consider successive cancellation decoder. However, in practice,
successive cancellation list decoder is employed for better er-
ror performance [2]. The phenomenon of channel polarization
holds for any kernel Tl of size l × l under certain conditions
on the kernel. Therefore, any polar code of length of the form
N = ln can be constructed.

A. Scaling Exponent
To analyze the performance of polar codes, the parameters

of interest are: rate R, block length N , and block error prob-
ability Pe. For fixed W and R, error exponent γ characterizes
how fast Pe converges to 0 as a function of N . Error exponents
for polar codes obtained from a kernel have been derived in
[3].

For fixed W and Pe, scaling exponent characterizes how
fast the rate of the polar code R can approach the capacity as

a function of block length N . The following inequalities give
the relation between N and R < I(W ) in terms of the scaling
exponent

α1

(I(W )−R)µ1
6 N 6

α2

(I(W )−R)µ2
(1)

where α1 and α2 are positive constants depending on Pe and
I(W ).

It is known from [4] that scaling exponent for random codes
equals 2 and shown in [5] that µ for polar codes approaches 2
as l→∞ with high probability for BEC channel over random
choice of the kernel. It is already known that µ = 3.627 for
conventional polar codes (Arikans T2 kernel) over BEC [5].
Recently, a class of self-dual binary kernels were introduced
in [6] in which large kernels of size 2p were constructed with
low µ and it was shown that µ = 3.122 for L = 32 and
µ ' 2.87 for L = 64.

B. Polar Codes with Product Kernels

Calculating scaling exponent of large kernels in general is a
NP hard problem [7]. In order to obtain polarization behavior
and therefore the scaling exponent efficiently, a class of kernels
is considered, which we term as product kernels. This kernel is
formed by taking kronecker product of smaller binary kernels
termed as component kernels. We define product kernels as
follows

TL = Tl1 ⊗ Tl2 · · · ⊗ Tlm (2)

where Tli is the component kernel of size li×li, i = 1, · · · ,m.
The dimension of the product kernel is L×L where L = l1 ·
l2 · · · lm and length of the polar code is N = Ln. There exists
a related and much general class of polar codes known as
multi-kernel polar codes [8], where the transformation matrix
GN itself is formed by taking tensor product of kernels with
different lengths.

C. Our Contributions

In this paper, we find the number of polarizing product
kernels for a given L = l1 · l2 · · · lm given the number of
polarizing component kernels. We also prove the self duality
of these kernels given the self-dual property of component
kernels (self-dual kernels are explained later in the paper).
We find partial distance and polarization behavior of product
kernels of the form TL = T2 ⊗ Tl in terms of partial distance
and polarization behavior of Tl respectively.

Further, scaling exponent is calculated using a recursive
function of polarization behavior which gives us µ = 3.942
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for L = 10. We then propose a heuristic approach to find
good kernel of the size L = 14 from the kernel of size
l = 8 having the best scaling exponent. A 14 × 14 kernel
having µ = 3.485 is constructed by this method. We have
also analyzed and plotted the variation of scaling exponent as
kernel size increases.

II. POLARIZING PRODUCT KERNELS

A polarizing kernel is an l× l binary matrix which is non-
singular and not upper triangular under any column permuta-
tion [3]. For any l × l kernel, number of polarizing kernels
is

MTl = 2
l(l−1)

2 (

l∏
i=1

(2i − 1)− l!) (3)

where the first term is number of non-singular matrices and
second term is number of upper triangular matrices [7].

In this section, we will derive the number of polarizing
product kernels for polar codes in terms of the number of
polarizing kernels for any l × l kernel, MTl .

Proposition 1. For a product kernel TL to be upper triangular,
each of the component kernels Tli have to be upper triangular.

Proof. Let TL = Tl1⊗Tl2 . After taking the Kronecker product,
TL consists of multiple sub-matrices of Tl2 , depending on the
values of Tl1 . For TL to be upper triangular, all the entries in
the lower half have to be zero. Values of all the sub-matrices
in the lower half, except the ones on the diagonal will be zero
only when all the entries in the lower half of Tl1 are zero. The
values that remain are the lower-half values of sub-matrices
lying on the diagonal, which should also be zero. This will
happen only when Tl2 should itself be upper-triangular. Hence,
both Tl1 and Tl2 should be upper triangular for TL to be an
upper triangular matrix. Similarly, this proof can be extended
for any general TL = Tl1 ⊗ Tl2 · · · ⊗ Tlm .

Proposition 2. For a product kernel to be non-singular, each
of the component kernels have to be non-singular.

Proof. For any two matrices A and B, rank(A ⊗ B) =
rank(A).rank(B). All the component matrices are non-singular
and full rank matrices. Hence, TL should be non-singular and
of full rank.

Therefore, total number of polarizing product kernels for
TL = Tl1 ⊗ Tl2 · · · ⊗ Tlm are

MTL =

m∏
j=1

MTlj
=

m∏
j=1

2
lj(lj−1)

2 (

lj∏
i=1

(2i − 1)− lj !)

 (4)

III. POLARIZATION BEHAVIOR OF POLAR CODES WITH
PRODUCT KERNELS

Scaling exponent µ is a parameter which characterizes
how fast gap to capacity decreases as a function of code
length N for a fixed probability of error. It is dependent on
the polarization behavior of the polar codes. For any kernel
Tl, channel W (with erasure probability z) polarizes into l
bit channels W1,W2, · · · ,Wl. The erasure probabilities of

Fig. 1. Illustration of e killing the channel W i

each of these bit channels is given by p1(z), p2(z), · · · , pl(z)
respectively and this set is known as polarization behavior of
Tl which determines the scaling exponent of that kernel.

Definition 1 (Erasure Pattern). An erasure pattern e is a
binary vector of length l. If ei = 1, the ith copy of W
is erased. The number of erasures in vector e is defined as
weight of e and denoted by wt(e) and number of non-erasures
is l − wt(e). Hence, probability of any erasure pattern e is
zwt(e)(1− z)l−wt(e).

Definition 2. An erasure pattern e is said to kill the bit channel
W i if there is no linear combination of non-erased columns
in Tl[i : l − 1] that gives the vector [1, 0, 0 · · · , 0]t which is
of length (l − i) where Tl[i : l − 1] is sub-matrix of Tl with
rows only from i to l − 1 as shown in Fig 1. Let us denote
[1, 0, 0 · · · , 0]t of length (l− i) as Yl−i for further use in the
paper.

Number of such erasure patterns of wt(e) = w that satisfy
the above killing condition is denoted by Ei,w. The erasure
probability of corresponding bit channel W i is given by

pi(z) =

l∑
w=0

Ei,wz
w(1− z)l−w (5)

A straightforward way to find pi(z) of any product kernel
TL = Tl1 ⊗ Tl2 is to use the composite function property
of polarization behavior. Let the polarization behavior of Tl1
be fj(z) and of Tl2 be gk(z), then polarization behavior of
TL is pi(z) = fj(gk(z)). Another way to find pi(z) is to
calculate all Ei,w for all weights of the erasures of TL where
0 6 i < L. The computational complexity of doing so is NP-
hard in general. In this paper, we propose an alternate approach
which finds the polarization behavior of TL based on the Ei,w
of the component kernels. We can infer some properties of
the product kernel based on E′i,ws which will be discussed
later. We find an analytical method to calculate the number
of erasure patterns ETLi,w in terms of E′i,ws of its component
kernels.

For further calculation, we assume TL = T2 ⊗ Tl; L = 2l.
Let the erasure pattern eTL = [el el′ ] where el is the erasure
pattern with length l and weight w1 and el′ is the erasure
pattern with length l and weight w2. Hence the weight of eTL
is w = w1 + w2. As we know, T2 and Tl need to satisfy



polarizing conditions, there exists only one valid T2 for which
calculations of ETLi,w are to be done.

Note : There can be 4 sub-cases in each case:
• el kills but el′ doesn’t kill channel W i

• el doesn’t kill but el′ kills channel W i

• Neither el or el′ kill channel W i

• Both el and el′ kill channel W i

It can be noted that if either el or el′ don’t kill W i implies
that there exists a linear combination of non-erased columns
which gives Yl−i. This implies that eTL will also not kill the
channel in these cases leaving only one case in which both el
and el′ kill the channel. We find polarization behavior of TL
in terms of Tl.

T2 =

[
1 0
1 1

]
TL =

[
Tl 0
Tl Tl

]
.

1) 0 6 i 6 l − 1 (upper half) :
To find Ei,w in this case, we first find the number of erasures
of weight w for which at least one of the linear combination of
non-erased columns give Y2l−i and then subtract it from total
number of combinations possible to get Ei,w. If wt(eTL) =
2l− 1, then selecting only one column corresponding to el or
el′ cannot result in a null vector for rows l to 2l−1. Therefore,
Ei,2l−1 = 0. If wt(eTL) < 2l− 1, the number of el such that
wt(el) = l− j and which result in Yl−i from rows 0 to l− 1
by taking sum of all j non-erased columns is given by

Xi,j =

((
l

j

)
− (Ei,l−j)

)
−
((

l

j − 1

)
− (Ei,l−j+1)

)
.

It is easy to see that Xi,j > 0. Now to construct an erasure
pattern of weight w which kills channel W i, an erasure pattern
el as above is considered. If j non-erased columns are picked
from el whose sum results in Yl−i for the upper half, then
the same j non-erased columns have to be picked from el′

to obtain null vector for rows from l to 2l − 1. Therefore,
from the remaining (2l − 2j) columns, select (2l − w − 2j)
non-erased columns to result in an erasure pattern of weight
w which kills channel i. Hence, the number of erasures of
weight w killing the channel W i are given by

Ei,w =

(
2l

2l − w

)
−

(2l−w)/2∑
j=1

Xi,j ·
(

2l − 2j

2l − w − 2j

)
. (6)

Example 1. To find Ei,2 value for T10 :
The required number of non-erased columns are 8. Let el =
[1 0 0 1 0] be a combination giving Yl−i in T5. In order
to make a null vector from rows l to 2l − 1 in T10, we
need to choose columns (7, 8, 10) as non-erased columns
corresponding to the above columns of (2, 3, 5). Now, 6 non-
erased columns out of 8 are already chosen. Others can be
selected arbitrarily in

(
10−6

10−6−2
)
= 6 ways. Similar procedure

is repeated for all erasures of T5 to get the count of erasures
which don’t kill channel W i.

2) l 6 i 6 2l − 1 (lower half) :
For this case, note that for an erasure of weight w0 killing
the channel in Tl, each non-erased column can be either a
part of Tl corresponding to el or Tl corresponding to el′ .

In short, each of these columns can be split between Tl
corresponding to el and el′ with total weight still being
w0. Also, in TL, any erasure of weight w < w0 killing
the channel can be made by repeating some of the non-
erased columns in el and el′ . Number of ways of choosing
these repeating columns is therefore

(
l−w0

2l−w−(l−w0)

)
. Hence,

the number of ways of choosing remaining non-repeating non-
erased columns is 22(l−w0)−(2l−w). Therefore,

Ei+l,w =

2l∑
w0=max(2l−w,l)

(
l − w0

l − w + w0

)
·2w−2w0 ·Ei,w0 . (7)

Fig. 2. Representation of eTL formed by repeating and non-repeating non-
erasures in e.

Example 2. Let l = 5 and el = [1 0 0 1 0] is a combination
not giving Yl−i in T5. In order to find Ei,5 for T10, we note
that the following erasure patterns of weight 5 are obtained
based on el as follows:
• If columns (2, 3) are repeated, the corresponding columns

are (7, 8). The non-repeating column can be either 5 or
10 giving (2, 3, 5, 7, 8) and (2, 3, 7, 8, 10)

• If columns (2, 5) are repeated, we get (2, 3, 5, 7, 10) and
(2, 5, 7, 8, 10)

• Similarly, if columns (3, 5) are repeated, we get
(2, 3, 5, 8, 10) and (3, 5, 7, 8, 10)

In total we get
(
3
2

)
· 21 = 6 combinations. Similar procedure

is repeated for all erasure patterns of weight w ≤ w0 to get
Ei,w.

IV. SELF-DUALITY AND PARTIAL DISTANCE OF PRODUCT
KERNELS

Self-dual kernels are a special class of polarizing kernels
having symmetric polarization behaviors. In this section, we
prove that product of self-dual kernels is also self dual. We
also characterize the partial distances of product kernels of
the form T2 ⊗ Tl. In the following, we denote the span of k
vectors v1, v2, . . . vk ∈ Fl2 by < v1, v2, . . . , vk >. Also, dot
product of vm and vn is denoted by vm.vn and defined as
vm.vn =

∑l
p=1 vm,pvn,p.

Definition 3 (Self-Dual Kernel). Let us denote any l×l kernel
Tl = [gT1 , g

T
2 , · · · , gTl ]T . Kernel codes Ci are defined as Ci =

〈gi+1, gi+2, · · · , gl〉 for 0 6 i < l and Cl = {0}. This kernel
is said to be self-dual if Ci = C⊥l−i for all 0 6 i 6 l.

Some of the properties of self dual kernel proved in [6] are:
Property 1. ∀w : Ei,w + El+1−i,l−w 6

(
l
w

)
for i = 1, · · · , l.



Property 2. fl+1−i(z) = 1− fi(1− z) for i = 1, · · · , l.
Property 3. By constructing just one half of the kernel, other

half can be obtained by the symmetric polarization be-
havior stated in the duality theorem (property 2). When
z is close to 0, fi(z) is dominated by the partial distance
(defined in later section). Therefore the aim is to construct
rows of lower half to maximize the partial distance to
make fi(z) polarize towards 0.

As we know that if Tl is self-dual, Ci = C⊥l−i, we have the
following:
• P1 : For any general i, Ci = 〈gi+1, · · · , gl〉 and Cl−i =
〈gl−i+1, · · · , gl〉. If Ci = C⊥l−i, it follows that
gj · gk = 0 for j ∈ [i + 1, l] and k ∈ [l − i + 1, l] and
gj · gk 6= 0 for j ∈ [1, l2 ] and k ∈ [i+ 1, l − i].

• P2 : We know that dim(Ci) = l − dim(Cl−i).

Theorem IV.1. If Tl1 and Tl2 are self-dual kernels, then Tl1⊗
Tl2 is also a self-dual kernel.

Proof. Let TL = Tl1 ⊗ Tl2 be the product kernel where L =
l1l2. Tl1 = [fT1 , · · · , fTl ]T and Tl2 = [gT1 , · · · , gTl ]T are self-
dual kernels satisfying all its properties individually.

TL =



f1,1g1 f1,2g1 · · · f1,l1g1
f1,1g2 f1,2g2 · · · f1,l1g2

...
f1,1gl2 f1,2gl2 · · · f1,l1gl2

...
fl1/2,1g1 fl1/2,2g1 · · · fl1/2,l1g1

...
fl1/2,1gl2 fl1/2,2gl2 · · · fl1/2,l1gl2

...
fl1,1g1 fl1,2g1 · · · fl1,l1g1

...
fl1,1gl2 fl1,2gl2 · · · fl1,l1gl2



.

We divide the proof into two cases:
Case 1: i = sl2, 0 ≤ s ≤ l1

2 . In this case, we have
Ci = 〈(fs+1 ⊗ g1), (fs+1 ⊗ g2), · · · (fs+1 ⊗ gl2), (fs+2 ⊗
g1), · · · (fs+2⊗gl2), · · · (fl1⊗g1), · · · (fl1⊗gl2)〉 and Cl1l2−i =
〈(fl1−s+1⊗g1), (fl1−s+1⊗g2), · · · (fl1−s+1⊗gl2), (fl1−s+2⊗
g1), · · · (fl1−s+2 ⊗ gl2), · · · (fl1 ⊗ g1), · · · (fl1 ⊗ gl2)〉.

Dot product of a vector in Ci and Cl1l2−i is given by (fu⊗
gm).(fv⊗gn) = (

∑l2
p=1 gm,pgn,p)(

∑l1
k=1 fu,kfv,k) where u ∈

[s + 1, l1], v ∈ [l1 − s + 1, l1] and 1 6 m,n 6 l2. Applying
P1 to kernel Tl1 , the dot product evaluates to zero.

Case 2: i = sl2 + t, 0 ≤ s ≤ l1
2 , 0 < t < l1.

In this case, we have Ci = 〈(fs+1 ⊗ gt+1), · · · (fs+1 ⊗
gl2), (fs+2⊗g1), · · · (fs+2⊗gl2), · · · (fl1⊗g1), · · · (fl1⊗gl2)〉
and Cl1l2−i = 〈(fl1−s⊗gl2−t+1), · · · (fl1−s⊗gl2), (fl1−s+1⊗
g1), · · · (fl1−s+1⊗ gl2), · · · (fl1 ⊗ g1), · · · (fl1 ⊗ gl2)〉. The dot
products of vectors in Ci and Cl1l2−i fall in the following
three categories:
(a) (fu⊗gm).(fv⊗gn) where u ∈ [s+1, l1], v ∈ [l1−s+1, l1].

These dot products are zero by applying P1 to kernel Tl1 .
(b) (fu ⊗ gm).(fv ⊗ gn) where u ∈ [s+2, l1], v ∈ [l1 − s, l1].
These dot products are zero by applying P1 to kernel Tl1 .
(c) (fs+1 ⊗ gm).(fl1−s ⊗ gn) where m ∈ [t + 1, l2], v ∈
[l2− t+1, l2]. These dot products are zero by applying P1 to
kernel Tl2 .

Based on the above arguments and P2, we can infer that
Ci = C⊥l1l2−i, i = 0, 1, . . . , l1l2. Hence, TL is a self-dual
kernel.

Definition 4 (Partial distance). For any l× l kernel Tl, ith par-
tial distance is defined as di = dH(gi, Ci) for i = 1, · · · , l−1
and dl = dH(gl, 0)

As defined before, Ci = 〈gi+1, gi+2, · · · , gl〉 for 0 6 i < l
and Cl = {0}. When z is close to 0 in (5), the polynomial
pi(z) is dominated by the first non-zero term Ei,wz

w(1 −
z)(l−w). From [6], we know that the first non-zero coefficients
of pi(z) is Eidi . For construction of self-dual kernel, we aim
to maximize the partial distance to make pi(z) polarize to 0.

It is clear from the definition of partial distance that
wt(gi) > di. This property will be used later in the proof
of the below theorem.

Theorem IV.2. If partial distances of the component kernel
Tl are [d1, d2 · · · , dl], then partial distances of TL = T2 ⊗ Tl
are [d1, · · · , dl, 2d1 · · · 2dl].

Proof. Let Tl = [gT1 , · · · , gTl ]T , TL = [GT1 , · · · , GTl ]T and its
partial distances be [D1, D2 · · · , D2l]. We know that TL =[
Tl 0
Tl Tl

]
. Let us prove by dividing it into two parts:

1) 0 ≤ i < l: There can be 3 sub-cases depending on how
vectors are chosen from kernel codes Ci. We will find partial
distance for each case.
(a) When vectors only from row (i+1) to (l−1) (upper half)
are chosen from the kernel codes : Let the linear combination
of the vectors chosen be v1 which will be of the form (Ci, 0).
The partial distance of the left half will be same as the
corresponding partial distance in Tl and will be zero for right
half.

Di1 = dH(gi, Ci) + dH(0, 0) > di.

(b) When vectors only from row l to (2l− 1) (lower half) are
chosen from the kernel codes : Let the linear combination of
the vectors chosen be v1. From triangle inequality,

Di2 = dH(gi, v1) + dH(0, v1)

= dH(gi, v1) + dH(v1, 0) > dH(gi, 0).

It is clear that dH(gi, 0) > di. Hence, Di2 > di.
(c) When vectors from both upper half and lower half are
chosen from the kernel codes : Let the linear combination of
the vectors chosen be v1 and v2 respectively.

Di3 = dH(gi, v1 ⊕ v2) + dH(0, v2)

= dH(gi ⊕ v1, v2) + dH(v2, 0).

Using triangle inequality and definition of di, we can say that
dH(gi ⊕ v1, v2) + dH(v2, 0) > dH(gi ⊕ v1, 0) and dH(gi ⊕



v1, 0) = di. Hence, Di3 > di. From all these sub-cases, we
can conclude that min(Di1 , Di2 , Di3) = di.
2) l < i ≤ 2l : In the lower half, the left half and right half
are same. It is straightforward that the minimum distance Di

will be the sum of minimum distance in both the halves. For
any row i, we already know the minimum distances separately
for both halves. Hence Di = 2di−l.

V. SCALING EXPONENT OF PRODUCT KERNELS

In this section, we first quickly review the procedure given
in [9] for calculating the scaling exponent. Consider a BEC
channel W with erasure probability z. Let Zn denotes the
random process corresponding to the evolution of the Bhat-
tacharaya parameters and fn(z, a, b) denote the fraction of un-
polarized channels with thresholds a and b, i.e., fn(z, a, b) =
Pr(Zn ∈ [a, b]). The function satisfies the following recursion
with n in terms of the polarization behavior:

fn+1(z, a, b) =

∑l−1
i=0 fn(pi(z), a, b)

l

with f0(z, a, b) = 1z∈[a,b]. Assuming that there exists µ ∈
(0,∞) such that for any z, a, b ∈ (0, 1) with a < b, the
following limit exists in (0,∞)

f(z, a, b) = lim
n→∞

ln/µfn(z, a, b).

The scaling exponent can be computed by solving the follow-
ing equation numerically with appropriate initialization and
stopping criterion:

l
−1
µ f(z, a, b) =

∑l−1
i=0 f(pi(z), a, b)

l
. (8)

The recursive function f(z, a, b) is obtained by iterating
through the procedure until the stopping condition ‖fn+1(z)−
fn(z)‖ 6 10−8. It has been observed in [9] that even for
moderate values of n (8 6 n 6 10), the function converges
well1.

The method described in the Section III to calculate polar-
ization behavior is now used to calculate scaling exponent for
any product kernel of the form T2⊗Tl. We start with L = 10,
as best µ till L = 8 have already been exhaustively found in
[7]. Consider T5 (taken from [10]) and their E′i,ws described
in Table I.

TABLE I
POLARIZATION BEHAVIOR: POLYNOMIAL COEFFICIENTS Ei,w OF T5

i \w 0 1 2 3 4 5
0 0 3 9 10 5 1
1 0 2 9 10 5 1
2 0 0 2 8 5 1
3 0 0 0 1 3 1
4 0 0 0 1 2 1

Using these values, we calculate Ei,w using (6) and (7) for
T10 = T2 ⊗ T5 and list it in Table II. Once the values of
polarization behavior are calculated for L = 10, we calculate

1The stopping condition is ‖fn+1(z)− fn(z)‖ 6 10−10 in [9].

the scaling exponent of T10 using (8) and it comes out to be
µ = 3.942.

T10 = T2 ⊗ T5,where

T5 =


1 0 0 0 0
0 1 0 0 0
0 1 1 0 0
1 1 0 1 0
0 0 1 1 1



TABLE II
POLARIZATION BEHAVIOR: POLYNOMIAL COEFFICIENTS Ei,w OF T10

i \w 0 1 2 3 4 5 6 7 8 9 10
0 0 4 38 116 209 252 210 120 45 10 1
1 0 2 37 116 209 252 210 120 45 10 1
2 0 0 0 0 174 240 208 120 45 10 1
3 0 0 0 0 0 98 147 104 43 10 1
4 0 0 0 0 0 48 120 96 42 10 1
5 0 0 3 24 90 150 166 112 45 10 1
6 0 0 2 16 66 118 150 106 45 10 1
7 0 0 0 0 2 24 44 48 37 10 1
8 0 0 0 0 0 0 1 4 7 6 1
9 0 0 0 0 0 0 1 4 6 4 1

Now, we introduce a heuristic approach to design a product
kernel T14 = T2 ⊗ T7 with good scaling exponent.

Let us take 8× 8 kernel giving best scaling exponent from
[7] and delete a row and a column in such a way that it gives us
good polarizing behavior of the resulting kernel. As we know
that the top and bottom channels in the initial kernel polarize
to 1 and 0 respectively, we select a row whose polarization
value is not close to both these values. In this case, we select
the fourth row to delete. In the next step after deleting the row,
we remove each column once and find scaling exponents to
be {4.145, 4.110, 4.110, 4.129, 4.051, 3.984, 4.189} obtained
by deleting columns starting from 2nd to 8th (removing 1st
column doesn’t give a valid polarizing kernel). We find that
good µ(T7) is obtained when the seventh column is removed
which almost coincides with the µ(T7) found in [7]. Therefore,
we get T7 to be

T7 =



1 0 0 0 1 0 0
1 0 0 1 0 0 0
1 0 1 0 0 0 0
1 0 1 0 1 0 0
1 1 0 0 1 1 0
1 1 1 1 0 0 0
1 1 1 1 1 1 1


TABLE III

POLARIZATION BEHAVIOR: POLYNOMIAL COEFFICIENTS Ei,w OF T7

i\w 0 1 2 3 4 5 6 7
0 0 4 18 34 35 21 7 1
1 0 2 15 33 35 21 7 1
2 0 0 9 31 35 21 7 1
3 0 0 0 4 20 18 7 1
4 0 0 0 2 10 15 7 1
5 0 0 0 1 4 9 7 1
6 0 0 0 0 0 0 0 1



TABLE IV
POLARIZATION BEHAVIOR: POLYNOMIAL COEFFICIENTS Ei,w OF T14

i \w 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
0 0 0 64 336 984 1996 3002 3432 3003 2002 1001 364 91 14 1
1 0 0 36 324 967 1990 3001 3432 3003 2002 1001 364 91 14 1
2 0 0 0 252 933 1978 2999 3432 3003 2002 1001 364 91 14 1
3 0 0 0 0 0 478 2021 2976 2856 1972 998 364 91 14 1
4 0 0 0 0 0 0 1203 2560 2714 1942 995 364 91 14 1
5 0 0 0 0 0 0 0 1840 2444 1882 989 364 91 14 1
6 0 0 0 0 0 0 0 0 0 1642 525 280 84 14 1
7 0 0 4 48 258 820 1714 2480 2547 1874 985 364 91 14 1
8 0 0 2 24 135 470 1113 1848 2155 1746 969 364 91 14 1
9 0 0 0 0 9 90 391 968 1499 1490 937 364 91 14 1
10 0 0 0 0 0 0 4 32 116 248 322 232 79 14 1
11 0 0 0 0 0 0 2 16 58 124 167 140 67 14 1
12 0 0 0 0 0 0 1 8 28 56 73 68 43 14 1
13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

The scaling exponent of T7 comes out to be µ = 3.984.
We construct T14 = T2 ⊗ T7 and from the Table III values,
we find polarization behavior of T14 using (6) and (7) and are
listed down in Table IV. Scaling exponent for T14 comes out
to be µ = 3.485.

A graph of the values of scaling exponent obtained for
various L for BEC channel W keeping the probability of error
constant is also plotted and is shown in Fig 3. The µ values
for 2 6 L 6 8 have been taken from [7] which are the best
scaling exponent values. In this paper, we calculate µ for L =
{10,14} which comes out to be 3.942 and 3.485 respectively
(these may not be the best scaling exponents for these lengths).
We observe that for all powers of two on the x-axis, the scaling
exponent gradually decreases as L increases and approaches
to 2 as L tends to ∞.
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Fig. 3. Scaling exponent of binary polarization kernel of size L

We also see from the plot that for all values of L lying
between two consecutive powers of two, values of scaling
exponent are higher than the values at those two points. One
of these values attain a local maxima which is always less than
the maxima obtained for the previous consecutive powers of
two.

VI. CONCLUSION

In this paper, we proved the property that any product kernel
formed by taking kronecker product of self-dual component

kernels is also self-dual. We also derived the partial distances
of these product kernels in terms of the partial distances of
the component kernel.

We proposed a method to find polarization behavior and
scaling exponent of product kernels using polarization behav-
ior of component kernels. We plot the behavior of scaling
exponent with increasing kernel size. The scaling exponent
for L = 10 is calculated to be µ = 3.942 and for L = 14 is
µ = 3.485.
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