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Abstract—In this paper, we address a important and still
unanswered question in mobile cloud computing “how mobility
impacts the distributed processing power of network and com-
puting clouds formed from mobile ad-hoc networks ?”. Indeed,
mobile ad-hoc networks potentially offer an aggregate cloud of
resources delivering collectively processing, storage and network-
ing resources. We demonstrate that the mobility can increase
significantly the performances of distributed computation in such
networks. In particular, we show that this improvement can
be achieved more efficiently with mobility patterns that entail
a dynamic small-world network structure on the mobile cloud.
Moreover, we show that the small-world structure can improve
significantly the resilience of mobile cloud computing services.
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I. INTRODUCTION

“Cloud computing” has recently appeared as a buzz word
in many medias in which the term refers both to the technology
advancement and also to the business model behind. The idea
is not new but roots from already developed technologies
such as distributed computing, autonomic computing, hardware
virtualization and web services. It’s the maturation and conver-
gence of all these technologies that makes cloud computing vi-
able today. By virtualizing the aggregated computing resources
in order to offer to users the on-demand utility (e.g. computing,
storage, software as service) in a pay-as-you-go fashion, much
like the power distribution grid system, cloud computing
appears as a main actor of information industry today. This
can be seen through the explosion of cloud computing services
deployed the Internet in recent years.

Besides, with the advances of electronic technologies,
mobile wireless devices have gradually become more and more
powerful in terms of processing, storage and communication
capacity. This potentially leads to the emergence of mo-
bile ad-hoc networks that deliver, without any infrastructure,
computing resource complementary to the existing infrastruc-
tured networks. These “mobile clouds”, which leverage on
opportunistic contacts between users, can potentially deliver
free communication, storage and processing services shared
between users according to peer to peer resource sharing
policies.

Although the application perspective sounds interesting, the
underlying technology challenges are not negligible due to
the difficulties raised by dynamic networks. The first obstacle
comes from the mobile nature of such network and raises

the question of “how the mobility impacts the distributed
processing performances of the mobile clouds?”. Indeed, the
unstable network topology makes that continuous end-to-end
communication unguaranteed and hence the service delivery
may be disrupted. Indeed, in the context of spontaneous and
infrastructureless networks, a kind of delay tolerant network,
nodes must rely on intermittent contacts leading to use the
store-carry-and-forward communication paradigm for inter-
node communication. Therefore, if the role of mobility on
communication performances such as end to end delay and
bandwidth has been already studied, the impact mobility
schemes on the global processing power delivered by a mobile
network cloud has not been studied yet.

In this paper, we address this issue and show that the
mobility can enhance significantly the computing capacity
of network clouds composed of mobile nodes. Considering
a dynamic network as an aggregate distributed computing
resource, we use Particle Swarm Optimization (PSO) - an
optimization method based on distributed autonomous agents-
coupled with a generic mobility model to assess the impact
of node mobility on distributed processing. The questions on
service resilience against network churn are also discussed.

The rest of the paper is structured as follows. First, Section
II discusses the state of the art of mobile cloud computing. In
Section III, we study the impact of mobility on the quality
of mobile cloud computing services. Section III studies of
the impact of dynamic network structures on mobile cloud
computing. In Section V, the question of service resilience is
discussed. Finally, Section VI concludes the paper.

II. STATE OF THE ART

Mobile cloud computing is still a young field and there is
still discussion on its definition. In its infancy, mobile cloud
computing has been considered as a derived branch of cloud
computing with two schools of thought (see [7] for a survey).
The first refers to performing computing activities (data storage
and processing) in infrastructured cloud and let mobile devices
be simple terminals to access to service. This centralized
approach has the advantage that mobile devices don’t need
to have a powerful computing capacity but the drawback is
that users depend strongly on the infrastructure network and
on its performances.

The second school of thought defines mobile cloud com-
puting as performing computing activities on mobile platform.



Therefore a mobile cloud network is an infrastructureless ex-
tension of the traditional infrastructure based cloud networks.
Mobile devices are clients of service but are also part of the
cloud, providing hardware and software resources. The benefit
of this distributed approach is the omnipresence and the speed
of service accessibility, the support of mobility and locality, the
freedom of deployment and use of new services as well as the
reduced hardware maintenance costs. Although the approach
is promising, its main challenge resides in the dynamic of
network which poses difficulties in communication and hence
service access. In this paper, we focus on this definition of
mobile cloud computing.

To the best of our knowledge, very few contributions have
been proposed for mobile cloud computing. Hyrax [2] is a
mobile-cloud infrastructure that enables smart-phone applica-
tions that are distributed both in terms of data and computation.
Hyrax allows applications to conveniently use data and execute
computing jobs on smart-phone networks and heterogeneous
networks of phones and servers. Its implementation is based
on Hadoop and tested on Android platform. But since An-
droid doesn’t support ad-hoc network yet, the phones have to
communicate through a WIFI central router.

Satyanarayanan et al. [4] present the cloudlet concept.
In this approach a mobile client is seen as a thin client
with respect to a service which is customized over a virtual
machine in the wireless LAN. Hence the cloudlet is a proxy
representation of a real service enhanced for the mobile device.
The main motivation is how bandwidth limits and latency over
wireless networks impacts over users services.

III. IMPACT OF MOBILITY ON MOBILE CLOUD
COMPUTING

In this section, we evaluate the impact of mobility on
mobile cloud computing. Let us consider that a mobile cloud
network created by several human portable devices offers a
distributed processing service such as optimizing a function
via a Particle Swarm Optimization (PSO) algorithm. According
to PSO, each node in the network has a local solution to the
optimization problem. Through intermittent contacts, mobile
nodes learn others’ solution to improve their local optimum
and hence accelerate the convergence towards the global
optimum. For the sake of simplicity, we make the following
assumptions:

1)  Each node in the network knows in advance the goal
function and its solution.

2)  An external system (e.g. WIFI hot-spots) is respon-
sible for results retrieval from mobile nodes.

3)  The service is considered delivered when the global
optimum reaches a goodness predefined by user.

In practice, the goal function as well as its solution is usually
unknown in advance and therefore we have to rely on a
diffusion technique to disseminate the information of the goal
function into the network. The obtained global optimum and
stopping condition in that case will depend on the current
solutions found by nodes (e.g. a node stops the computation
when its local solution no longer changes for a while). In this
theoretical work, we focus only on the impact of mobility on
computing delay and therefore the previous assumptions seem
reasonable.

Fig. 1. STEPS markovian mobility model

A. Mobility model

In order to reproduce at the simulation level realistic human
mobility patterns, we use the STEPS mobility model [3]. As
we have shown in a previous work, this flexible parametric
model can express a large spectrum of mobility patterns: from
highly nomadic ones to localized ones. Therefore, STPES
makes it possible to evaluate the impact of different mobility
contexts on mobile cloud computing. In STEPS, the network
area is modeled as a torus divided in several zones. The
model implements the notion of preferential attachment usually
observed in human mobility in which each node is attached
to one or several preferential zones. Inside zones, mobile
nodes move according to the Random Waypoint model. The
movement of nodes between zones follows a Markov chain
of which the transition probability is given by a power law
distribution. This distribution is driven by a parameter of
the STEPS model which allows the nodes nomadism to be
enforced or reduced (i.e. the probability that a mode moving
outside his preferential zone has to return to that zone).
Figure 1 illustrates the underlying Markov chain of STEPS
with 4 zones.

B. Particle Swarm Optimization

The Particle Swarm Optimization (PSO) algorithm [1] is an
optimization method based on swarm intelligence - a sub-field
of artificial intelligence which studies the collective intelligent
behavior emerging from the interactions between individuals of
a swarm of autonomous agents. Swarm intelligence considers
intelligence as the combination of the knowledge acquired by
individuals through experiences in the past and the knowledge
acquired from the others through social interactions. In PSO
algorithm, a set of candidate solutions called particles move
around in the search space according to a simple mathematical
formula over the particle’s position and velocity. Each parti-
cle’s movement is influenced by its local best known position
and also by the global best known position found by other
particles. The swarm is expected to move collectively towards
the optimal solution. Besides, this method is able to solve a
multimodal optimization problem.

In its simplest form, let &; be the multidimensional vector
of the particle ¢ position, the position of the particle is updated
according to the formula

Tt +1) = 7;(t) + v4(t) (D

where Z;(t) is the position of particle 7 at time ¢.
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Fig. 2. Typical static neighborhood topologies vs dynamic neighborhood
topology generated by STEPS

The velocity of the particle is updated according to the
formula

Ti(t) = 0i(t — 1) + o1 [Ps — Zi(t — 1)] + ¢2 [Py — Z(t — 1)]
2

where

® (1, ¢ are uniform random variables taking values in
[0, 1]. These variable represent the relativity between
the effect of individual experience and of social influ-
ence.

galsv

e p; denotes the best known position of particle 7 (
for local).

e p, denotes the best known position of ¢’s neighbors
(“g” for global)

This formula entails wider and wider oscillations of particles
in the search space. One solution to this issue is based on
velocity damping, that is, if v;q > Ve then v;g = Ve, else
if ;4 < —Vinae then v;q = =V, Where v;4 is the dimension
d of U;. In consequence, the particles move only in a restricted
search space.

In PSO, individual can be connected to one another ac-
cording to a great number of neighborhood topologies (Figure
2 illustrates the most used schemes). Each neighborhood
topology, traditionally considered as static conversely to our
analysis, results in different behaviors and performances for
the PSO algorithm.

In this work, since node moves, the neighborhood topology
is no longer static but dynamic. Indeed, when the mobility
degree is low, links between nodes is stable and the network
is nearly static. On the contrary, when the mobility is high,
links change rapidly over time and so does the neighborhood
topology. Therefore the goal of this experiment is to evaluate
the effect of mobility on the convergence delay of the algo-
rithm.

C. Simulation Results

We implemented the mobility model and the PSO algo-
rithm on MATLAB. At the beginning of each simulation, 100
nodes are uniformly distributed over the network area which is
divided in 10 x 10 zones representing preferential attachment
according to STEPS model. The movement of node between
zones is driven by the locality degree parameter () of STEPS
model. We vary a between 0 and 8 to obtain a large spectrum
of mobility patterns. When o = 0 nodes are highly nomadic,
moving from a zone to one another in a random manner that
makes the network highly dynamic. On the contrary, when

Number of nodes/particles 100
Number of zones 10 x 10
Network size 100 x 100 m*
Radio range 10 m
Node speed 3 — 5 km/h
De Jong function Sphere
Number of dimensions 2
Stopping condition error <= 10~°
TABLE L. SIMULATION SETTINGS
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Fig. 3. Impact of mobility on the convergence delay of PSO algorithm

o = 8, nodes are highly localized (i.e.sedentary) and therefore
there are less information exchange between distant zones.

The PSO algorithm is implemented in every mobile nodes
so that each node contains 1 particle. The position of particle
is randomly initialized, taking values in range [Z40, —Tmaz)-
Particle’s position is updated at each contact with another node
according to the formula 2.

As goal function, we used the Sphere function from the
De-Jong test suite. This suite consists of goal functions with
different difficulties to measure the performances of optimiz-
ers. The Sphere function is the first and easiest function of the
suite. It is symmetric, unimodal and is often used to measure
the general efficiency of optimizers. That is

F@ =3

=1

where D is the number of elements of Z. The Sphere function
has a global optimum f(Z) =0 at & = (0,0,0,...,0).

We used root-mean-square error to measure the goodness
of the solution. The algorithm stops when the error is smaller
than a predefined threshold. The simulation settings are sum-
marized in Table I

Figure 3 shows the optimization convergence delay accord-
ing to nods’ locality degree. These results is are averaged
over 10 simulation runs. On the figure, we can see that the
more mobile nodes are, the smaller convergence delay is. This
result shows that nodes mobility can increase dramatically the
processing capacity of mobile cloud networks.
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Fig. 4. Node spatial distribution

IV. IMPACT OF NETWORK STRUCTURE ON MOBILE
CLoUuD COMPUTING

In this section, we evaluate the processing capacity of
mobile cloud computing under various dynamic network struc-
tures. With the same approach as introduced in Section III,
we measure the convergence delay of a PSO algorithm imple-
mented on a mobile cloud network and show that this delay
can be significantly minimized if the network has a dynamic
small-world structure.

The small-world phenomenon introduced by Watts and
Strogatz [6] refers to static graphs with high clustering coef-
ficient and low shortest path length. Through a process which
consist in rewiring randomly edges of a graph, by varying
the rewiring ratio, the authors showed that for an interval a
rewiring ration the resulting static graph, exhibit a small world
structure which cumulate short path observed in random graphs
with high clustering coefficient intrinsic to regular lattices. In
a previous work [3], we have shown that this small world
behavior can be observed in dynamic graphs too. We have
shown that in a dynamic networks, the analog of the rewiring
process in static graph is done from varying the ratio and
intensity of nomadic nodes. Moreover, we have shown that
the STEPS model is capable of exhibiting this small-world
phenomenon in dynamic networks.

Indeed, starting from the same network configuration as in
Section III, we divide mobile nodes in 2 categories. The first
consists in highly localized nodes which stay almost all their
time in their preferential zones. The second category consists
in highly nomadic modes which move constantly from zone to
zone. At the beginning of simulation, the nodes are distributed
over the network area so that nodes in different preferential
zones cannot communicate each other (Figure 4 shows the
node spatial distribution). We vary the fraction of mobile node
Pm from 0 to 1. When p,,, equals to 0, the network consists in
disconnected islands with only intra-zone communications that
entails a regular structure similar to the one in static graphs. On
the contrary, when p,,, equals to 1, the inter-zones movement of
highly mobile nodes makes that the network topology changes
constantly which entails a random network structure. Figure 5
shows the evolution of the clustering coefficient and shortest
path length according to the fraction of highly mobile nodes.

We processed the PSO algorithm over all these network
structures and then measured the resulting convergence delay.

Small-world phenomenon in dynamic networks
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Fig. 5. Small-world phenomenon in dynamic network
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Fig. 6. Mobile cloud computing in small-world networks

Figure 6 shows the results averaged over 10 simulations. These
simulation results show that the convergence delay of PSO
decreases rapidly down to an asymptotic part started when the
network exhibits a small world structure. This original result is
significant because the small-world structure, which as shown
in this paper improves distributed processing, was shown to
emerge naturally in the great majority real dynamic networks

[5].

V. RESILIENCE OF MOBILE CLOUD COMPUTING SERVICE

Nowadays, mobile devices still have limited energy capac-
ity and communication as well processing are two important
sources of energy waste. Therefore nodes’ churn is intrinsic
to dynamic netwoks clouds. Nodes running out of battery
cannot contribute to distributed processing anymore and in
consequence, mobile cloud networks may suffer impredictible
nodes failures. Besides, mobile cloud networks may be the
target of attacks, for instance DDOS, which can potentialy
make unavailable parts of the network. In this section, we
evaluate, under various mobility contexts, the resilience of
distributed services deployed on such networks.

First, we assume that the evolution of number of inactive
nodes (i.e. attacked or out of battery) follows a Poisson



process. Therefore, the number of inactive nodes during a time
interval 7 is distributed according to a Poisson distribution

exp —AT(AT)*
k!
and ) is the arrival rate of inactive nodes.

P[(N(t+71)—N(t) =k] =

where £ =0,1,2,...

With the same simulation settings as introduced in Sec-
tion IV, we perform simulations with various values of A
(1/15,1/12.5,1/10,1/5) and under various mobility contexts
(i.e. by varying the fraction of mobile nodes). In these simula-
tions, we stop the PSO algorithm when 95 % nodes reach the
optimum. If this threshold is not reached before all the nodes
become inactive, as there is no recovery possible in this case,
the service will never be delivered and hence we assign the
simulation duration time to the convergence delay.

Figure 7 shows the results averaged over 20 simulations.
These simulations show that with dynamic small-world net-
works (Figure 7(b) and 7(c)), the distributed service resists
much better to departed nodes compared highly localized
network (Figure 7(a)) and offers approximately the same
resilience level than random networks (Figure 7(d)). These
results suggest that a small-world structure not only contribute
to enhancing distributed performances but also offers good
resilience properties.

VI. CONCLUSION

In this paper we not only show that nodes’ mobility
enhance the processing capacity of dynamic network cloud
but we also showed how mobility impacts the performance
and the resilience of these mobile clouds. In particular, we
have shown that significant performance improvement can
be obtained when dynamic networks exhibit a small-world
structure and moreover, this particular structure can improve
the resilience of the network against inactive nodes. This
means that by introducing even a small percentage of highly
mobile nodes in a high localized network, we can improve
significantly the processing capacity and resilience of mobile
cloud computing. These results open the way to adaptive
strategies that would aim to adapt dynamic network topology
and behavior according to their processing load and con-
straints. Moreover these strategies have to consider also storage
and energy consumption which are critical in the context of
handheld systems. Our current work investigates these research
directions.
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