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romano@inesc-id.pt

Abstract—In this paper we focus on the problem of self-
tuning distributed transactional cloud data stores by presenting
an overview of the autonomic mechanisms integrated in the
Cloud-TM platform, a transactional cloud data store developed
in the context of a recent European project.

Cloud-TM takes a holistic approach to self-tuning and elastic
scaling, treating them as strongly intertwined problems with the
ultimate goals of i) achieving optimal efficiency at any scale of the
platform, and ii) minimizing resource consumption in presence
of varying workloads. From a methodological perspective, this
is achieved by relying on the innovative idea of exploiting the
diversity of different modelling approaches, including analytical
models, machine-learning and simulations. By employing these
modelling techniques in synergy, the Cloud-TM platform can
dynamically optimize the underlying distributed data store over
a number of dimensions, including its scale, the strategy it adopts
to distribute and replicate data among the platforms’ nodes, as
well as its replication protocol.

I. INTRODUCTION
The appearance of the first commercial Cloud Platforms

has represented a step towards the materialization of the Utility
Computing vision. In typical Cloud Infrastructure as a Service
(IaaS) platforms, in fact, resources are dispensed elastically,
with a seemingly unbounded amount of computational power
and storage available on demand, in a pay-only-for-what-you-
use pricing model. This elastic scaling capability comes with
the promise of enormous money saving and efficiency, but at
the same time it poses two major challenges. On one hand,
developers are faced with the non-trivial task of building
distributed applications tailored for a very dynamic, elastic
and fault-prone environment; on the other, in order to take
advantage of the pay-for-what-you-use pricing model, system’s
administrators have the burden of determining, from time to
time, the optimal configuration and scale for the platform,
depending on the workload faced by the deployed applications.

Recently, we are witnessing the proliferation of a new
breed of Cloud Data Stores, specifically built to tackle these
issues. On one hand they provide abstractions and program-
ming paradigms aimed at aiding the developers in facing the
complexity of accessing and manipulating the application’s
distributed state. On the other, they come with primitives and
mechanisms aimed at supporting elastic scaling of the platform
and facilitating automatic resource provisioning.

Though built for the same target, a plethora of different so-
lution have been proposed, both in industry and academia, ex-
ploring several trade-offs in the vast design space of distributed
data management schemes. This heterogeneity, witnessed also
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in decades of research in the field of distributed data platforms,
is symptomatic of the non-existence of a universal one-size-
fits-all data management solution that maximizes the efficiency
of a platform in all possible scenarios. The effectiveness of
every scheme, in fact, strongly depends on two - dynamic -
factors: i) the characteristics of the incoming workload, such
as its intensity, the ratio of read/write operations, as well as
the spatial/temporal locality in the data access patterns, and ii)
the scale of the system.

Cloud-TM [1] is a recently concluded FP7 European
project that developed a data-centric Platform as a Service
(PaaS) aimed at maximizing ease of programming, while
minimizing human intervention in the process of resource pro-
visioning and runtime optimization of the platform. Most data
platforms for virtualized environments, both in industry and
academia[2], [3], [4], typically ensure weak consistency [5]
models, favouring scalability over ease of application devel-
opment. Cloud-TM, conversely, ensures strong consistency by
leveraging on the abstraction of transaction [6]. Transactional
consistency and scalability, two properties often seen as an-
tagonists, are reconciled in the Cloud-TM platform thanks to
innovative transactional consistency schemes [7], [8] designed
precisely to meet the scalability and elasticity requirements of
typical cloud infrastructures.

In this paper, we shall focus on the autonomic capabilities
of the Cloud-TM platform, presenting the architecture of the
module that is in charge of driving the self-tuning and resource
provisioning of the Cloud-TM platform, i.e., the Cloud-TM
Adaptation Manager. Most industrial and academic cloud data
stores include supports for elastic scaling, and several also
include mechanisms for automating the resource provisioning
process. However, the self-tuning of any other platforms’
parameters is at least uncommon for commercial platforms
(at least based on available documentation [9], [10]). On the
other hand, academic solutions for self-tuning of cloud data
stores [11], [12], [13] target individual platform’s parameters,
failing to capture the strong intertwining between them (e.g.,
the choice of the replication protocol is clearly dependent on
the platform’s scale and on the number of data replicas stored
in the platform). The Cloud-TM platform, conversely, takes a
unique approach to self-tuning, based on two principles:

• Multi-dimensional self-tuning. The parameters space of
a transactional data platform is quite vast. Moreover, the
effect that these parameters have on performance are often
intertwined, i.e., optimizing only with respect to a subset of
them will lead to a suboptimal global configuration. As such,
in order to globally optimize application’s performance while
minimizing operational costs, the Cloud-TM platform employs
pervasive self-tuning schemes, which act at each layer of
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Fig. 1: Cloud-TM high-level architecture.

the architecture, and explicitly take into account the complex
interdependencies among the different parameters.

• Model diversity. Given the multi-dimensional optimization
space and the heterogeneity of transactional workloads, identi-
fying the best configuration for a distributed data platform is a
very complex task. Throughout the years, different techniques
have been employed to predict the performance of a dis-
tributed application. Unfortunately, every performance predic-
tion methodology has both strong and weak points, thus being
unable, alone, to accurately predict applications’ performance
for each workload and for each platform configuration. For this
reason, the Cloud-TM platform employs several, orthogonal
modelling techniques, that are combined together in order to
reliably identify the optimal configuration for the platform for
any workload and respecting budget constraints.

The remainder of the paper is structured as follows: Sec. II
provides a high-level overview of the Cloud-TM platform;
Sec. III presents the Autonomic Manager; Sec. IV overviews
related work; Sec V concludes the paper.

II. OVERVIEW OF THE CLOUD-TM PLATFORM
The high-level architecture of the Cloud-TM platform is

depicted in Fig. 1. It consists of two main components:
the Data Platform and the Autonomic Manager, which are
described in the following.

A. The Data Platform
The Data Platform is the module responsible for storing,

retrieving and manipulating the data composing the state of
the application and consists, on its turn, of two sub-modules,
namely the Data Platform Programming APIs and the Dis-
tributed in-memory Transactional Data Grid.

Data Platform Programming APIs. This module exposes a
set of APIs that provide abstractions aimed at keeping the

complexity of developing applications for large-scale elastic
cloud infrastructures as low as in conventional/non-distributed
environments. These APIs are exposed by three distinct com-
ponents, which we overview in the following.
Object Grid Data Mapper. This module allows programmers
to transparently store and manipulate object-oriented domain
models. As we shall see shortly, the back-bone of the Cloud-
TM Data Platform is represented by a transactional key-value
data store. This module, hence, acts as a bridge between
the Cloud-TM programming environment and the underlying
distributed data store, exposing to developers a much more
expressive programming paradigm and data model than classic
key-value stores.
Search API. The Search API allows applications to define
ad-hoc queries to retrieve and manipulate portions of the
state that they manage. The Search API is fully integrated
with the object-oriented programming paradigm of Cloud-TM,
supporting intrinsic aspects of the object-oriented model, such
as polymorphism and inheritance. This result is achieved by
integrating some of the leading open-source projects in the area
of data management and indexing, namely Hibernate ORM
and Apache Lucene, and extending them in order to efficiently
distribute the index across the underlying data store.
Distributed Execution Framework (DEF). The DEF exposes
a set of abstractions aimed at simplifying the development
of parallel and distributed applications, allowing ordinary
programmers to take full advantage of the processing power
available by the set of distributed nodes of the Cloud-TM
Platform without having to deal with low level issues such as
load distribution, threads synchronization, and fault-tolerance.

Distributed in-memory Transactional Data Grid. This com-
ponent is in charge of maintaining application’s data and of
guaranteeing the consistent evolution of the application’s state.
Below we describe its key components.
In-memory Multi-Versioned Transactional Key-Value Store.
The backbone of the Cloud-TM Data Platform is repre-
sented by Infinispan [14], a key-value store with support for
transactions. In order to maximize performance, Infinispan
maintains data in-memory, and achieves fault-tolerance via
data replications rather than via disk logging mechanisms.
To achieve strong consistency without sacrificing scalability,
Infinispan integrates GMU [7], a novel, fully decentralized,
multi-versioning algorithm that achieves high scalability by
means of genuine replication techniques (which ensure that
only the nodes replicating data accessed by the transaction are
involved in its processing), and by avoiding to ever abort or
block read-only transactions.
Reconfigurable Replication Manager. Transactional workloads
are very heterogeneous and affected by so many variables
that no-one-size-fits-all solution exists that guarantees optimal
performance across all possible applications’ workloads. To
address this issue, the Cloud-TM Platform integrates several
data replication strategies, which exhibit different trade-offs
and are, consequently, optimized for different workloads. The
platform is, moreover, able to efficiently switch from one
protocol to another, minimizing service interruption and aborts
of transactions during the commutation.

More in detail, the Cloud-TM platform integrates three
replication protocols: i) a Two-Phase Commit (2PC) protocol,
in which each node of the platform can execute both update



and read-only transactions, relying on locks acquisition at
commit time to determine their outcome; ii) a Primary Backup
(PB) protocol, in which only a node, namely the primary, is
allowed to serve update transactions; iii) a Total-Order (TO)
based protocol, which relies on a total order primitive to
determine the outcome of a transaction. The pros and cons
that comes with any of these protocols are discussed in [15].
Interface to Persistent Storage. The Cloud-TM Data Platform
supports the possibility to persist its state over a wide range
of heterogeneous durable storage systems, ranging from lo-
cal/distributed file systems to cloud storages (e.g., Amazon’s
S3 [16] or Cassandra [3]). This capability serves a twofold pur-
pose: i) it allows to cope with scenarios in which the amount of
main memory affordable according to budget constraints is not
enough to accommodate the whole application’s state and ii) it
guarantees the durability of the application’s state even in spite
of a failure/redeployment of the whole application, still giving
the possibility to the user to shift the costly interaction with the
stable storage out of the latency-sensitive path of transactions.

B. The Autonomic Manager
The second main building block of the Cloud-TM platform

is the Autonomic Manager, which is the component in charge
of the self-tuning of the Data Platform. Its architecture is
concisely depicted in Fig. 1 and further detailed in Fig 2.
The Autonomic Manager is formed by three main subsystems,
called QoS Specification Module, Workload and Performance
Monitor (WPM), Workload Analyzer (WA) and Adaptation
Manager (AdM). Further, a QoS Specification Module

In the following we are going to overview briefly the func-
tionalities of the WPM, WA and QoS specification modules;
the AdM will be described in higher detail in the next section.

Quality-of-Service specification module. This module is
responsible for recording the desired QoS levels for the appli-
cation and for contrasting them at runtime with the measured
performance of the platform, in order to ensure that they are
matched and trigger notifications if they are not. Currently, this
module allows the QoS levels to be formalized according to
the models developed in the context of the European project
SLA@SOI [17].

Workload and Performance Monitor. The WPM is the
subsystem in charge of gathering statistical information on the
workload and performance/efficiency of the various compo-
nents/layers of the Cloud-TM Platform, and of conveying them
towards the WA and the AM. Examples of the performance
metrics collected by the WPM are the application throughput,
transactions response time and abort rate.

The set of collected application-level statistics is quite
broad, and allows to perform a very accurate runtime work-
load characterization: other than collecting average values for
statistics like read-only vs update transactions ratio and number
of operations per transaction, the WPM also keeps tracks, by
means of lightweight probabilistic techniques [18], of data
items that represent hot-spots for what concerns data con-
tention and/or data locality. This information is then exposed
by the WA to the user, so that she can get a feedback on the
hot-spots in the application’s data access pattern, and, as we
shall see later, it is also fed to the AdM, which exploits it to
detect and correct sub-optimal mappings of data onto nodes.

As we will see, the WA exploits the monitoring data
streams produced by the WPM also to automatically detect

shifts of the workload that may give raise to QoS violations
and/or lead the Cloud-TM Data Platform to operate in sub-
optimal configurations. This information is exploited, in its
turn, by the AdM, which can react triggering corrective actions
aimed at altering the scale and/or configuration of the Data
Platform. More details about the architecture of the WPM and
the workload characterization can be found in [19], [20].

Workload Analyzer. The WA acts as an intermediary between
the WPM and AdM, and bears three different responsibilities.

First, it is responsible for data aggregation: the streams
of monitoring data produced by the distributed nodes of the
Cloud-TM Platform via the WPM are gathered by the WA,
which exposes programmatic APIs and web-based GUIs allow-
ing for aggregating statistics originated by different software
layers and/or groups of nodes.

In the second place, the WA is in charge of performing data
filtering and workload/KPI change detection: the WA integrates
algorithms aimed at detecting statistically relevant variations
of platform’s KPIs and/or workload characteristics. These
techniques allow filtering unavoidable statistical fluctuations
and enhance the stability and robustness of the self-tuning
mechanisms integrated in the AdM.

Finally, the WA integrates workload and resource demand
prediction schemes: the WA includes algorithms for time-series
forecasting (e.g., based on Kalman filter or on polynomial
regression [19]), which allow predicting future workload’s
trends and allow the AdM to enact proactive self-tuning
schemes. This functionality represents a fundamental building
block for any proactive adaptation scheme, i.e., schemes trig-
gering reconfigurations of the platform anticipating imminent
workloads’ changes, which are particularly desirable in case
the platform’s reconfiguration (as in the case of elastic scaling)
can have non-negligible latencies.

In the next section we are going to present in detail the
core module of the AM, namely the Adaptation Manager.

III. ADAPTATION MANAGER
The Adaptation Manager (AdM) is the key component of

the AM. As already mentioned, this module is in charge of
driving the self-tuning of a number of mechanisms of the
Cloud-TM Data Platform, as well as of automating its QoS-
based resource provisioning process.

Fig. 2 depicts the internal architecture of the AdM, high-
lighting its main building blocks and how it interacts with
the other modules of the Cloud-TM Platform. The AdM is
formed by two main subcomponents, namely the Performance
Prediction Service (PPS) and the Platform Optimizer (PO).

The PPS encapsulates diverse performance forecasting
mechanisms that rely on alternative predictive methodologies
working in synergy to maximize the accuracy of the prediction
system, and, consequently, of the whole self- tuning process.
In more detail, the PPS exploits the notion of model diversity,
i.e., it combines white-box (e.g., analytical models) and black-
box (e.g., machine-learning techniques) approaches with com-
plementary strengths and weaknesses in order to take the best
of the two approaches, namely:
• the high accuracy of black-box statistical methods when
faced with workloads similar to those witnessed during their
training phase;
• the minimal training phase of white-box methods, and their
high extrapolation power, i.e., their ability to achieve good
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accuracy even when providing forecasts concerning previously
unexplored regions of the workloads’ parameter space.

The PPS is used not only to guide the optimization process,
as we will discuss shortly, but also to allow the end-users to
conduct what-if analysis aimed at assessing the performance
achievable by the Cloud-TM Platform when deployed over
platforms of different scales, and in presence of different work-
load types. This type of analysis can be extremely valuable
for the developers of Cloud-TM applications, who can gain
insights on the scalability and efficiency of their applications,
speculating on the impact on performance due to alternative
implementation designs and/or workload’s shifts.

The PO, on the other hand, is the component in charge of
defining the reconfiguration strategy of the various self-tuning
schemes embedded in the Cloud-TM Platform. This module
has a flexible an extensible software architecture, which allows
specifying a chain of optimizers aimed at tuning different
parameters/behaviours of the Data Platform, namely:
i) its scale, i.e, the number and type of nodes over which the
Cloud-TM Data Platform is deployed;
ii) the number of data replicas, or, shortly, replication degree;
iii) the employed replication protocol (among the three cur-
rently supported, see Section II);
iv) the placement of data across the nodes of the platform.

A noteworthy aspect of the PO is its high flexibility in
supporting different degrees of automation of the system. To
this end, the AM exposes REST-based interfaces that allow
the monitoring and fine-grained configuration of its automatic

adaptation policies. These REST APIs are exploited by the
Monitoring and Administration Web Console (not described
in the paper for space constraints), which allows human end-
users to specify which of the available self-tuning mechanisms
should be fully automated by the Adaptation Manager, and
which reconfigurations should only be recommended and per-
formed after the explicit approval of the platform’s adminis-
trators. The Web Console serves also as an access point to the
what-if analysis facilities, by providing a user friendly web
interface to the forecasting capabilities of the PPS.

Finally, the complexity associated with enacting the re-
configurations decreed by the PO is encapsulated by the
Reconfiguration Manager (RM). This module receives as input
the set of adaptations specified by the PO and i) defines the
order in which the optimizations will be performed, taking
into account any possible dependencies that could affect the
efficiency/correctness of the whole reconfiguration process;
ii) coordinates a set of actuators that allow to enact the
supported adaptations, hiding the complexity of interacting
with heterogeneous types of resources/layers of the platform.

In the following we provide a more detailed description of
the PPS, PO and RM.

A. Performance Predictor Service
As already mentioned, the PPS can leverage on diverse pre-

diction methodologies, i.e., analytical models, machine learn-
ing techniques and simulation techniques. Before discussing
how these techniques are jointly exploited in the AdM, we first
provide additional details on their internals and capabilities.
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In Figure 3.41 we provide data related to how the statistical significance of the
throughput values computed by the simulator varies vs the wall-clock-time of the
simulation run. These data refer to serial executions. The reported data refer to 64
clients, and show how the wall-clock-time requested for achieving high confidence of
the produced statistics is on the order of 8 to 12 seconds (depending on the amount of
simulated cache servers). This indicates high run-time efficiency from the simulation
framework, which for very large scale up of the simulation model can even exploit
parallelization techniques (see [29]).

Case Study 2. In this case study we evaluate the accuracy of the simulation output for
a significantly different configuration with regard to the previous case study. Specifi-
cally, we consider the GeoGraph benchmark, in the same configuration that has been
used for the scalability study presented in Section 3.1.4 (particularly, the configuration
with 90% read-post agent actions), and with the same deploy onto the Cloud-TM Clus-
ter. One difference is that the benchmark population phase has been removed, thus
leading the landmarks to be populated only by the virtual messages that are dynami-
cally provided by the in transit agents. Another difference is that, rather than relying on
the 2PC variant of GMU (as we did in Section 3.1.4), this time we use the TO variant,
and we consider fully replicated scenarios with 5 and 10 Infinispan nodes, respectively.

70

(c) Simulative model’s accuracy [22].

Fig. 3: Examples of utilization of the performance predictors

• Analytical predictor. This predictor [21] relies on a queue-
ing theory-based mean-value analysis techniques to forecast
the probability of transaction commit, the mean transaction
response time, and the maximum system throughput. One
key innovative element of the modeling approach is that it
does not rely on classic assumptions on the uniformity of
transaction’s accesses over the whole data-set (which can
be strongly limiting in presence of skewed access patterns).
Instead, it introduces a powerful abstraction that allows the on-
line characterization of the application data access pattern in a
lightweight and pragmatical manner, i.e., a scalar value called
Application Contention Factor (ACF). The key idea underlying
the ACF is to capture the effects on data contention generated
by arbitrary access pattern by means of a simpler uniform
access pattern (over a data set having a possibly different size)
generating an equivalent amount of data contention [21].
• Simulative predictor. This predictor is based on Discrete
Event Simulation techniques, and includes a set of discrete
event models for simulating the behavior of the different
operating modes supported by the Cloud-TM Data Platform.
The whole architecture of the simulation component is highly
modular, since it is based on skeleton models [22], which
allow the instantiation of actual models able to capture the
dynamics of various distributed data management schemes and
platform scales. Also, it is highly configurable, since it offers
a suite of different embedded data access models, relying on
a wide set of parametrizable distributions, and also offers the
possibility to simulate data access patterns based on traces
of the accesses, as provided by the tool chain formed by
WPM and WA. These include information about the most
accessed data, which can have a strong impact on performance
especially in applications characterized by strongly skewed
access patters, as it is, for instance, the case of well-known
transactional benchmarks [23].
• Machine Learning based predictor. This predictor relies
on pure black-box Machine Learning (ML) techniques to
forecast the throughput, abort rate and mean execution time
(or its x-th percentile) of the transaction classes composing
the input workload. This is a multiple-input-multiple-output
(MIMO) regression problem, in which for each of the above
parameters, we aim at identifying a corresponding function
that captures their dynamics over an input space composed
by a rich set of features characterizing the workload and the
scale/configuration of the platform. Such features are deter-
mined through the execution of an automated feature selection

algorithm, which is aimed at minimizing the risk of overfitting
and maximizing the generality of the model by discarding
features that are either too closely correlated among each
other (and hence redundant), or too loosely correlated with the
output variable (and hence useless). Specifically, the machine-
learner based predictor relies on the Forward Selection [24],
[25] technique, a greedy heuristic that progressively extends
the set of selected features till the accuracy it achieves when
using 10-fold cross-validation on the training set is maximized.

Fig. 3 shows three possible applications of these tools, to
predict the performance of a popular benchmark for transac-
tional platform, namely TPC-C [23]1. Fig. 3a shows the capa-
bilities of the analytical model of forecasting the throughput
achievable by the application when deployed over a platform
of different sizes depending on its workload (TPCC-W stands
for write intensive, TPCC-R for read intensive). Fig. 3b shows
the capabilities of the machine learner of determining, for a
fixed scale configuration, the best replication protocol in face
of changing workloads, leading to the automatic optimization
of this parameter. Finally, Fig. 3c shows the accuracy of the
simulative predictor in forecasting the performance achievable
when deploying TPC-C on a set of 4 VMs on Amazon EC2.

Given that these methodologies are highly complementary,
their joint usage within Cloud-TM allowed the construction of
an AM component supporting a wide spectrum of prediction
(and hence optimization) capabilities.

As for the employment of machine learning, these tech-
niques provide highly reliable predictions in system configu-
rations (e.g., in terms of number of nodes within the underlying
virtualized infrastructure) and workload profile/intensity falling
within an already explored domain of the parameters’ space.
The exploration (and hence the associated training phase for
the machine learner) can performed either off-line or on-line.
Further, the training outcome can be refined along time. On the
other hand, machine learning techniques are known to provide
limited predictive power when working in extrapolation, i.e.,
when considering previously unseen system configurations.
These issues are avoided, conversely, by analytical [21] and
simulative models [22], thanks to the employment of white-
box modelling techniques.

Concerning computational costs, both analytical and ma-

1Note that the original TPC-C benchmark is designed to operate on a
relational database, hence we developed a porting running directly on top
of a transactional key-value store such as Infinispan (code available here:
http://github.com/cloudtm)



chine learning models (during the querying phase) are typically
less demanding than simulative approaches. On the downside,
the design phase of analytical models is normally significantly
more onerous. Also, due to their inherently higher com-
plexity, analytical approaches tend to introduce a number of
simplifying assumptions, which may ultimately degrade their
prediction accuracy. Regarding the simulation performance, the
simulation framework has been developed using the ROOT-
Sim high performance parallel simulation engine [26]. Hence,
AM also entails high performance simulation capabilities,
which make very large models tractable and solvable within
significantly reduced computation time.

Finally, the PPS includes also predictors that combine the
above techniques/methods in a synergic (rather than orthog-
onal) manner. Particularly, the PPS offers hybrid predictors
that rely on analytical or simulative models to predict the
effects of data contention, and on machine-learning techniques
for estimating the network-bound latencies due to inter-node
synchronization. To this end, the analytical/simulative models
have been interfaced with Cubist 2, a decision tree regressor
that approximates non-linear multivariate functions by means
of piece-wise linear approximations. Cubist is used to provide
estimations on the latencies of various types of network-bound
operations, e.g., the latency to fetch data items remotely and
of the commit schemes employed by the different replication
protocols supported by the Cloud-TM platform.

Another approach for combining these alternative mod-
elling techniques is to exploit voting schemes to combine the
predictions output by the various forecasters, and weight them
according to different strategies. The current AdM prototype
supports a relatively simple voting scheme that averages the
outputs of the single forecasters. We are currently pursuing a
research line focused on devising more sophisticated schemes
based on gating and boosting [27].

As hinted in Sec. II-B, the PPS is triggered whenever
the WA detects statistically relevant variations of the set of
metrics collected by the WPM. This allows to re-evaluate the
optimality of the platform configuration in presence of shifts
of the workload’s characteristics, or upon variations of the data
access pattern locality caused by the optimization of the data
placement, or even upon variations of the costs associated
with transactions processing due to a change of behavior of
the underlying virtualized infrastructure. In a complementary
fashion, it is possible to trigger the PPS manually via REST
APIs, or to configure the PPS to be queried periodically.

B. Platform Optimizer
As already mentioned, the Optimizer is composed by two

sub-optimizers, which are in charge of different self-tuning
processes:
• The Data Platform Configuration Optimizer, which is in
charge of automating the tuning of the platform’s scale, degree
of replication, and of the choice of its replication protocol.
• the AutoPlacer Optimizer, which monitors the quality of the
current data placement policy, and orchestrates the execution
of an algorithm aimed at maximizing data locality.
We overview these 2 optimizers in the following.
Data Platform Configuration Optimizer. The platform’s
scale (noted as s), the choice of the employed replication
protocol (noted as r) and the data replication degree (noted

2http://www.rulequest.com

as d) are three tightly intertwined parameters. For instance,
full replication is often preferable in small scale systems
(e.g., up to 10 machines). Conversely, partial replication is
typically advisable for large scale systems, unless the workload
is strongly read-dominated. Also, a primary backup replication
protocol is likely to suffer from scalability issues in large scale
system, due to the constraint of allowing a single node to
process update transactions. On the opposite, in small scale
systems, and when faced with conflict intensive workloads,
the primary backup protocol is typically more efficient than
multi-master replication protocols (such as 2PC or TO) which
can incur in higher abort rates and generate a larger network
traffic and hence longer commit latencies.

In order to tackle these issues, the self-tuning process of
these three key parameters of the Cloud-TM Platform relies
extensively on the set of performance predictors described
in Sec. III. More precisely, the optimizer that is in charge
of tuning these parameters determines their optimal values
by means of a search in the three-dimensional parameters
space (s × r × d). Each step of the search algorithm consists
of a query to one of the predictors made available by the
performance prediction service, which evaluates the quality of
a given configuration of this triple of parameters. The quality
of the considered configuration is evaluated on the basis of the
predicted values for the KPIs defined in the QoS specification
(typically throughput, response time and abort rate) and the
operational cost of the considered configuration.

The search algorithm aims at identifying the configuration
of this triplet of parameters that has minimum cost and that
ensures that the desired QoS is met. The search algorithm
can be configured to explore alternative configurations for any
subset of these three parameters. This enhances the flexibility
of the self-tuning mechanisms of the Cloud-TM Platform,
allowing system administrators to impose constraints on which
configuration’s parameters should be statically assigned (i.e.,
not automatically adjusted) and which ones should rather be
self-tuned by the AM.

The current prototype integrates a relatively simple search
algorithm that performs an exhaustive search in the parameters’
space to determine the optimal configuration given the current
workload and desired QoS. In addition to its simplicity, the
key advantage of this approach is that it ensures that the
optimal configuration (according to the forecasts of the PPS)
can always be identified. On the other hand, for very large
scale systems, the growth of the parameters’ space may hinder
the efficiency of this optimizer. To cope with this issue, we
designed the software architecture of this optimizer to be
readily extended to incorporate classic search heuristics (such
as hill climbing or simulated annealing [27]) that trade off
completeness (and hence sacrifice optimality guarantees) to
maximize efficiency.
AutoPlacer Optimizer. In a distributed data platform, such as
Cloud-TM, processing applications’ requests can imply access-
ing data that is stored remotely, i.e., on different nodes of the
platform. Hence, the performance and scalability achievable by
applications can be affected by the quality of the algorithms
used to distribute data among the nodes of the platforms. These
should be accurate enough to guarantee high data locality
(and minimize remote data accesses), as well as sufficiently
lightweight and scalable to cope with large scale applications.
AutoPlacer addresses this problem by automatically identi-
fying the data items having a sub-optimal placement onto
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Fig. 4: Impact of AutoPlacer on application’s throughput.

the platform and re-locating them automatically to maximize
access locality. Scalability and practical viability of AutoPlacer
are achieved via innovative probabilistic algorithms, which
exploit stream-analysis and machine-learning techniques [18].
Fig. 4 depicts the impact of the AutoPlacer algorithm on
the throughput of our porting of TPC-C benchmark initially
deployed with a random data placement. It is possible to see
that, if the application exhibits no locality, then the overhead
imposed by AutoPlacer is negligible; conversely, if the ap-
plication does exhibit locality in the data access pattern, its
throughput can be improved, round after round, up to a factor
of 50x, depending on the degree of locality.

C. Reconfiguration Manager
The RM is in charge of actuating the set of reconfigurations

decided by the AM. More in detail, this module receives as
input the set of adaptations specified by the PO and performs
the two following steps: i) it establishes the order in which
the various specified reconfigurations will be enacted, and ii)
accordingly coordinates the execution of such reconfigurations
by means a set of actuators that allow to acquire/release
resource from different IaaS providers as well as with to
interact with the various layers of the Cloud-TM Platform that
support dynamic reconfiguration.

Concerning the first point, it has to be noted that the order
in which certain platform’s reconfigurations are executed can
impact the reconfiguration latency and its effectiveness. For
instance, it is highly desirable that reconfigurations involving
alterations of both the platform’s scale and its replication
degree are executed concomitantly. If this two reconfigurations
were executed separately, in fact, the data hosted by the
platform is likely to be transferred more than once among
the nodes of the platform (a first time to distribute data over
the new set of nodes, and a second one upon change of the
replication degree).

The RM encapsulates the logic in charge of orchestrating
the set of adaptations requested by the AM, relying on a rule
based system that encodes the set of dependencies among the
set of possible reconfigurations supported by the AM. The
actual reconfiguration of the various components/modules of
the Cloud-TM Platform is managed by two type of actuators.
i) δ-cloud actuator. This actuator is in charge of managing the
interactions with a number of IaaS cloud providers. To maxi-
mize portability, we rely on the Apache δ-cloud project [28]. δ-
cloud provides a Cloud abstraction API that works as wrapper
around a large number of Clouds, abstracting their differences.

ii) Cloud-TM Data Platform Actuator. This actuator is in
charge of triggering reconfigurations that involve layers of the
Cloud-TM Data Platform, such as, activating the AutoPlacer
scheme, changing the data replication degree or the replication
protocol, etc. In order to uniformize interfaces, and maximize
portability, it relies industry standard JMX (Java Management
Extensions) technology to expose the methods that trigger the
various types of supported reconfiguration.

IV. RELATED WORK
The exploitation of model diversity, more specifically the

combination of machine learning and analytical models, has
already been proposed in a number of fields. In [29], a model
based on queuing theory is corrected at runtime by exploiting
online reinforcement learning to determine the batching level
delivering lowest latencies for a Total-Order based broadcast
primitive. A similar approach is undertaken in [30], where
the target is optimizing resource provisioning in a distributed
application and the online learner is based on Q-learning.
In [31], [32] analytical models are complemented at runtime by
decision tree regressors, in the former case with the purpose of
optimizing the global multiprogramming level for distributed
transactional applications, in the latter to allow a continuous
validation and correction of difference performance predictors
in a data center. Though similar in the spirit, those works
focus on a single aspect of a specific platform (e.g., multipro-
gramming level) or on several orthogonal aspects of a whole
data center [32]. To the best of our knowledge, the Cloud-
TM platform is the first example of application of exploitation
of model diversity to solve a multi-dimensional optimization
problem, in which it is not possible to find the global optimum
by separately performing optimization on single dimensions.

Also the set commercial solutions and the body of literature
regarding autonomic schemes for resource provisioning and
tuning of distributed data platform are very wide. As already
stated in Sec.I, commercial and open-source platforms tailored
for virtualized environments focus on providing supports for
automatic resource provisioning. Platforms like Google App
Engine [9], Microsoft Azure [10] and frameworks like Amazon
AutoScaling [33] and OpenNebula [34] provide a set of APIs
that have to be implement in order to specify the provisioning
policy. Such policy, however, can be typically defined only
in terms of simple rules based on the measurement of simple
system metrics (e.g., CPU utilization); the user is, thus, left
with the burden of the non-trivial task of devising the elastic
scaling rules as well as the time-consuming task of collecting
application-specific statistics.

Academic proposals exploit a very wide range of tech-
niques to automatize the resource provisioning process without
human intervention. However, they all come with the limita-
tions that are proper of the employed techniques: [35], [36]
exploit queuing theory, but avoiding to explicitly modeling
data contention; [37], [38], [39] rely only on machine learning,
thus being prone to poor effectiveness when facing previously
unseen workloads.

The two solutions that are more related to the Cloud-TM
pervasive self-tuning approach are MeT [11] and the SCADS
Director [4]. The former performs resource provisioning while
also clustering data accessed by a similar workload onto nodes
in the platform whose configuration is optimized for that work-
load. However, this solution requires a preliminary definition
of the considered workloads and of the best configuration



for nodes serving them; moreover, the provisioning scheme is
model-free, iteratively acquiring and releasing resources until
the system’s scale is optimized for the incoming workload. The
SCADS director, conversely, exploits a feedforward controller,
whose inner model is built via regression, in order to provision
a key-value store, move data and change the replication degrees
of subsets of data. The goal is keeping the 99-th percentile of
response on single operations under a predefined threshold.
Being based on pure machine learning, the SCADS director
cannot perform what-if analysis, other than being liable for the
aforementioned limitations of pure machine learning. More-
over, it is worth mentioning that this solution is tailored for an
eventual consistent platform, in which the inter-dependencies
among replication degree, data placement and scale are weaker
than in transactional platforms like Cloud-TM.

Regarding the replication protocol, we are aware of only
two solutions that encompass its self-tuning, namely HTR [12]
and PolyCert [13]. In both, the most appropriate protocol to
validate the transaction with is determined on a per-transaction
basis. However, the former requires the user to implement the
oracle responsible for selecting the best choice; the latter relies
on a combination of off-line and online statistical learning, thus
being prone to the already discussed limitations.

V. CONCLUSIONS
In this paper we presented an overview of the self-tuning

techniques integrated in Cloud-TM, a transactional cloud data
store developed in the context of a recent European project.
Cloud-TM takes a holistic approach to self-tuning and elastic
scaling, treating them as strongly intertwined problems with
the ultimate goals of i) achieving optimal efficiency at any
scale of the platform, and ii) minimizing resource consumption
in presence of varying workloads. From a methodological
perspective, this is achieved by relying on the innovative idea
of exploiting the diversity of different modelling approaches,
including analytical models, machine-learning and simulations.

By employing these modelling techniques in synergy, the
Cloud-TM platform can dynamically optimize the underlying
distributed data store over a number of dimensions, including
its scale, the strategy it adopts to distribute and replicate data
among the platforms’ nodes, as well as its replication protocol.
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