
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/261084953

Smart Environment Software Reference Architecture

Conference Paper · January 2009

DOI: 10.1109/NCM.2009.115 · Source: doi.ieeecomputersociety.org

CITATIONS

16
READS

595

4 authors:

Some of the authors of this publication are also working on these related projects:

Energy and Performance-aware Scheduling and Shut-down Models for Efficient Cloud-Computing Data Centers View project

Trip destination prediction View project

Alejandro Fernández-Montes

Universidad de Sevilla

50 PUBLICATIONS 305 CITATIONS

SEE PROFILE

Juan A. Ortega

Universidad de Sevilla

190 PUBLICATIONS 911 CITATIONS

SEE PROFILE

Juan Antonio Alvarez-Garcia

Universidad de Sevilla

75 PUBLICATIONS 630 CITATIONS

SEE PROFILE

Luis Gonzalez-Abril

Universidad de Sevilla

247 PUBLICATIONS 1,195 CITATIONS

SEE PROFILE

All content following this page was uploaded by Alejandro Fernández-Montes on 21 May 2014.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/261084953_Smart_Environment_Software_Reference_Architecture?enrichId=rgreq-65b678d6a8311fa091c22930b3f8c228-XXX&enrichSource=Y292ZXJQYWdlOzI2MTA4NDk1MztBUzo5OTI2MDMxMzg5OTAxMEAxNDAwNjc2OTEyMDg0&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/261084953_Smart_Environment_Software_Reference_Architecture?enrichId=rgreq-65b678d6a8311fa091c22930b3f8c228-XXX&enrichSource=Y292ZXJQYWdlOzI2MTA4NDk1MztBUzo5OTI2MDMxMzg5OTAxMEAxNDAwNjc2OTEyMDg0&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Energy-and-Performance-aware-Scheduling-and-Shut-down-Models-for-Efficient-Cloud-Computing-Data-Centers?enrichId=rgreq-65b678d6a8311fa091c22930b3f8c228-XXX&enrichSource=Y292ZXJQYWdlOzI2MTA4NDk1MztBUzo5OTI2MDMxMzg5OTAxMEAxNDAwNjc2OTEyMDg0&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Trip-destination-prediction?enrichId=rgreq-65b678d6a8311fa091c22930b3f8c228-XXX&enrichSource=Y292ZXJQYWdlOzI2MTA4NDk1MztBUzo5OTI2MDMxMzg5OTAxMEAxNDAwNjc2OTEyMDg0&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-65b678d6a8311fa091c22930b3f8c228-XXX&enrichSource=Y292ZXJQYWdlOzI2MTA4NDk1MztBUzo5OTI2MDMxMzg5OTAxMEAxNDAwNjc2OTEyMDg0&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Alejandro-Fernandez-Montes?enrichId=rgreq-65b678d6a8311fa091c22930b3f8c228-XXX&enrichSource=Y292ZXJQYWdlOzI2MTA4NDk1MztBUzo5OTI2MDMxMzg5OTAxMEAxNDAwNjc2OTEyMDg0&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Alejandro-Fernandez-Montes?enrichId=rgreq-65b678d6a8311fa091c22930b3f8c228-XXX&enrichSource=Y292ZXJQYWdlOzI2MTA4NDk1MztBUzo5OTI2MDMxMzg5OTAxMEAxNDAwNjc2OTEyMDg0&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universidad-de-Sevilla?enrichId=rgreq-65b678d6a8311fa091c22930b3f8c228-XXX&enrichSource=Y292ZXJQYWdlOzI2MTA4NDk1MztBUzo5OTI2MDMxMzg5OTAxMEAxNDAwNjc2OTEyMDg0&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Alejandro-Fernandez-Montes?enrichId=rgreq-65b678d6a8311fa091c22930b3f8c228-XXX&enrichSource=Y292ZXJQYWdlOzI2MTA4NDk1MztBUzo5OTI2MDMxMzg5OTAxMEAxNDAwNjc2OTEyMDg0&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Juan-Ortega-36?enrichId=rgreq-65b678d6a8311fa091c22930b3f8c228-XXX&enrichSource=Y292ZXJQYWdlOzI2MTA4NDk1MztBUzo5OTI2MDMxMzg5OTAxMEAxNDAwNjc2OTEyMDg0&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Juan-Ortega-36?enrichId=rgreq-65b678d6a8311fa091c22930b3f8c228-XXX&enrichSource=Y292ZXJQYWdlOzI2MTA4NDk1MztBUzo5OTI2MDMxMzg5OTAxMEAxNDAwNjc2OTEyMDg0&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universidad-de-Sevilla?enrichId=rgreq-65b678d6a8311fa091c22930b3f8c228-XXX&enrichSource=Y292ZXJQYWdlOzI2MTA4NDk1MztBUzo5OTI2MDMxMzg5OTAxMEAxNDAwNjc2OTEyMDg0&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Juan-Ortega-36?enrichId=rgreq-65b678d6a8311fa091c22930b3f8c228-XXX&enrichSource=Y292ZXJQYWdlOzI2MTA4NDk1MztBUzo5OTI2MDMxMzg5OTAxMEAxNDAwNjc2OTEyMDg0&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Juan-Alvarez-Garcia?enrichId=rgreq-65b678d6a8311fa091c22930b3f8c228-XXX&enrichSource=Y292ZXJQYWdlOzI2MTA4NDk1MztBUzo5OTI2MDMxMzg5OTAxMEAxNDAwNjc2OTEyMDg0&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Juan-Alvarez-Garcia?enrichId=rgreq-65b678d6a8311fa091c22930b3f8c228-XXX&enrichSource=Y292ZXJQYWdlOzI2MTA4NDk1MztBUzo5OTI2MDMxMzg5OTAxMEAxNDAwNjc2OTEyMDg0&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universidad-de-Sevilla?enrichId=rgreq-65b678d6a8311fa091c22930b3f8c228-XXX&enrichSource=Y292ZXJQYWdlOzI2MTA4NDk1MztBUzo5OTI2MDMxMzg5OTAxMEAxNDAwNjc2OTEyMDg0&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Juan-Alvarez-Garcia?enrichId=rgreq-65b678d6a8311fa091c22930b3f8c228-XXX&enrichSource=Y292ZXJQYWdlOzI2MTA4NDk1MztBUzo5OTI2MDMxMzg5OTAxMEAxNDAwNjc2OTEyMDg0&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Luis-Gonzalez-Abril?enrichId=rgreq-65b678d6a8311fa091c22930b3f8c228-XXX&enrichSource=Y292ZXJQYWdlOzI2MTA4NDk1MztBUzo5OTI2MDMxMzg5OTAxMEAxNDAwNjc2OTEyMDg0&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Luis-Gonzalez-Abril?enrichId=rgreq-65b678d6a8311fa091c22930b3f8c228-XXX&enrichSource=Y292ZXJQYWdlOzI2MTA4NDk1MztBUzo5OTI2MDMxMzg5OTAxMEAxNDAwNjc2OTEyMDg0&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universidad-de-Sevilla?enrichId=rgreq-65b678d6a8311fa091c22930b3f8c228-XXX&enrichSource=Y292ZXJQYWdlOzI2MTA4NDk1MztBUzo5OTI2MDMxMzg5OTAxMEAxNDAwNjc2OTEyMDg0&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Luis-Gonzalez-Abril?enrichId=rgreq-65b678d6a8311fa091c22930b3f8c228-XXX&enrichSource=Y292ZXJQYWdlOzI2MTA4NDk1MztBUzo5OTI2MDMxMzg5OTAxMEAxNDAwNjc2OTEyMDg0&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Alejandro-Fernandez-Montes?enrichId=rgreq-65b678d6a8311fa091c22930b3f8c228-XXX&enrichSource=Y292ZXJQYWdlOzI2MTA4NDk1MztBUzo5OTI2MDMxMzg5OTAxMEAxNDAwNjc2OTEyMDg0&el=1_x_10&_esc=publicationCoverPdf

Smart Environment Software Reference Architecture

A. Fernandez-Montes, J. A. Ortega, J. A. Alvarez

Department of Computer Science
University of Seville

Seville, Spain
{afdez,jortega,jaalvarez}@us.es

L. Gonzalez-Abril

Department of Applied Economics
University of Seville

Seville, Spain
luisgon@us.es

Abstract—Nowadays ubiquitous computing is spreading to
all scopes of our lives. Smart environments are present at every
location such us homes with automation and control devices,
offices full of control networks to assist workers, or hotels with
even more control devices in order to save energy and satisfy
guests preferences.

This paper focus on the proposal of a Reference Architecture
for developing Smart Applications and deploy them in Smart
Environments. The proposal consider three main process in
the Software Architecture of these applications: a) perception,
b) reasoning and c) acting.

Keywords-Smart environments, software architecture, ubi-
comp.

I. INTRODUCTION

We can define a smart environment as one that is able
to acquire and apply knowledge about the environment and
its inhabitants in order to improve their experience in that
environment [1].

Smart home technologies are often included as a part of

ubiquitous computing. Mark Weiser [2] outlined some prin-

ciples to describe Ubiquitous Computing (ubicomp) from

which we emphasize that the purpose of a computer is to

help you do something else.

Home technologies have tried to help home inhabitants

since its creation. Nowadays, due to the popularization of

computational devices, ubiquitous computing is called to

be the revolution to develop smart systems with artificial

intelligence techniques.

Domoweb [3] was a research project originally developed

as a residential gateway implementation over the OSGi

(Open Services Gateway Initiative) service platform. The

experiences obtained from this project allow us to face an

even more challenging project, the proposal of a General

Software Reference Architecture to develop smart applica-

tions where all the components of a smart environment can

interact flawlessly and reach automatism objectives.

Typical components of a smart environment are widely

studied over the literature, but we can emphasize the ap-

proach of D.J. Cook, and S.K. Das at [4] which shows a

general organization of these components. These are divided

in four layers: a) physical, b) communication, c) information

and d) decision. This approach joins hardware with software

agents, so very heterogeneous elements appear in the same

component model such as a decision maker and sensors or

actuators. All these components must collaborate to achieve

the goals of automatism that a smart environment is required.

This is the main motivation of current work, so a Reference

Software Architecture is proposed.

Other interesting approaches have been proposed. Costa

[5] presents a model where each issue is matched with the

characteristics that address it. Weis [6] shows a high level

programming language for rapid prototyping of pervasive

applications. The approaches from Rehman [7] and Bannach

[8] are focused in interactive context-aware applications and

prototyping of activity recognition applications respectively.

In contrast with these approaches, ours is a General Soft-
ware Architecture for Smart (pervasive) Applications.

II. REFERENCE ARCHITECTURE

The proposal of a General Reference Software Architec-

ture to develop smart applications is based in the goals of

the ubiquitous computing subject proposed by Weiser [2].

Taking this as a starting point, we believe that automation

in smart environments should be organized as a continuous

interaction between three main tasks: a) perception, b) rea-

soning and c) acting. (see figure 1).

The perception of the state of the environment is per-

formed by means of the physical components distributed

through out the environment, reasoning must be done about

the state and it produces possible actions to take, finally

these actions must be carried out.

III. PERCEPTION

The perception process should be divided in different

tasks in order to provide an accurate perception of the real

world (see figure 2).

It has to deal with low-level details to retrieve data from

real world and adapt it to a knowledge base which must

agree the smart environment model proposed in [9]. This

process have to clear this data of erroneous, insignificant or

redundant values in order to achieve the accuracy required

by next process.

2009 Fifth International Joint Conference on INC, IMS and IDC

978-0-7695-3769-6/09 $26.00 © 2009 IEEE

DOI 10.1109/NCM.2009.115

397

2009 Fifth International Joint Conference on INC, IMS and IDC

978-0-7695-3769-6/09 $26.00 © 2009 IEEE

DOI 10.1109/NCM.2009.115

397

Perception

ReasoningActing

Figure 1. The cycle of the automation process in a smart environment.

Perception

Collector Verifier Repairer Filter Ontologiser

Figure 2. Tasks of the perception process.

A. Collector

This is the lowest-level task, so its main objective is to

retrieve data from physical devices. It will usually have to

deal with gateways devices of every technology deployed

over the smart environment.

The properties of the environment suitable to be captured

by these sensors are listed in [9]. Actually a subset of

these properties could be selected to achieve any particular

application or automation process (e.g. put lights off when

nobody is at home does not need conditioning information

from the environment).

Sensors must be deployed in an organized manner to avoid

redundant or insignificant information and reduce costs.

When developing the Data Collector we have to consider if

devices should be programmed or not (or if both types of

sensors are present in the environment).

Majority devices are pre-programmed and can’t extend its

basic functionality (e.g. X-10 Motion sensor), so developers

have to adapt to them. On the other hand more and more de-

vices have the ability to extend or modify their performance

(e.g. Sentilla Tmote).

The latter are much more challenging for developers due

to they can be adapted to current needs for a concrete

application or circumstances. In this case, Data Collector

task covers daemons developed to retrieve information and

small applications running on devices as well, so both

elements have to agree what information is sent, periodicity

of these requests and so on.

B. Verifier

The main purpose of the Verifier task (as its name means)

is to verify that the data (which is currently being received by

the Data Collector) is correct. But the challenge now is how

the Verifier can determine if the data is correct or not. There

is no unique solution for all possible environments, so the

verification has to adapt to each environment dynamically.

We propose the Verifier to maintain a rule engine where

verification rules can be deployed, modified and used in

order to determine where data is right or wrong for current

environment. The rule engine will have to offer programmers

a flexible way to read, add, modify and delete rules.

By the way this task has to work side by side with the

Repairer when incorrect data is received in order to fix

invalid data. The mechanism of communication between

the Verifier and the Repairer must be determine. Typical

implementations of this mechanism would be the publication

of a repair service by the Repairer that will be invoked by

the Verifier.

We can conclude the Verifier can be seen as a filter applied

over all the data received, and it can be used to reject data

for any reason (incorrect, redundant and other reasons).

C. Repairer

The Repairer task will try to fix incorrect data detected

by the Verifier. The corrections applied to data can be done

in very different ways such us:

• Ignore data. First option is to ignore data, it means to

set it with unknown value. The Ontologiser will save

that value as required by storage system (e.g. Weka-arff

’?’ character, or SQL null value).

• Adjust data. If a value is incorrect, but its distance

with a correct value is less than a threshold (previously

customized) the value could be adjusted to nearest

correct value.

• Replace data. Other option is to replace data with

previous correct data. (e.g. if temperature sensor returns

100 Celsius, and previous data is 25, we could replace

current value with 25).

• Reject data. If current values are not suitable to be

repaired, the repairer will reject it.

398398

Once a set of data has been received, verified and repaired,

it has to be sent to the Ontologiser to be organized and

stored.

D. Ontologiser

Artificial intelligence algorithms need a solid base of

knowledge to work. The main goal of the Ontologiser is

to organize data to conform a model of the real world.

This fact demands us a great effort for building a

model of a smart environment. Other studies have helped

us to compose the model [10] [11] [12] which has

been arranged in four main categories explained in [9].

Synchronization. Ontologiser will have to synchronize

data from a world full of asynchronous devices and events.

Automation applications usually need sets of data composed

from multiple devices values. Data from different devices

must by synchronized for a latter aggregation, so this task

will have to define the rules to synchronize values from

multiple and very heterogenous sources.

Implementations of the synchronization process will vary

depending on the goals of a concrete smart application, but

all implementations will share some elements such as:

• Data buffer will store data received that is waiting to

be paired with other data.

• Garbage collector will supervise the size of the buffer,

and will periodically clean the buffer from data that

couldn’t be paired.

Aggregation. Once data is synchronized it must be joined

in a set of data for a concrete application. Each attribute

should conform the Smart Environment Model [9].

When data is aggregated it is ready to be stored in the

knowledge base that feeds the reasoning tasks and learner

process. The knowledge base format will be any of the de
facto standards like arff, or any relational database.

IV. REASONING

Reasoning process in smart environments can be separated

in several tasks (see figure 3) which interact to achieve three

main goals: a) learn, b) reason and c) predict.

Learning can be done through any of the techniques com-

monly known and widely studied in the literature. Attending

to the scope of this work we can separate these techniques

in two main categories: a) rule based and b) black-box based

.

Rule based algorithms offers the advantage to be readable

and easily understandable by humans. Rule-based techniques

are studied in [13] and applied to automation of smart

environments in iDorm [14] or combined with temporal

reasoning in ADB [15].

On the other hand black-box based techniques don’t

offer a comprehensible model of the knowledge that is

being learned, but these techniques have been successfully

used in pattern recognition and learning in general. Neural

Networks or Support Vector Machine are studied as a general

technique by authors like [16], [17], [18] and applied to

automation of smart environments in the Neural Network

House [19], House n [20] and Mav Home [10].

Reasoning

Learning
Agent

Situation
Recognition

Data Mining

Knowledge
Representation

Configurator

Error
Detector

Figure 3. Typical tasks of the reasoning process.

A. Learning Agent

This task can be seen as the glue that joins any other task

proposed to achieve the objectives of the Reasoning process.

It has to deal with:

• Data Mining task to extract patterns,

• Situation Recognition task to label patterns recognized,

• Prediction task to find future actions to be taken and

• Error detector task to detect wrong decisions and to

make related improvements over the entire process.

The learning can be carried out due to the dependence

of the user preferences with his habits. For instance

normally we have the same lighting preferences in our

offices so these preferences must be learned at every

environment, due to its dependence with the location,

orientation of the window, devices setup and so on.

Learning techniques. Two families of algorithms, related

with learning machine, can be considered although both are

going to be supervised.

Support vector machine (SVM) and Neural networks

(NN) are some of the techniques we can use to learn user

lighting preferences. The main advantage of these techniques

is that always offer an output. On the other hand it is hard

to understand their outputs which is an important feature

that prediction algorithms should implement as expounded

in [9].

The other family of algorithms considered are the machine

learning techniques based on rules. These algorithms provide

399399

X1

X2
All lights on

(1,1)

Canonical state

(0,0) (1,0)

(0,1)

S1

Figure 4. States for variables x1 and x2

an output easier to understand and interpret, but their main

disadvantage is that if no rule matches current state, these

algorithms don’t offer an output.

B. Data Mining

Data mining task works side by side with the learning

agent to extract information and find patterns from the

data stored by the Perception (see section III) process.

Smart Environment Vectorization Data mining is fed

with a stream of data with a concrete format. This is usually

so-called the vectorization of data. This fact forces every

concrete smart application to propose a vectorization of the

environment and configure all the reasoning process with it.

C. Situation recognition

A situation is defined as a set of states which have similar

values. This set can be defined by:

• a canonical state as a representative state of all the states

in the set

• a distance function which define how to measure the

difference between two states

• a threshold which define the maximum distance be-

tween the canonical state and the states of the set.

• a weight for each element of a state between [0,1]. A

weight of zero represent that an element must not be

considered.

The following example illustrates the definition of a

situation. Let x1 be the variable which represents the state of

a light, and let x2 be the variable which represent the state

of another light. These variables are discrete, and its range

is 0, 1 which represent the states off and on respectively.

The figure 4 shows all the states that these variables can

constitute.

We would like to define the situation S1 where any of the

lights is on. The canonical state of S1 is {1, 1} (all lights on)

Table I
STATES THAT BELONG A SITUATION.

State Canon. State Weights
d Thresh. ⊂ S1x1 x2 y1 y2 w1 w2

0 0 1 1 1 1 2 1 no
0 1 1 1 1 1 1 1 yes
1 0 1 1 1 1 1 1 yes
1 1 1 1 1 1 0 1 yes

for the variables x1 and x2 respectively. A typical distance

function could be defined as:

d([x1, x2], [y1, y2], [w1, w2]) =

=
√

(x1 − y1)2 ∗ w1 + (x2 − y2)2 ∗ w2

Where [x1, x2] represent a state, [y1, y2] represent the

canonical state and [w1, w2] represent the weights of x1

and x2 respectively which should be [1, 1] for the situation

S1 any of the lights is on due to both lights should be

considered. The threshold can be set to 1.

Table I shows the set of states that belong to the situation.

If the distance is less or equal to the threshold, the state

belongs to the situation. In other cases we can conclude the

state will not belong to the situation.

D. Prediction

The knowledge acquired during the process of learning

of the agent will be useful to make predictions about

future actions that should be taken in order to achieve any

automatism objective. These actions can be considered

as the output of smart algorithms as explained in [21].

Desirable features of prediction algorithms. The fea-

tures that a smart home system must implement are listed,

specially related with the prediction algorithms the systems

may have. So we don’t focus on artificial intelligence

techniques like the studies of [11], [22], [23] do, but on what

are the most important and indispensable features that must

be considered to develop prediction algorithms for smart

environments which are briefly studied in [9] and just listed

below: a) Prediction supported by last events and states,

b) Predictable by the inhabitants/users, c) Understandable

decisions, d) Wrong decisions detection and related im-

provement, e) Anomalies detection, f) Quick response when

required and g) General policies management.

E. Error detector

The main purpose of this task is to supervise the actions

taken by the inhabitants in order to detect opposite decisions

between the machine and them. Therefore it will have

to keep last actions taken by the smart environment and

compare them with actions taken by the inhabitants.

The comparison of these actions is usually a complex

operation where lots of elements take part into, and it has

400400

to take into account how many actions are going to be

considered to make the comparison, how long these actions

are going to be considered, or if actions over different

devices could be opposite (e.g. open the window could be

opposite to switch off the lights). All these aspects make the

detection of wrong decisions much more challenging.

V. ACTING

Finally, to close the cycle, Smart Environments have to act

automatically to achieve a concrete smart application. This

is the main purpose of the process of Acting. As shown in

figure V the decisions and concrete tasks ordered by the

Reasoning process have to pass through three main tasks

a) policy manager, b) task scheduler and c) task runner1.

Acting

Policy
Manager

Task
Scheduler Task Runner

Figure 5. Tasks of the acting process.

A. Policy Manager
The decision of carrying out a task must be supervised by

the Policy Manager. A smart environment may have defined

policies about energy saving, security or comfort. This

manager may implement the software artifacts necessary to

define, store and query these policies such as Rei policy

language [24] or a more extensive work of [25].
This process must be also suitable to change its policies

in real time, so inhabitants preferences may vary (i.e. during

vacation periods energy saving and security could be a

priority in the smart environment).

B. Task Scheduler
Once an action has been ordered by the reasoning process,

and has passed through the filter of the policy manager it

has to be scheduled.
The scheduler has to consider that some tasks could have a

time limit to be executed, and also has to consider its priority.

The implementation will typically implement a queue where

action will wait.

C. Task Runner

The task runner is the last task of the Acting process. It has

to deal with low level protocols to send orders to devices.

This task will receive a set of orders for a set of devices and

it will have to translate them to low-level instructions.

This task must be a very light process with almost no-lag

so its time xcomplexity should be lineal.

VI. CASE STUDY

We have already shown the Reference Architecture pro-

posed, and the developing environment in [21] so it’s time

to present the applications developed during this work to

validate the Architecture.

We have focused on developing an implementation of

the Perception process (first of the Reference Architecture)

which main objective is the perception of data about local-

ization of workers, luminosity, temperature and humidity of

an office at the LSI department at the University of Seville.

A. Mote Sensor Report

This application belongs to the Data Collector task. As it

was presented in section III-A this task has the responsibility

of the low-level interaction with devices, and it could be

distributed between central stations of the Smart Environ-

ment and the devices themselves. Mote Sensor Report is a

pervasive application developed on Sentilla Work IDE and

deployed over Sentilla Tmotes.

Sentilla Tmotes implement a JVM called Sentilla Point so

it can run Java applications. In order to access the hardware

capabilities of the device, Sentilla offers a java library which

give you access to the data gathered by the sensors and other

elements such us extension port or leds.

The java application developed access to sensor data and

send it through the Zigbee interface. The sensors conform

a mesh network where motes act as repeaters. This type of

network makes possible to cover wider areas even though

Zigbee protocol has a 10m. radio.

When developing this application we realized that lumi-

nosity captured by sensors fluctuated if the fluorescent lights

of the office were on. The reason of this behavior is that

fluorescent bulbs are always turning off and on although

it is not noticeable by humans due to its short frequency.

However this behavior was a problem, so we had to tackle

it and we included a part of the Repairer task (see section

III-C) at this point, due to the reparation couldn’t be possible

in a later moment so it has to be tackled at this point.

The solution is quite simple, instead of retrieving just one

value, n values are retrieved and the average of them is

calculated and then sent to the Sentilla Gateway plugged

into the central station.

B. Mote Dashboard

In order to receive all the information from the Sentilla

motes an application has been developed. It shows the

401401

information that is being received from the motes in real

time. This application carries out three main tasks:

• Data Collector. An execution thread is responsible of

managing the reception of data from the motes, using

the mote gateway supplied with the Development kit.

• Verifier. A simple verifier has been developed and

performs simple tests, similar to preconditions, over

data received. (e.g. luminosity >= 0).

• Repairer. When the verifier task detects erroneous data

Mote Dashboard choose between two options:

– Replace. If previous correct data was received short

time before, concrete erroneous values are replaced

with previous values. The time difference is cus-

tomizable.

– Reject. On the other hand, if previous correct data

was received long time before, current erroneous data

is rejected.

• Ontologiser. Finally correct data is processed by the

ontologiser task. It performs three operations:

– Synchronization. It keeps a buffer of data received

from every mote. When information from outdoor

and indoor motes was taken at approximately same

time it is composed by the aggregation task.

– Aggregation. Once data is synchronized, it is added

to the same instance of the input data.

– Store. Finally, Dashboard stores all instances in arff
format and SQL database (useful for machine learn-

ing tools like Weka [13]).

Mote Dashboard has other minor functionalities:

• Show information. It shows the information received

from the motes in a GUI (Fig. VI-B), and a list of active

motes in the mesh network.

• Reset. Resets the dashboard GUI. This doesn’t affect

stored data, but cleans buffers and GUI from data

received.

Figure 6. Mote Dashboard GUI.

VII. CONCLUSIONS

We have shown a General Software Reference Architec-

ture to develop Smart Environment Applications which is

very useful for developers of Smart Environments solutions.

We have answered questions like: a) How should the appli-

cations/software be divided?, b) Which process should be

present for these smart solutions?, c) How these process

should interact? .

Future work has to focus on continue developing smart

applications to provide more feedback to the Reference

Architecture in order to continue improving it. Another

interesting challenge is to consider not only the ability

of the smart environment to fit user preferences but

using Smart Environment to change behaviors in the

individual. The increasingly pressure requirement of

sustainability points out that future smart environments

will teach the inhabitants to be more conscious with

the world and its environment and we believe that it

has to be the way future smart environments must work.

ACKNOWLEDGMENT

This research is partially supported by the MEC I+D

project InCare. Ref: TSI2006-13390-C02-02 and the An-

dalusian Excellence I+D project CUBICO Ref: TIC2141.

REFERENCES

[1] G. Youngblood, E. Heierman, L. Holder, and D. Cook,
“Automation intelligence for the smart environment,”
Proceedings of the International Joint Conference on
Artificial Intelligence, 2005. [Online]. Available: http:
//ijcai.org/papers/post-0192.pdf

[2] M. Weiser, “The computer for the 21st century,” SIGMOBILE
Mob. Comput. Commun. Rev., vol. 3, no. 3, pp. 3–11,
1999. [Online]. Available: http://www.ece.ubc.ca/∼guenther/
LearningInMulti-AgentControlOfSmartMatter.pdf

[3] J. A. Alvarez, M. D. Cruz, A. Fernndez, J. A. Ortega, and
J. Torres, “Experiencias en entornos de computacin ubicua
mediante arquitecturas orientadas a servicios,” CEDI-JSWeb,
pp. 167–174, sept 2005.

[4] D. Cook and S. Das, “How smart are our environments?
An updated look at the state of the art,” Pervasive
and Mobile Computing, vol. 3, no. 2, pp. 53–73, 2007.
[Online]. Available: http://www.sciencedirect.com/science?

ob=ArticleURL& udi=B7MF1-4MP002G-1& user=
603129& rdoc=1& fmt=& orig=search& sort=d&view=
c& acct=C000031118& version=1& urlVersion=0&
userid=603129&md5=560f54d55b3fe9bdeb9c64f72b45e751

[5] C. da Costa, A. Yamin, and C. Geyer, “Toward a general
software infrastructure for ubiquitous computing,” Pervasive
Computing, IEEE, vol. 7, no. 1, pp. 64–73, Jan.-March 2008.

[6] T. Weis, M. Knoll, A. Ulbrich, G. Muhl, and A. Brandle,
“Rapid prototyping for pervasive applications,” Pervasive
Computing, IEEE, vol. 6, no. 2, pp. 76–84, April-June 2007.

[7] K. Rehman, F. Stajano, and G. Coulouris, “An architecture for
interactive context-aware applications,” Pervasive Computing,
IEEE, vol. 6, no. 1, pp. 73–80, Jan.-March 2007.

402402

[8] D. Bannach, P. Lukowicz, and O. Amft, “Rapid prototyping
of activity recognition applications,” Pervasive Computing,
IEEE, vol. 7, no. 2, pp. 22–31, April-June 2008.

[9] A. Fernández-Montes, J. Álvarez, J. Ortega, M. Cruz,
L. González, and F. Velasco, “Modeling Smart Homes for
Prediction Algorithms,” Lecture Notes in Computer Science,
vol. 4693, p. 26, 2007. [Online]. Available: http://www.
springerlink.com/content/m6q1051w442nv845/fulltext.pdf

[10] D. Cook, M. Youngblood, and S. Das, “A multi-agent
approach to controlling a smart environment,” Lecture
notes in computer science, vol. 4008, p. 165, 2006.
[Online]. Available: http://www.springerlink.com/content/
142027w275531607/fulltext.pdf

[11] S. Das and D. Cook, “Designing Smart Environments: A
Paradigm Based on Learning and Prediction,” Mobile, Wire-
less, and Sensor Networks. [Online]. Available: http://www.
springerlink.com/content/7t87564r42285713/fulltext.pdf

[12] J. Li, Y. Bu, S. Chen, X. Tao, and J. Lu, “FollowMe: On
Research of Pluggable Infrastructure for Context-Awareness,”
Proceedings of the 20th International Conference on
Advanced Information Networking and Applications-Volume
1 (AINA’06)-Volume 01, pp. 199–204, 2006. [Online].
Available: http://doi.ieeecomputersociety.org/10.1109/AINA.
2006.182

[13] I. Witten and E. Frank, Data Mining: Practical Machine
Learning Tools and Techniques. Morgan Kaufmann, 2005.

[14] F. Doctor, H. Hagras, and V. Callaghan, “A fuzzy embedded
agent-based approach for realizing ambient intelligence in
intelligent inhabited environments,” Systems, Man and Cy-
bernetics, Part A, IEEE Transactions on, vol. 35, no. 1, pp.
55–65, Jan. 2005.

[15] J. Augusto and C. Nugent, “The use of temporal
reasoning and management of complex events in smart
homes,” Proceedings of European Conference on Artificial
Intelligence (ECAI 2004), 2004. [Online]. Available: http:
//www.infj.ulst.ac.uk/∼jcaug/ecai2004.pdf

[16] C. Bishop, Neural Networks for Pattern Recognition. Oxford
University Press, USA, 1995.

[17] D. MacKay, Information Theory, Inference and Learning
Algorithms. Cambridge University Press, 2003. [Online].
Available: http://www.inference.phy.cam.ac.uk/itprnn/book.
pdf

[18] N. Cristianini and J. Shawe-Taylor, An Introduction to
Support Vector Machines. Cambridge University Press,
2000. [Online]. Available: http://books.google.es/books?
hl=es&lr=&id=L-2Vqx56J5UC&oi=fnd&pg=PR9&dq=an+
introduction+to+support+vector+machines+cristianini&ots=
eszbtwZefz&sig=TiSbqVWHmNNZ-WS-OmReCn9soZI

[19] M. Mozer, “Lessons from an adaptive home,” Smart
Environments: Technology, Protocols, and Applications, pp.
273–298, 2005. [Online]. Available: http://www.cs.colorado.
edu/∼mozer/papers/reprints/smart environments.pdf

[20] K. Larson, “House n Living Laboratory White Paper,” 2001.

[21] A. Fernandez-Montes, J. Ortega, L. Gonzalez, J. Alvarez, and
M. Cruz, “Smart Environment Vectorization: An Approach
to Learning of User Lighting Preferences,” Lecture Notes in
Computer Science, vol. 5177, pp. 765–772, 2008.

[22] H. Hagras, V. Callaghan, M. Colley, G. Clarke,
A. Pounds-Cornish, and H. Duman, “Creating an Ambient-
Intelligence Environment Using Embedded Agents,” 2004.
[Online]. Available: http://doi.ieeecomputersociety.org/10.
1109/MIS.2004.61

[23] N. Roy, A. Roy, and S. Das, “Context-Aware Resource
Management in Multi-Inhabitant Smart Homes: A Nash H-
Learning based Approach,” Proc. of 4th IEEE Int’l Conf. on
Pervasive Computing and Communications (PerCom2006),
2006. [Online]. Available: http://doi.ieeecomputersociety.org/
10.1109/PERCOM.2006.18

[24] L. Kagal, T. Finin, and A. Joshi, “A policy language for a
pervasive computing environment,” Policies for Distributed
Systems and Networks, 2003. Proceedings. POLICY 2003.
IEEE 4th International Workshop on, pp. 63–74, June 2003.
[Online]. Available: http://ieeexplore.ieee.org/iel5/8577/
27164/01206958.pdf?tp=&isnumber=&arnumber=1206958

[25] J. Ahn, B. Chang, and K. Doh, “A Policy Description
Language for Context-based Access Control and Adaptation
in Ubiquitous Environment,” TRUST06, August, 2006.
[Online]. Available: http://www.springerlink.com/content/
67g537107314j573/fulltext.pdf

403403

View publication statsView publication stats

https://www.researchgate.net/publication/261084953

