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On Kalman filtering for 2-D Fornasini-Marchesini models

Ran Yang and Lorenzo Ntogramatzidis and Michael Cantoni

Abstract-This paper deals with the problem of signal esti­
mation for two-dimensional systems. More specifically, we pro­
pose a Kalman filter for 2-D systems in Fornasini-Marchesini
model, without pre-imposing its structure. It will be shown that
the filter thus obtained is not in a Fornasini-Marchesini form,
but it still has a recursive structure.

I. INTRODUCTION

The estimation of the state of a dynamic system from
available noisy measurements is a fundamental problem in
signal processing, imaging processing and control. The cele­
brated Kalman filtering approach is by far the most popular
estimation approach, as it provides an efficient recursive
solution to achieve the minimisation of the covariance of
the estimation error [6], [7].

From 1970s, there have been many attempts to extend the
Kalman filtering theory to two-dimensional (2-D) systems,
see e.g. [5], [8], [11], [15], [16], [19] and the references
therein. However, so far the attempts to achieve a truly
recursive 2-D Kalman filter were of limited success.

The early works were limited by the difficulty in estab­
lishing an effective 2-D recursive latent variable model [5],
[8], [15]. In [13], a polynomial solution of2-D Kalman-Bucy
filtering problem was provided. However, the problem thus
formulated is less general than the Kalman filter problem,
because of its restriction to shift-invariant systems over an
infinite horizon.

After the introduction of the Roesser model [12] and
Fomasini-Marchesini model [3], in [11], a strip of the semi­
states of the Roesser model was augmented into a state of
I-D state space model such that I-D Kalman filter could
be applied in 2-D cases. However, it is inherently not 2-D
Kalman filter and is hardly applied in practice because of
huge dimension of the state variable.

Recently, a recursive Kalman filter for 2-D systems in
Fomasini-Marchesini model was developed in [19]. Although
the authors claimed that the proposed 2-D Kalman filter
minimised the covariance of the estimation error of the
state vectors, a Fomasini-Marchersini structure was assumed
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on the filter. This implies that the filter thus obtained is
not optimal, but optimal among the filters in Fomasini­
Marchesini form.

In this paper, starting from the formulation of the tra­
ditional Kalman filtering problem, a geometric approach is
used to derive an estimator without any structure constraint
on the filter, so that a truly optimal solution to the minimi­
sation of the variance of estimation error can be achieved.
Similarly to the existing I-D Kalman filter, the proposed 2-D
Kalman filter in this paper is also recursive.

Notation. The symbols CC, Z and N denote, respectively,
the sets of complex, integer and natural numbers (including
zero). The symbol ccn denotes the set of complex column
vectors with n entries, and ccn x m represents the set of
matrices with complex entries of dimension n x m. The
complex conjugate of a matrix M is denoted by M*, and
M > 0 (M 2:: 0) means that M is positive definite (positive
semi-definite). The inequality (k, l) < (i, j) is equivalent
to k ::; i and l ::; j, while (k, l) < (i, j) is equivalent to
(k, l) < (i,j) but (k, l) i= (i,j). The symbol E{x} denotes
the expected value of a random variable x. And (x, y)
denotes E{xy*} for column random vectors x and y. The
symbol x..ly implies that the zero-mean random variables x
and yare uncorrelated. Finally, span{WI, W2, ... } denotes
the linear span of the variables WI, W2, ....

II. PROBLEM FORMULATION

Consider a linear 2-D system in Fomasini-Marchesini
form [3]

Xi+l,j+l = A~~I,j Xi+l,j + A~~)+1 Xi,j+l

+Bi~l,jWi+l,j + Bi~+1 Wi,j+l (1)

Yi,j = Ci,j Xi,j + Vi,j

where, for all i, j E N, Xi,j E ccn and Yi,j E CCP represent the
local state and the measurement vector, respectively, while
Wi,j E ccm and Vi,j E CCP are the plant (or process) and
measurement noises, respectively. Moreover, A~I!, A~2! E

nXn (1) (2) nXm Xn ~,J ~,J •
CC , Bi,j ,Bi,j E CC , Ci,j E CCP are known shift-
varying matrices. Let N 1 , N 2 E N/{O}. Consider the horizon
S:= {(i,j) E Z x Z I 0::; i::; N 1 , 0::; j::; N 2 } .

The boundary conditions Xi,O, XO,j and the noises Wi,j,

Vi,j are assumed to be zero mean random variables with
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where

where 8i k is the 2-D Kronecker delta function

{
1 ifi=k

8i k = 0 if i i- k

(k, l) < (i, j) }, in the sense that these two sets of vectors
span the same subspace of CP:

span {Yk,Z E CP I (0,0) < (k, l) < (i,j)}

= span {ek,z E CP1(0,0) :::; (k, l) < (i,j)}.

This procedure is the well known Gram-Schmidt orthogo­
nalisation procedure, [6].

The orthogonality property of {ek,z E CP I (0,0) :::;
(k,l) < (i,j)} leads to (3), Le., the projection ofxi,j onto
£i,j is equal to the sum ofthe separate projection of Xi,j onto
each of the "previous" orthogonal vectors ek,Z, (k, l) < (i, j).

Moreover, from (2) we find that Vi,j is uncorrelated
with the boundary conditions Xi,O and XO,j, and is also
uncorrelated with Wk,Z with (k,l) i- (i,j). It follows that
v· . is uncorrelated with the local state and with the output'l,,)

in the region {(k, l) E N x N I (0,0) < (k, l) < (i,j)}. As
such, the projection Vi,j ofVi,j on £i,j is zero, as it represents
the estimate of a white noise. This implies that

Hence (4) holds. •
Some orthogonality properties are derived in the following

lemma.
Lemma 2: Given a 2-D system in the form of (1) and an

estimator of the form (3), for all i, j 2 0

i) (Xi,j, Xi,j) = 0;
ii) (Xi,j, ei,j) = (Xi,j, Xi,j) C~j = (Xi,j, Xi,j) C~j;

iii) (Wi+l,j, ek,z) = 0, for (k, l) < (i + 1,j + 1);
iv) (Wi,j+l, ek,z) = 0, for (k, l) < (i + 1,j + 1).

Proof: i) follows from the fact that Xi,j is the projection of
Xi,j onto c.;
ii) First, notice that ei,j = Yi,j - Yi,j = Ci,j Xi,j +
Vi,j - Ci,j Xi,j = Ci,jXi,j + Vi,j. As such, from i) we get
(Xi,j, ei,j) = (Xi,j + Xi,j, Ci,jXi,j + Vi,j) = (Xi,j, Xi,j) C~j.

iii) By (1) and (4), both Yk,Z and ek,Z are the linear combi­
nations of the boundary conditions {xs,o E C", s:::; k},
{xo,s E C", s:::; l} and the process noise {ws,t E

C'", (s,t) < (k,l)}. Thus, (2) yields (wi,j,ek,z) = 0 if
i 2 k or j 2l. From (k,l) < (i+1,j+1), we get «< i+1.
Then (Wi+l,j, ek,z) = 0 holds.
iv) can be proved in a similar way to iii), since from
(k, l) < (i+1,j+1) we get l :::; j+1. Then (Wi,j+l, ek,z) = 0
~~. .

Note that the least-mean-square estimator (3) provided in
Lemma 1 is far from being computable and applicable. Our
aim is now to find the structure of a 2-D filter that achieves
the least-mean-square estimation introduced in Lemma 1.
The following theorem introduces the 2-D filter that can
achieve this goal.

Theorem 1: The 2-D filter with the following form

A A(l) A + A(2) A

Xi+l,j+l = i+l,jXi+l,j i,j+lXi,j+l
j i

+L Ki~l,j+l;Zei+l,z +L Ki~l,j+l;kek,j+l
z=o k=O

ei,j = Yi,j - Ci,jXi,j (7)

(5)

(6)

(4)

ei,j = Yi,j - Yi,j, begin with

ei,O = Yi,O and eO,j = YO,j

The covariance matrices Qi,j E cm x m , Si,j E Cm x p
,

R·· E Cp x p and II,; 0, IIo)' E cn x n are known. It is'l,,) «-, ,

assumed that Ri )· = R!. > 0 for all i and j. Similarly to, 'l,,)

the traditional 1-D Kalman filtering, the 2-D Kalman filtering
problem for system (1) can be expressed as follows.

Problem 1: Given the measurements {Yk,Z E CP I0 :::;
(k,l) < (i,j)}, find an estimation of Xi,j, denoted by Xi,j,
with Xk,O = 0 and xo,z = 0 for 0 :::; k :::; i and 0 :::; l :::; i,
such that the mean square value E{xi,jxi,j} is minimised,
where Xi,j := Xi,j - Xi,j represents the estimation error.

III. MAIN RESULTS

In this section, the Kalman filtering problem for 2-D
systems in the form of (1) is investigated. The next lemma
gives the expression of the least-mean-square estimator Xi,j
in geometric terms.

Lemma 1: Let Xi,j be the estimated local state given the
measurements {Yk,Z E CP 10:::; (k, l) < (i, j)}, and let
Xi,j := Xi,j - Xi,j. The local state of the least-mean-square
estimator which minimises (Xi,j, Xi,j), is

Xi,j = L (xi,j,ek,z)(ek,z,ek,z)-lek,z (3)
(O,O)S;(k,l)« i,j)

is the estimation error.
Proof: The local state Xi,j of the least-mean-square estima­
tor which minimises (Xi,j, Xi,j) is given by the projection
of Xi,j on the subspace £i,j := span {Yk,Z E CP I (0,0) :::;
(k, l) < (i,j)}.

We want to show that projecting Yi,j onto £i,j leads to
the recursive formula

ei,O = Yi,O - Yi,O = Yi,O - Ci,o Xi,O = Yi,O

eO,j = YO,j - YO,j = YO,j - CO,j XO,j = YO,j

The remainder is the random variable ei,j which
can be regarded as the "innovation" in Yi,j given
{Yo,o,YO,l, Yl,O,··· ,Yi-l,j, Yi,j-l}. Thus ei,j is uncorre­
lated with {Yo,o,YO,l, Yl,O,··· ,Yi-l,j, Yi,j-l}, and then un­
correlated with all the other vectors {ek,z}, (k, l) i- (i,j).

Therefore, vectors {Yk,Z E CPI(O,O) :::; (k,l) < (i,j)},
which in general are not orthogonal, can be replaced by an
equivalent orthogonal set of vectors {ek,z E CP I (0,0) :::;

where Yi,j is the projection of Yi,j on the subspace £i,j,
Le., it is the part of the random variable Yi,j that is de­
termined by the knowledge of the "past" random variables
{Yo,o,YO,l, Yl,O,··· ,Yi-l,j, Yi,j-l}. Hence, (6) is true since
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with boundary conditions xz,o = 0 and XO,k = 0 for 0 ::; l ::;
i. 0 < k < i, minimises

which leads to (10). Furthermore,

(11)
From (3), it is found that

In addition, since ei,j = Ci,jXi,j + Vi,j, we find

•

(13)l = j;

l<j

i

<p. . k °- " F: , . 1· <P . 1 k °~,);, - L...J ~,);8,)- 8,)- ; ,

8=1

{

(2) (2) (2)
A. 1 .A. 2 .... A o .

~-,) ~ - ,) ,) ,
<p . . oz - i

~,); , - ~..... <P . .L ~,),8,)-1 8,)-1,O,Z,

8=1

A _ A(l) A A(2) A

Xi+1,j+1 - i+1,j Xi+1,j + i,j+1 Xi,j+1

A ( l ) r» C* T- 1+ ·+1· ri+1)· ·+1· ·+1 .ei+1)·~,) , ~ ,) ~,) ,
A (2) r» C* T- 1+ . ·+1 ri )·+1 . ·+1 . ·+1 ei )·+1~,) , ~,) ~,) ,

i

A ( l ) ,,( - ) C* T- 1
+ i+1,j L...J Xi+1,j, Xk,j+1 k,j+1 k,j+1 ek,j+1

k=O
j

A (2) ,,( -)C* T- 1
+ i,j+1 L...J Xi,j+1, Xi+1,Z i+1,Z i+1,Z ei+1,Z

z=o

Theorem 1 provides a 2-D Kalman filter with a recursive
structure. However, the expressions of the gain matrices

Ki~1,j+1;Z and K~~1,j+1;k of the filter still involve the terms
(Xi,j,Xi,j), (Xi,j+1,Xi+1,Z) and (Xi+1,j,Xk,j+1). Our effort
is now devoted to finding expressions for the gains that are
suitable for computations.

The next two lemmas are important for solving this prob­
lem. In particular, in the next lemma it is shown how the local
state vector Xi,j can be expressed as a linear combination of
the boundary conditions and the process noise.

Lemma 3: For a 2-D system in the form of (1), the state
Xi,j can be represented by

(Xi,j+1, ei+1,Z) (Xi,j+1, Xi+1,Z) C;+l,Z + (Xi,j+1, Vi+1,Z)

(Xi,j+1, Xi+1,Z) C;+l,Z

(Xi+1,j, ek,j+1) (Xi+1,j, Xk,j+1) C k,j+1
+(Xi+1,j, Vk,j+1)

= (Xi+1,j,Xk,j+1) C k,j+1

The statement follows.

By applying the orthogonality properties in Lemma 2, (11)
becomes

i j i j

Xi,j = L <Pi,j;k,OXk,O+L <Pi,j;O,Zxo,z+L L Wi,j;k,ZWk,Z

k=l Z=l k=OZ=O
(12)

where the matrices <Pi,j;k,O, <Pi,j;O,Z E cn x n and Wi,j;k,Z E
cn x r describe the linear dependence relationships between
Xi,j and boundary condition Xk,O, xo,z and the plant noise
Wk,Z, respectively. The matrices <Pi,j;k,O, <Pi,j;O,Z and Wi,j;k,Z

can be computed recursively by

(10)

k=O,···,i-l.
(9)

k = i;

l=j

l=O,···,j-l

where

L (Xi+1,j, ek,z)(ek,Z, ek,z)-l e k,z = Xi+1,j

(k,Z)«i+1,j)

L (Xi,j+1, ek,z)(ek,Z, ek,z)-l e k,z = Xi,j+1.

(k,Z)«i,j+1)

Ti,j := c., Pi,j C~j + Ri,j.

Proof: In view of Lemma 1, we have

Xi+1,j+1 = L (Xi+1,j+1, ek,z)(ek,z, ek,z)-l e k,z

(k,Z)«i+1,j+1)

L (A~~1,jXi+1,j + A~~+lXi,j+1

(k,Z)<(i+1,j+1)

B ( l ) B(2) )( )-1
+ i+1,jWi+1,j + i,j+1 Wi,j+1, ek,Z ek,Z, ek,Z ek,Z

= A~~l,j( L (Xi+1,j, ek,z)(ek,Z, ek,Z) -l e k,Z

(k,Z)«i+1,j)
i

+ L (Xi+1,j, ek,j+1)(ek,j+1, ek,j+1) -le k,j+1)

k=O

+A~~+l ( L (Xi,j+1, ek,z)(ek,Z, ek,Z) -l e k,Z

(k,l)«i,j+1)
j

+ L (Xi,j+1, ei+1,Z) (ei+1,Z, ei+1,Z) -l e i+1,Z)

z=o

+ A~~l,j (Xi+1,j, ei+1,j) (ei+1,j, ei+1,j) -l e i+1,j

+A~~+l(Xi,j+1, ei,j+1)(ei,j+1, ei,j+1)-l e i,j+1

+B}~l,j L (Wi+1,j, ek,z)(ek,Z, ek,z)-l e k,z

(k,Z)<(i+1,j+1)

+B}~+l L (Wi,j+1, ek,z)(ek,Z, ek,z)-l e k,z

(k,Z)«i+1,j+1)

(1)
K i+ 1,j+1;Z

( A~~+l (Xi,j+l> Xi+l,l) C;+l,I

A ( l ) t» C* ) T- 1
+ i+1,j ri+1,j i+1,j i+1,Z

A (2) ( -) C* T- 1
i,j+1 Xi,j+1, Xi+1,Z i+1,Z i+1,Z

(2)
K i+1,j+1;k

( AWl,j(Xi+l,j, Xk,j+l) Ck,j+l

A(2) ~ C* ) T- 1
+ i,j+1 i,j+1 i,j+1 k,j+1

A ( l ) ( - ) C* T- 1
i+1,j Xi+1,j, Xk,j+1 k,j+1 k,j+1

and
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where Fi,j;s,j-I E cen x n is given by

r.c., = { A~:!I,j ... A~~l A~~l-I' S = 1, ... ,i - 1;
~,),s,)-I A (1) S = i.

i,j-I'

with the boundary condition

(17)

(1) (2)
+Bi,j_IWi,j-I + Bi_I,jWi-I,j

i
'""" (2) (2) (2)) (2)+ L...,(Ai- I,jAi-2,j··· Ai-s+I,j Bi_s,jWi-s,j
s=2
i-I
'""" (2) (2) (2)) (1)+ L...,(Ai- I,jAi-2,j··· Ai-s,j Bi-s,j-IWi-s,j-I.

s=I

(18)

j i

Xi,j L 8 i ,j ;0 ,qX O,q + L 8 i ,j ;p ,OX p ,0

q=I p=I
i j i j

+ L L gi,j;p,qWp,q + L L IIi,j;p,qVp,q

p=Oq=O p=Oq=O

where

Replacing all Xs,j-I in (17) by (16) leads to (12). This
completes the proof. •

Lemma 3 provides a recursive scheme for the computation
of matrices ~i,j;k,O, ~i,j;O,l and \J!i,j;k,l, given ~s,j-I;k,O,

~s,j-I;O,l and \J!s,j-I;k,l, S = 1,2, ... ,i.

Lemma 4: For a 2-D system in the form of (1) and
the Kalman filter (7), the estimation error Xi,j is a linear
combination of boundary condition Xk,O, XO,l and noises
Wk,l and Vk,l for k E {O, ... , i} and l E {O, ... , j}. More
precisely,

(15)

(14)

k < i, l = j -1;

k = i, l = j;

k = i -1, l = j;

k < i -1, l = j;

k = i, l = j -1;

l<j-1

s j-I

L ~s,j-I;k,OXk,O + L ~s,j-I;O,lXO,l
k=I l=I

s j-I

+ L L \J!s,j-I;k,lWk,l·

k=Ol=O

Xs,j-I

\J!i,j;k,l

0,

B1:!I,j'

A~2)I ,A~2)2 , ... A
k(2+)

1 . Bk(2~,
~-,) ~-,) ,),)

Bi,~-I'
A ~2) ,A~2) .... A (2) B(I~

~-I,) ~-2,) k,j k,)-I
i

+ LFi,j;S,j-I· \J!s,j-I;k,j-I,

s=k
i

L Fi,j;s,j-I . \J!s,j-I;k,l,

s=I

~s,O;k,O = In . bsk;

~O,s;O,k = In . bsk;

\J!s,O;k,O = 0;
\J!o S'O k = o.

Proof: We proceed by in'duction. The statement is clearly
true when j = 1 in view of the boundary conditions (15).
Suppose that for each Xs,j-I, S = 1,2, · .. ,i, there holds

otherwise.

(19)

(20)

B1,~-I P = i, q = j - 1,

B1:!I,j P = i - 1, q = j,

A~I! g.. . + A~2) ,g. r,
~,)-I ~,)-I,p,q ~-I,) ~-I,),p,q

j-I i-I

- '""" K(I) C· '=. - '""" K(2) C .'= .L..., i,j;l ~,l'--l~,l;p,q L..., i,j;k k,)'--lk,);p,q

l=O k=O

q =j,o
~i,j;p,q

8· . - A(I) 8·· + A(2) 8· .
~,);O,q - i,j-I ~,)-I;O,q i-I,j ~-I,);O,q

j-I i-I

- '""" K(I) C, 8· - '""" K(2) C ·8 .L..., i,j;l ~,l ~,l;O,q L..., i,j;k k,) k,);O,q

l=O k=O
8· , - A(I) 8·· A(2) 8· ,

~,);p,O - i,j-I ~,)-I;p,O + i-I,j ~-I,);p,O
j-I i-I

- '""" K(I) C, 8· - '""" K(2) C ·8 .L..., i,j;l ~,l ~,l;p,O L..., i,j;k k,) k,);p,O
l=O k=O

(16)
It takes only persistence to see that the system model (1)
indicates that Xi,j is a linear combination of XI,j-I, X2,j-I,

. . . , Xi,j-I, XO,j and WI,j-I, W2,j-I, ... , Wi,j-I, WO,j, WI,j,

... , Wi-I,j. Indeed,

(1) (2)
Xi,j = Ai,j_IXi,j-I + Ai_I,jXi-I,j

(1) (2)
+Bi,j_IWi,j-I + Bi_I,jWi-I,j

(1) (2) ( (1)= Ai,j-IXi,j-I + Ai-I,j Ai-I,j-IXi-I,j-I

(2) (1)
+Ai_2,j Xi-2,j + Bi-I,j-IWi-I,j-I

(2) ) (1) (2)
+Bi_2,jWi-2,j + Bi,j_IWi,j-I + Bi_I,jWi-I,j

(1) (2) (1)
= Ai,j_IXi,j-I + Ai-I,jAi-I,j-IXi-I,j-I

(1) (2)
+Bi,j-IWi,j-I + Bi-I,jWi-I,j

(2) (1) (2) (2)
+Ai-I,jBi-I,j-IWi-I,j-I + Ai-I,jBi-2,jWi-2,j

(2) (2)
+Ai-I,jAi-2,jXi-2,j

(2) (2) (2)) (1)= (A'_ I .A·_2 .... A o . xo)' + A. '_IXi )'-1
~ ,) ~,) ,)' ~,) ,
i-I
'""" (2) (2) (2) (1)

+ L...,(Ai- I,jAi-2,j ... Ai-s,j)Ai-s,j-IXi-s,j-I

s=I
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j-l
(1) "" (1) (1)A i ,j - l IIi,j-l;i,q - c: Ki,j;lCi,lIIi,l;i,q - Ki,j;q

l=O

II- -
~,J;p,q

0, p = i, q = j,

q=j,p<i,

Based on Lemma 3 and 4, an algorithm can be easily
developed to compute the two terms (Xi,j+l, Xi+l,l) and
(Xi+l,j,Xk,j+l) that are required for the computation of the
gain matrices of the 2-D Kalman filter.

Theorem 2: For a 2-D system in the form of (1), there
hold

p = i, q < j,

p < i, q < j,

A~I! II- - . + A~2) -II- r,
~,J-l ~,J-l,p,q ~-I,J ~-I,J,p,q

j-l i-I

- "" K(I) C- II - - "" K(2) C -II -~ i,j;l i.l ~,l;p,q ~ i,j;k k,J k,J;p,q,
l=O k=O

(25)

(24)

k

(Xi+l,j, Xk,j+l) = L -Pi+l,j;p,OWp ,0 8 k ,j + l ;p ,0

p=1
j

+L -Pi+l,j;O,qWO,q8 k ,j + l ;0 ,q
q=1

k j

+L L Wi+l,j;p,qQp,q Sk,j+l;p,q

p=Oq=o
k j

+L L Wi+l,j;p,qSp,qIIk,j+l;p,q·
p=Oq=o

i

= "" -P- - i. oW 08~~ ~,J+ ,p, p, ~+I,l;p,O

p=1
l

+"" -P - -+1'0 U;;o 8~Z:: ~,J "q ,q ~+I,l;O,q

q=1
i l

+L L Wi,j+l;p,qQp,qST+l,l;p,q
p=Oq=o

i l

+"" "" W- -+1' S II~Z::~ ~,J ,p,q p,q ~+I,l;p,q'

p=Oq=o

(Xi,j+l, Xi+l,l)
i j+l

(L -Pi,j+l;k,OXk,O +L -Pi,j+l;O,lXO,l

k=1 l=1
i j+l l

+L L Wi,j+l;k,lWk,l, L 8 i+ 1,l;0,qXO,q

k=Ol=O q=1
i+l i+l l

+L 8 i+ 1,l;p,OXp,0 +L L Si+l,l;p,qWp,q

p=1 p=Oq=o
i+l l

+L L IIi+ 1,l;p,qVp,q)

p=Oq=o

and

Proof: From (12) and (18), it follows that the term
(Xi,j+l, Xi+l,l) can be represented by

(22)

(21)

(23)
Suppose for some land k, there exist matrices 8 i,l;0,q,

8 i,l;p,0, Si,l;p,q, IIi,l;p,q and 8k,j;0,q, 8k,j;p,0, Sk,j;p,q,

IIk,j;p,q such that
l i

Xi,l L 8 i,l;0,q XO,q +L 8 i,l;p,OXp,0

q=1 p=1
i l i l

+L L Si,l;p,qWp,q +L L IIi,l;p,qVp,q

p=Oq=O p=Oq=O

j k

Xk,j L 8k,j;0,qXO,q +L 8k,j;p,OXp,0

q=1 p=1
k j k j

+L L Sk,j;p,qWp,q +L L IIk,j;p,qVp,q

p=Oq=O p=Oq=O

It can be easily proved that for l = °or k = 0,
the boundary condition (22) satisfies the above equations.
Replacing Xi,l and Xk,j in (23), equation (18) follows. This
completes the proof. •

Remark 1: Note that in (19), (20) and (21),

8 i,l;0,q = 0, for l < q;
8k,j;p,0 = 0, for k < p;
Si,l;p,q = 0, for l < q;
Sk,j;p,q = 0, for k <p;

IIi,l;p,q = 0, for l < q;
IIk,j;p,q = 0, for k <p.

i-I

- L Ki,~~k (Ck,jXk,j + Vk,j)

k=O

with the following boundary conditions

8 i,0;p,0 = In . bip;

8 0,j;0,q = In . bjq;

Si,O;p,O = SO,j;O,q = 0;
IIi o'p °= IIo j'o q = 0.

Proof: By (1) and (7), 'we can 'write
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Compute 8 i,j;0,l, 8 i,j;k,0, 3 i,j;k,l and IIi,j;k,l

for l E {a, ... ,j} and k E {a, ... ,i}, using (19), (20)
and (21);

(1) (2) { '}Compute Ki,j;l and Ki,j;k for lEO, ... ,J
and k E {a, ... ,i}, by (24) and (25);

Compute Xi,j by (7) and then compute

ei,j = Yi,j - Ci,jXi,j;

(Xi,j, Xi-l,j) =
j i-I

'"" 8, "0 llr.o ~~ . + '"" 8, " oW o~~ .L..J ~,J"q ,q ~-I,J;O,q L..J ~,J,P, p, ~-I,J;p,O

q=1 p=1
i-I j

+ '"" ,""(,=,, Q + II·, S )'11*L..JL..J ......~,J;p,q p,q ~,J;p,q p,q i-l,j;p,q
p=Oq=O

Now we need to compute the term (Xi,j, Bi,~-IWi,j-l+
(2)

Bi_1,jWi-l,j). By (1) and (7), we have

Algorithm

Compute Pi,j using (27);

end

end

For (p,q), (k, l) E 3, let xp,o = 0, XO,q = 0, ep,o = YP,o,

eO,q = YO,q, Pp,o = Wp,o, PO,q = WO,q. Matrices ~p,O;k,O,

~O,q;O,l, '11p,O;k,O, '11O,q;O,l are given by (15), and 8 p,0;k,0,

8 0,q;0,l, 3 p,0;k,0, 3 0,q;0,l, IIp,O;k,O, IIO,q;O,l are given by (22).

For j = 1 : N 2

for i = 1 : N 1

Compute ~i,j;O,l, ~i,j;k,O and '11i,j;k,l for l E {O, ... ,j}
and k E {a, ... ,i}, using (13);

Xi,j = Xi,j - Xi,j

= A~~_IXi,j-l + A~:!I,jXi-l,j + Bi,~-IWi,j-l
j-l i-I

+ Bi~l,jWi-l,j - (L K~,~_I;lei,l+LK~:?I,j;kek,j)
l=O k=O

Since for ° < l < j and ° < k < i we have
Wi,j- 1..lxi,j-l, Wi,j- 1..lxi-l,j, Wi,j- 1..lei,l, Wi,j- 1..lek,j,

and Wi-l,j..lxi,j-l, Wi-l,j..lxi-l,j, Wi-l,j..lei,l,

Wi-l,j..lek,j, Wi,j-1..lwi-l,j, then we find

where

(Xi,j, Xi,j-l) =
j-l i

= L 8 i,j;0,q WO,q~;,j-l;O,q+ L 8 i,j;p,0 Wp,O~;,j-l;p,O
q=1 p=1

i j-l

+ '"" ,""(,=,, Q + II" S )'11*L..JL..J ......~,J;p,q p,q ~,J;p,q p,q i,j-l;p,q
p=Oq=O

Then (24) follows. Similarly, (Xi+l,j,Xk,j+l) can be com­
puted as follows

(Xi+l,j, Xk,j+l)
i+l j

(L ~i+l,j;p,OXp,o+ L ~i+l,j;O,qXO,q
p=1 q=1

i+l j j+l

+ L L '11i+l,j;p,qWp,q, L 8k,j+l;0,q XO,q

p=Oq=O q=1
k k j+l

+ L 8k,j+l;p,OXp,0 + L L 3k,j+l;p,qWp,q

p=1 p=Oq=O
k j+l

+ L L IIk,j+l;p,qVp,q).

p=Oq=O

Then (25) follows. •
Remark 2: Considering the boundary condition (22), it is

easy to see that

(Xi,j+l, Xi+l,O) = (Xi+l,j, XO,j+l) = ° (26)
Theorem 2 solves the problem of computing matrices

K~,~l and K~,~k of the Kalman filter (7). The next theorem
will give an algorithm for the computation of matrices Pi,j. (xi,j,Bi,~_IWi,j-l+B~?!I,jWi-l,j)

Theorem 3: Matrix Pi,j of the Kalman filter (7) can be (1) Q ((1))* (2) Q ((2))*
B i,j-l i,j-l B i,j-l + B i- 1,j i-l,j B i- 1,j .

computed as follows
j-l This completes the proof. •

Pi,j = (L 8 i ,j ;o ,qWO,q iI>i ,j - l ;O,q Based on Theorem 1 together with Theorem 2 and Theo-
q=1 rem 3, an algorithm for the Kalman filtering of 2-D systems

i i j-l can be obtained.

+ L 8i,j;p,OWp,0~;,j_l;p,0+LL 3 i,j;p,qQp,q'11;,j_l;p,q
p=1 p=Oq=O

i j-l

+ L L IIi,j;P,qSp,q'11;,j_l;P,q)(A~~_I)*
p=Oq=O

j i-I

+(L 8 i,j;0,q WO,q~;-I,j;O,q+ L 8 i,j;p,0Wp,O~;-I,j;p,O
q=1 p=1
i-I j

+ L L 3 i,j;p,qQp,q'11;_I,j;p,q
p=Oq=o
i-I j

+ L L IIi,j;P,qSp,q'11;_I,j;P,q)(A~:!I,j)*
p=Oq=o

+ Bi
1
J!_1 Qi,j-l (Bi

1
J!_I)* + Bi?!1 J'Qi-l,j(B~?!1J')*.

, , , , (27)

Proof: From (8) and the structure of the 2-D system (1), it
is found that

Pi,j = (Xi,j, Xi,j) = (Xi,j, Xi,j)

(Xi,j, A~IJ!_IXi,j-l+ A~:!1 J,Xi-l,j
(1) , (2)'

+Bi,j_lWi,j-l + B i_ 1,jWi-l,j)
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B(l) p = i, q = J' - 1,i,j-1

B (2) -' 1 -'
i-1,j P - 't - , q - J,

(A~~_l - Kj,~~_lCi,j-l) 3 i,j - l ;p,q

+(A~:!l,j - Ki,~i-1C i- 1,j) Si-1,j;p,q

otherwise.

In the next section, a simplified version of 2-D Kalman
filter is provided which cannot achieve an optimal estimation
but is easier to apply. The performance analysis of such
simplified Kalman filter is also given.

IV. A SIMPLIFIED VERSION OF 2-D KALMAN FILTER

Given (i, j) E f2, for the 2-D system in the form of (1), we
consider a simplified 2-D Kalman filter having the following
structure

~i,j;p,q

o p = i, q = j,

(29)

where matrices <Pi,j;p,O and <Pi,j;O,q, Wi,j;p,q are given in (13)
and (14), and matrices 8 i,j;0,q, 8 i,j;p,0, Si,j;p,q and IIi,j;p,q

are given as follows

8- - - A(l) 8- - + A(2) 8- -'t,J;O,q - i,j-1 't,J-1;0,q i-1,j 't-1,J;0,q

-K;,~j_1C i,j-1 8 i,j-1;0,q - KL~~i-1C i-1,j8i- 1,j;0,q;

8- - - A(l) 8- - + A(2) 8- -'t,J;P,O - i,j-1 't,J-1;p,0 i-1,j 't-1,J;p,0

-K;,~j_1C i,j-1 8 i,j-1;p,0 - K;,~i-1C i- 1,j8i- 1,j;p,0

II- -'t,J;p,q
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The estimation error Pi,j := (Xi,j, Xi,j) is expressed by
(8) and Ti,j := Ci,jPi,jC~j+ Ri,j.

This computation scheme is similar to the algorithm shown
in Section III. The difference lies in the structure of the filter
and the computation ofmatrices 8 i,j;0,q, 8 i,j;p,0, Si,j;p,q and
IIi,j;p,q. Compared with the Kalman filter given in Section
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Therefore, less memory is needed for the computation of
the simplified Kalman filter.
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