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Abstract— Steady-state visual evoked potential (SSVEP) 

based brain-computer interface (BCI) has attracted great 

attention in BCI research due to its advantages over the other 

electroencephalography (EEG) based BCI paradigms, such as 

high speed, high signal to noise ratio, high accuracy, commands 

scalability and minimal user training time. Several studies have 

demonstrated that SSVEP BCI can provide a reliable channel 

to the users to communicate and control an external device. 

While most SSVEP based BCI studies focus on encoding the 

visual stimuli, enhancing the signal detection and improving the 

classification accuracy, there is a need to bridge the gap 

between BCI "bench" research and real world application. 

This study proposes a novel distance adaptable SSVEP based 

BCI paradigm which allows its users to operate the system in a 

range of viewing distances between the user and the visual 

stimulator. Unlike conventional SSVEP BCI where users can 

only operate the system at a fixed distance in front of the visual 

stimulator, users can operate the proposed BCI at a range of 

viewing distances. 10 healthy subjects participated in the 

experiment to evaluate the feasibility of the proposed SSVEP 

BCI. The visual stimulator was presented to the subjects at 4 

viewing distances, 60cm, 150cm, 250cm and 350cm. The mean 

classification accuracy across the subjects and the viewing 

distances is over 75%. The results demonstrate the feasibility of 

a distance adaptable SSVEP based BCI. 

I. INTRODUCTION 

Brain-Computer Interface (BCI) translates users’ intents 

into commands by detecting the brain activities without 

relying on the brain normal output pathway [1, 2]. Several 

electroencephalography (EEG) based BCI paradigms have 

demonstrated that BCI can provide a reliable alternative 

channel for healthy people as well as patients with 

neuromuscular disorder to communicate and control an 

external device. Among these EEG based BCI paradigms, 

SSVEP based BCI has drawn relatively considerable 

attention in BCI studies recently due to its high information 

transfer rate (ITR), high signal to noise ratio (SNR), high 

classification accuracy, ease of increasing the commands 

and minimal user training time [3, 4]. 

The mean classification accuracies and ITR reported in 

Bremen-BCI speller based on SSVEP were over 95% and 

over 60 bits/min [5]. The highest ITR from one subject in 

their study was up to 124 bits/min. An environment 

controller utilizing 48 LEDs achieved ITR of 68 bits/min 

[6]. Recently, a mental speller based on SSVEP allowed one 
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letter to be spelled in one selection facilitated by a QWERT 

keyboard which contained 30 LEDs representing 26 letters 

and 4 symbols [7]. These studies have shown the high ITR 

and classification accuracies in SSVEP based BCIs. They 

also demonstrated that the superior performance of SSVEP 

BCI can be achieved by one single selection task or a 

sequential selection tasks.   

There were a few SSVEP based BCI studies which 

attempted to improve SSVEP detection rates and reduce the 

calibration phase which is normally used to decide the best 

parameters for individual subject.  Lin et al. (2006) proposed 

a SSVEP detection method based on canonical correlation 

analysis (CCA). Their proposed CCA SSVEP detection 

method found CCA correlation coefficients between EEG 

signals and the reference signal corresponding to one 

stimulus. The corresponding stimulus reference signal 

producing the largest CCA correlation coefficient was 

regarded as the attended target. Friman et al. (2007) 

proposed a SSVEP detection method which combined the 

multiple electrodes signals into a channel signal to enhance 

SSVEP response and cancel the noise. Both methods 

outperformed the conventional power spectral density 

analysis [8, 9].  

Meanwhile, a great effort has been made to overcome the 

limitation of the number of the frequencies available to 

encode the visual stimuli. Jia et al. (2011) used the 

frequency and the phase to encode SSVEP visual stimuli. 

More visual stimuli can be created by fewer frequencies. In 

their study, 15 visual stimuli were made by three distinct 

frequencies. 4 stimulating frequencies can present 6 to 10 

visual stimuli by using dual frequencies for one stimulus 

[11, 12]. Multiple frequencies sequential coding (MFSC) 

presented one stimulus by multiple frequencies in a 

sequential order. The maximum number of stimuli using 

MFSC depended on the number of the coding epochs in one 

sequence and the number of the stimulating frequencies [13].  

For example, if the coding epoch is 2 and the number of the 

frequencies is 3, the maximum number of stimuli is up to 9. 

 Currently, a few commercial EEG headsets available, 

e.g. Emotiv, which provide user friendly EEG acquisition, 

have been evaluated and used in BCI studies [14]. The 

aforementioned studies have offered a solid theory 

background in the implantation of SSVEP based BCI, from 

the fundamental visual stimuli to SSVEP detection. 

Therefore, there is a need to bridge the gap of BCI studies to 

real world application.   

This study proposes a novel SSVEP based BCI which can 

adapt the change of the viewing distance between the users 

and the visual stimuli and allows its users to operate the BCI 

system at the distance within the range. In conventional 
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SSVEP based BCI, the users have to be in front of the visual 

stimuli in order to elicit SSVEP response to operate BCI. 

The proposed new paradigm can improve the usability and 

flexibility. It is hoped that the proposed paradigm can 

broaden the potential target BCI users and the applications. 

This paper is organized as follows: In Section II, the 

experimental setup, protocol, and data analysis are 

presented.  Section III presents the analyzed results. Finally, 

a general discussion is presented in Section IV.                   

II. METHODS AND MATERIALS 

A. Subjects 

10 healthy subjects (8 males, 2 females, mean age=30.3, 

SD=7.9) with normal or corrected to normal vision 

participated in the experiment to evaluate the feasibility of 

the proposed system. Two of the subjects have experience in 

SSVEP based BCI and the others are naïve to BCI. The 

subjects are undergraduate or postgraduate students of the 

university. Subjects were provided and signed the consent 

form and read the information sheet before the experiment. 

The experiments were approved by the departmental Ethics 

Committee. 

B. Data Acquisition 

SSVEP is found most prominent at the area over the 

visual cortex [3, 15] which is the region of interest (ROI) in 

this study. 11 electrodes at the occipital region were selected 

as the signal channels according to the international 10-20 

electrode system. Cz and Fz were chosen as the ground and 

the reference electrode respectively. Fig. 1 shows the 

channels montage and electrode selection. Subjects were 

seated on a comfortable chair and wore a 128 channels EEG 

cap (EASYCAP) in a dim lit room. EEG abrasive skin 

prepping gel (Nuprep Gel) and EEG conductive gel (Electro-

Gel) were applied to the electrode sites to eliminate the dead 

skin and reduce the impedance between scalp and electrodes. 

The impedance was kept under 5kΩ throughout the entire 

experiment. EEG was recorded by SynAmps
2
 (amplifier, 

NEUROSCAN) and NeuroScan 4.5 (recording software, 

NEUROSCAN). EEG was digitized by sampling frequency 

2,000 Hz.  

C. Visual stimuli and experiment protocol 

The visual stimuli were four red LEDs (OSRAMTM, 

LRCP7P which is a surface mount LED being mounted to a 

substrate 20mm × 20mm). Four LED substrates were 

attached at four corners of a rectangular (25cm × 25cm) 

layout in the centre of a board (60cm × 40cm). Each LED 

was modulated by a square wave with a distinct frequency 

generated by a customized circuit based on a microcontroller 

(MICROCHIPTM, PIC18F46K20). The microcontroller was 

programmed to generate four square waves of four different 

frequencies, 12, 13, 14 and 15 Hz. These stimulating 

frequencies have been widely used in SSVEP based BCI 

[16]. The duty cycle of the square waves was 50%.  

 

Figure 1:  Channels montage. 11 electrodes over occipital region (in the 

black circle) were selected as EEG recording electrodes. Cz was the ground 
electrode in yellow circle and Fz in purple circle was for the reference. The 

figure of the electrode positions is from www.easycap.de. 

 

During the experiment, the visual stimulator board 

comprising 4 LEDs was present to the subject at four 

viewing distances 60cm, 150cm, 250cm and 350cm. In our 

previous study [17], it was found that the impact of the 

viewing distance can be compensated by changing the 

intensities of the visual stimuli. Therefore, the intensities of 

LEDs presented to the subjects were different at different 

viewing distance. The intensities of 60cm were the lowest 

and the ones of 350cm were the highest in the experiment. 

For each subject, the experiment contained 4 blocks. Each 

block corresponded to one viewing distance. Each block 

contained 4 runs. Each run corresponded to one stimulating 

frequency and contained 20 trials. Each trial had one 

attending phase and one resting phase. During the attending 

phase, 4 LEDs flickered at different frequencies 

simultaneously for 5 seconds. During the resting phase, 4 

LEDs were off. To avoid the visual adaptation, the resting 

phase lasted for 5 or 6 seconds randomly. Before each run, 

the subject was instructed to attend to one of four targets for 

20 trials. The viewing distances were presented to the 

subject in a fixed order of 60-150-250-350cm. The order of 

attending targets was counterbalanced in 4 blocks (i.e. 16 

runs). Each target was attended in different order in each 

block. There was a short break between two blocks. Subjects 

were allowed to shift their gaze and head to attend the target 

but instructed to avoid the movement during the attending 

phase.  

D. Data pre-processing and off-line analysis 

EEG was band-pass filtered by 1-50Hz before being 

further analyzed. EEG was extracted from 1 second before 

stimulus onset to 5 seconds after stimulus onset for each 

trial. Epoch extraction was performed by EEGLAB toolbox. 

To reduce the computation time of the classification, EEG 

was down-sampling at 100Hz.   

Fast Fourier Transform (FFT) was used to visualize the 

SSVEP response at different viewing distances. FFT was 

also employed to compute SNR which is an important factor 
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for SSVEP in the classification. SNR at frequency f is 

defined by the equation (1) [18],  

 

𝑆𝑁𝑅𝑓 =
2×𝑁×𝑥𝑓

 [𝑥 𝑓−𝑛×𝑓𝑟𝑒𝑠  +𝑥 𝑓+𝑛×𝑓𝑟𝑒𝑠  ]𝑁
𝑛=1

                             (1) 

 

𝑥𝑓  represents FFT power at frequency f.  𝑓𝑟𝑒𝑠  in 

equation (1) is the frequency resolution of FFT spectrum. 

N is the number of neighboring frequencies of f. N was set 

to 8 in this study. SNR analysis was to inspect the impact 

of the viewing distance on SSVEP.  

EEG was classified into one of 4 classes by CCA. 

CCA is a statistical multi-variant technique used to 

investigate the correlation of two sets of variables. CCA 

transfers two sets of variable X and Y into two canonical 

variables U (=X
T
wx) and V (=Y

T
wy) such that the 

correlation coefficient ρ between U and V is maximized. 

The vectors wx and wy can be found by solving the 

equation (2)[4], 

 

max𝑤𝑥 ,𝑤𝑦
 𝜌(𝑈, 𝑉) =

𝐸[𝑤𝑥
𝑇𝑋𝑌𝑇𝑤𝑦 ]

 𝐸[𝑤𝑥
𝑇𝑋𝑋𝑇𝑤𝑥 ]𝐸[𝑤y

𝑇𝑌𝑌𝑇𝑤𝑦 ]
               (2)          

 CCA was first proposed to detect SSVEP by [8]. CCA 

computes more than one pair of the canonical variables. 

The correlation coefficient of the first pair canonical 

variables is the largest and the most important and is used 

in SSVEP detection in this study. For SSVEP detection in 

this study, two sets of variables are 11 electrode signals 

and the reference signal corresponding to one of the 

stimulating frequencies. For details of CCA in detection 

of SSVEP, please see [4, 8]. 

III. RESULTS 

Fig. 2 illustrates the grand average FFT powers of each 

attended frequency across the subjects at different 

viewing distances. The dot matrix beside the legend 

stands for the ANOVA test of FFT powers of 20 trials 

between the corresponding viewing distance (the row) 

and one of the other distinct viewing distances (the 

columns). The diamond, circle and square dots represent 

the distances 150cm, 250cm and 350cm respectively. For 

example, the row beside the legend of 60 cm stands for 

ANOVA tests between 60cm and 150cm (diamond), 

250cm (circle) and 350cm (square) respectively. The 

unfilled black dots stand for p values of ANOVA tests 

larger than 0.01 (i.e. not significant). The red filled dots 

stand for the corresponding p values less than 0.01 (i.e. 

the significance level is 0.01).  

In spite of the LED intensities compensated, the grand 

average of FFT powers still shows significantly different 

between different viewing distances, especially between 

60cm and other distances as seen in Fig. 2. Meanwhile 

SSVEP components at unattended frequencies can be 

seen in the frequency spectrum. SSVEP response at the 

attended frequency is lower at the longer viewing distance 

but SSVEPs of the unattended frequencies are higher at 

the longer viewing distances compared to the ones at the 

shorter viewing distances. 

 

 
Figure 2: Grand average of FFT power across all subjects of each 

attended frequency at different viewing distances. The dot matrix beside 

the legend stands for the ANOVA test of FFT powers of 20 trials 

between two distinct viewing distances. The diamond, circle and square 

dots represent the distances 150cm, 250cm and 350cm respectively. For 

example, the row beside the legend of 60 cm stands for ANOVA results 
between 60cm and 150cm (diamond), 250cm (circle) and 350cm 

(square) respectively. The black unfilled dots stand for the 
corresponding p values of ANOVA tests > 0.01 (significance 

level=0.01). The red filled dots stand for the corresponding p values < 

0.01.   

Fig. 3 is SNRs across 10 subjects of each attended 

frequency at different viewing distances at 3 seconds after 

the stimulus onset and their corresponding ANOVA tests. 

SNRs across the subjects at 60cm are the highest among 

all viewing distances. The blue vertical bars (error bars) 

indicate the inter-subject variance in SNRs.  

Fig. 4 is the mean accuracies of the attended frequency 

across the subjects at different viewing distances and the 

corresponding ANOVA tests. EEG epoch time interval of 

Fig. 4 is 2 seconds and the number of SSVEP harmonics 

is 1. Fig. 4 shows inter-subject variance at different 

viewing distances within the same frequency. Inter-

subject variance of 12Hz is the least prominent while 

15Hz is the greatest. However, the differences of the 

mean accuracies at different viewing distances are not 

significant for all attended frequencies. In our previous 

study [17], the accuracies at 250cm and 350cm were very 

low without intensities compensation. 

 
Figure 3: (a)-(d) SNRs of each attended frequency across the subjects at 
4 viewing distances. (e) SNRs across the subjects and the attended 

frequencies corresponding to the same viewing distance. The dots at 

each viewing distance represent ANOVA tests between SNRs of all 
subjects at two different viewing distances.  The shapes of the dots are 

the same as Fig. 2.  
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Figure 4: (a)-(d) Mean classification accuracies of the attended 

frequency across the subjects at different viewing distances and the 

corresponding ANOVA tests. (e) Mean accuracies across the subjects 

and the attended frequencies at different viewing distances.  The shapes 

of the dots are the same as Fig. 2.  

IV. DISCUSSION 

Even though the intensities of the LEDs were 

compensated to respond to the change of the viewing 

distances, the impact of the viewing distance cannot be 

completely eliminated. This impact can be observed from 

Fig. 2, half of the ANOVA tests of FFT powers at the 

different viewing distances which are significant, 

especially the tests between 60cm and other distances for 

any attended target. However, SNRs of Fig. 3 

demonstrate that although SNRs of 60 cm are higher than 

the other viewing distances, the difference is not 

significant. If the viewing distance of 60cm is used as the 

benchmark, the results demonstrate that SSVEP elicited at 

longer viewing distances can also be used as input to the 

BCI system. Furthermore, the mean classification 

accuracies of all attended targets using 2 seconds of EEG 

epoch time interval are between 82% and 68%. These 

results demonstrate that SSVEP response can be elicited 

at the longer viewing distances and the detection rate of 

SSVEP is acceptable. The proposed novel distance 

adaptable SSVEP BCI is achievable with promising 

results.  

From Fig. 2, it can be seen that SSVEP components of 

all the stimulating frequencies appear in the FFT power 

spectrum. Moreover, the components of unattended 

frequencies become more prominent as the viewing 

distance increases. This might explain why the 

classification accuracies at the longer viewing distance 

are lower than the short viewing distance. The lower 

classification accuracies might be resulting from the 

interference of the unattended targets. However, as 

mentioned in Section II, the viewing distances were 

presented to the subjects in a fixed order of 60-150-250-

350cm. It cannot be ruled out the poor performance at 

longer viewing distance is caused by the fatigue. For 

example, 350cm is always the last block in the 

experiment for all subjects. 
The next step of this study is to implement a real time 

online distance adaptable SSVEP BCI which can detect 
the user’s positions automatically and adjust the intensities 

of the visual stimuli accordingly. Another direction is to 
investigate if the combination of the different stimulating 
frequencies can improve the classification accuracies. 
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