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Steady state visual evoked potentials-based patient interface under breathing
constraints

X. Navarro∗, S. Campion, F. De Vico Fallani, Member, IEEE, P. Pouget, T. Similowski,
M. Raux and M. Chavez

Abstract— Steady state visual evoked potentials (SSVEP)
have been widely utilized in brain computer interfacing (BCI)
in last years. In this paper, we present a study exploring
the possibilities of SSVEP to manage the communication
between patients suffering respiratory disorders and health
care providers. By imposing different breathing constraints,
five healthy subjects communicated their breathing sensations
(breathing well/breathing bad) using a visual frequency tag-
ging paradigm: two visual stimuli with different flickering
frequencies (15 and 20 Hz) were simultaneously presented on
a screen. Using electroencephalographic (EEG) signals from
only three EEG electrodes, two spectral features were extracted
by a spatial filter in a sliding window, then classified by an
unsupervised algorithm based on k-medians. Average detection
success rates were of 70% during breathing discomfort, and
of 83% when subjects breathed comfortably. Results suggest
that SSVEP-based BCI may be a promising choice to improve
patient-caregiver communication in situations of breathing
discomfort when verbal communication is difficult.

Keywords: SSVEP, BCI, Spatial filters, k-medians, EEG,
mechanical ventilation, patient communication

I. INTRODUCTION

Communication problems are common in patients with
neuromuscular diseases, paralysis or in semi-consciousness
states due to sedative drugs [1]. To facilitate patient-caregiver
interaction, steady state visual evoked potentials (SSVEP)-
based BCIs are being increasingly employed in clinical
environments and rehabilitation. These systems use the phys-
iological property that cortical responses can be modulated
by visual-spatial selective attention. Monitoring of SSVEP
elicited by multiple flickering stimuli allows a BCI system
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to detect to which stimulus the subject is attending to.
Electroencephalographic signals (EEG) from visual areas are
employed to interface the command associated with each
stimulus frequency. This technique is easy to implement,
it can be applied with no calibration and provides high
information transfer rates [2], [3].

EEG is usually processed in short time windows from
which spectral features are extracted and then classified.
SSVEP frequencies need to be adequately chosen in order
perform good classifications. By using a combination of six
electrodes, authors in [4] for instance, obtained an average
classification accuracy of 84% by selecting the largest test
statistic associated to six SSVEP frequencies.

Concerning clinical applications, BCIs using SSVEP have
been applied, for instance, to motion disabled persons [7] or
in rehabilitation training systems [8]. However, this paradigm
has not already been employed to establish a communica-
tion pathway with patients receiving mechanical ventilatory
assistance or presenting respiratory failure. In this work
we address this issue by exploring, for the first time, the
potential of a SSVEP brain computer interface to help these
patients communicate their breathing discomfort using an
automated method. We assess the ability of healthy subjects
to communicate their breathing sensations by a SSVEP
interface while breathing under several constraints emulating
respiratory troubles.

Our paper is organized as follows: In Section II we
describe the experimental protocol and the methodology to
obtain the features and classify the SSVEPs. Next, Section
III shows the performances of the proposed BCI applied on-
line and finally, results are discussed in Section IV.

II. METHODS

A. Experimental design

Five healthy subjects (median age = 26 years, interquartile
range = 23-30 years) were recruited for this study. They were
on a comfortable chair in a dark, isolated room containing a
CRT screen monitor placed at 1 m from the subject’s head.
EEG signals were acquired by three electrodes placed at O1,
O2 and Oz positions (plus the ground and reference elec-
trodes at AFz and Cz) according to the 10-20 International
System and amplified by BrainAmp hardware (Brain Prod-
ucts, Munich, Germany). Subjects were breathing through a
mouthpiece attached to a pneumotachograph (Flow Sensor
279331, Hamilton Medical AG, Rhazuns, Switzerland), a
pressure transducer to record respiratory signals. Inspiratory
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Fig. 1. Top panel: Screen displaying the two images. The upper squares
and the circle flickered alternating white/black colors at 15 Hz and the
lower ones at 20 Hz. The circle constitutes the focusing point. Bottom
panel: Approximate timing of the experiment. Vertical lines constitute the
15-second trials in which the display images appeared (see details in the
text).

ventilatory loads were applied to induce ventilatory discom-
fort in 5-minute sequences as follows:

1) Spontaneous ventilation (SV): subjects breathed com-
fortably without any constraint.

2) Inspiratory resistive loading (IRL): a resistive load of
50 cm H2O l−1 s−1 (7100 Hans Rudolph inc., USA)
induced ventilatory discomfort proportional to air flow.

3) Inspiratory threshold loading (ITL): inspiration was
conditioned to the production of an inspiratory effort to
50% of maximum inspiratory pressure using a spring-
to-stretch device (PowerBreathe Classic, PowerBreath
Ltd, UK).

4) Hypercapnia (CO2): breathing a mixture of 5% CO2

and 95% O2 without any mechanical constraint in-
duced metabolic ventilatory discomfort referred to as
”air hunger”.

5) Washout spontaneous ventilation (WSV).
Within each condition, the screen displayed the flickering
stimuli only during 15-second trials every minute. At every
trial, the subject was asked to focus on a fixed point to ensure
that central -and not peripherical- retina was stimulated in
all subjects (see Figure 1). Each one of the two images was
associated to the labels ”I’m breathing well” and ”Breathing
is difficult” oscillating at 15 and 20 Hz, respectively.

Time intervals between respiratory conditions (resting
periods) were employed to question the subject about his/her
ventilatory comfort during past condition, to modify the
experimental set-up and to remind the directions. At the end
of each trial the technician questioned the subjects which
descriptors of respiratory comfort they had chosen.

B. Pre-processing

Recorded EEG data were firstly down-sampled at 125
Hz (originally sampled at 1000 Hz) and band-pass filtered
(a 7th order Butterworth filter, cut-off frequencies 2 − 45

Hz ) to eliminate head movements artifacts and power-
line interferences. All algorithms were developed in Matlab
language (v7.13.0, MathWorks, USA).

To obtain reasonably fast and reliable detections in real
time, the EEG was analyzed in 3-second time windows
(with 50% overlap) combining the information from the three
referenced, pre-processed channels. Indeed, 3 seconds is a
significantly low delay compared to the respiratory dynamics
under breathing constraints.

C. Feature extraction

In order to discriminate efficiently a stimulus frequency
f and a number of harmonic frequencies Nh, we have
used a spatial filter algorithm [4] [9]. Other approaches for
SSVEP detection exist, but they use time-locked averaging
techniques to reduce the background EEG activity [5] [6].
These methods, however, are not very useful in a BCI setting
since they require a large number of trials.

Assuming that visual stimulation with a flicker-frequency
of f Hz is applied, we consider Y as an EEG data segment
with Nt samples and Nc channels that can be modeled as a
three-component mixing matrix:

Y = XA+ ZB+E, (1)

with dimension Nt × Nc. Here, X is the so-called f -
model matrix Nt×2Nh that contains the real and imaginary
components of ej2πfht of f and its harmonics, h = 1 . . . Nh,
with j =

√
−1.

In a similar manner, Z contains the components relative
to both brain activity and external artefacts, also known as
nuisance signals. The measurement noise, considered to be
stationary within Nt sample windows, is represented by the
matrix E. Matrices A and B are the corresponding factors
scaling the real and imaginary components of X and Z,
respectively.

From the recorded signals Y, we applied a spatial filter to
find a combination S = ZW such that the nuisance signals
are minimized. In our case, since the number of channels is
small (Nc=3), we did not reduce the dimension of S , hence
W is a Nc × Nc matrix containing the weights for each
combination in its columns. The minimization problem can
be solved by the eigenvalue decomposition of the product
Y−fY, where the first term is obtained as :

Y−f = Y −X(XTX)−1XTY, (2)

with the sub-index −f denoting the removal of the frequency
component f and its Nh harmonics.

The classification features were based on the signal level
at the main stimulus frequency f plus the harmonics, and
the level of noise when no stimulation is present (between
trials). The former could be estimated by the power Pf in
the Nh SSVEP harmonic components of XTS. To estimate
the noise level we require to remove the f component from
S:

S−f = Y−fW, (3)
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Fig. 2. Values of T15 (blue curve) and T20 (red curve) during the experiment in subject 3.

Since the noise is underestimated in the above expression [4],
the noise power P−f is computed from a 15th order auto-
regressive model fitted to S−f (which simulates a baseline
noise without stimulus as suggested by [4]). The statistics
Tf that reflects the power at frequency f with respect to
the no-stimulus power, was obtained by signal-to-noise ratio
of the above described estimators, i.e. Tf = Pf/P−f . An
example of Tf obtained after applying the spatial filters on
15 Hz and 20 Hz can be seen in Figure 2.

D. Classification
The choice of an unsupervised classification algorithm was

facilitated by some prior knowledge of the statistics Tf1 and
Tf2 from the SSVEP frequencies (f1=15 Hz, f2=20 Hz). As
mentioned before, they correspond to signal-to-noise ratios
at each frequency band, so we expected these values to be
greater during visual stimulation.

Let θ be an observation vector formed by the pair
[Tf1 Tf2] at a Nt-sample window and k = {0, 1, 2} the
three classes labelled according to the frequency viewed by
the subject (absence of visual stimuli, f1 and f2, respec-
tively). The classical k-means algorithm is a well-known,
computationally-effective solution that classifies θ in one of
the k groups or clusters by finding the minimal distance to
each j-th cluster center:

argmin

k∑
j=1

∑
θj

‖ θ − cj ‖2 . (4)

The centers cj are updated dynamically with the new arrivals
by computing the arithmetic mean in the classified observa-
tions θj :

c
(t+1)
j =

1

t

t∑
i=1

θ
(i)
j . (5)

Since the mean is more influenced by extreme values than
the median, we instead updated cj by performing the median
value in θ

(i)
j , a variant also known as k-medians clustering

[10]. Equation 5 can be then rewritten:

c
(t+1)
j = median(θ

(0)
j , θ

(1)
j , ..., θ

(t)
j ). (6)

A known drawback of clustering-based algorithms is that
centroids need to be initialized, and a priori information is
necessary.

We addressed this issue by simply initializing the centers
as follows: c(0)0 = [0 0], c(0)1 = [ρ 0], c(0)2 = [0 ρ]. Since the
presence of visual stimuli implies larger signal-to-noise ratios
in classes 1 and 2, then ρ > 1. Additionally, we introduced a
modification in the k-medians update to increase the control
over the sensitivity/specificity pair. A new term and a weight
factor is introduced in Eq. (6). Hence, the updating of the
centroid is:

ĉ
(t+1)
j = (1− γj)θ(t)j + γjc

(t+1)
j , (7)

where γj is an exponential function that depends on the
initial conditions and the actual value of the sample :

γj = e
− ρ

‖θ(t)
j

‖ . (8)

The purpose of introducing a ρ-negative exponential depen-
dency is to penalize new observations having norms lower
than ρ, preventing thus the cluster center from moving to the
origin, i.e to class 0.

III. RESULTS

We have firstly evaluated the BCI performances as a
function of ρ. As it can be observed in Figure 3, lower values
provide -on average- higher sensitivity (small values of Tf
are classified in 1 or 2 classes due to the proximity to class 0)
but at the expenses of a lower specificity. In general, all the
performance measures studied evolve almost linearly with
respect to ρ, which is a clear advantage of the modified of
k-medians over the original algorithm. Indeed, when using
a standard k-medians algorithm with ρ = [1, 2, .., 20] to
initialize c

(0)
1 and c

(0)
2 (results not shown here), sensitivities

and specificities remained practically unchanged (81/39 %
sensitivities and 88/86 % specificities for 15/20 Hz). This
is due to the fact that centroids move rapidly to the class
median as the number of new observations increase.

On the other hand, to assess the effectiveness of our
method in a real implementation, an operating point is fixed
by the value of ρ. For ρ = 20 for instance, the error rate is
minimized at the expenses of lower sensitivity. The choice
of ρ = 20 corresponds to a trade-off between low false
alarm rate and good specificity which is a standard clinical
requirement. Other values of ρ (e.g. ρ = 5) could provide a
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Fig. 3. Performance measures of the proposed method using the modified
k-medians classifier. The rates are expressed as the mean ± standard error
measure of the five test subjects.

100% of successful detections, but a much higher false alarm
rate.

We have also estimated the success rate, which is a
common measure used in BCIs, computed as the number of
segments in which there was at least one correct classification
over the total number of displaying periods. Such values are
reported in Table I for ρ = 20.

The poor results observed in subject # 1 might be due
to the presence of electromyographic artifacts related to
respiratory muscles, or to the subject’s distraction during
inspiration-constrained tasks. We also notice that some sub-
jects are more receptive to SSVEP at certain frequencies [11].
This issue is currently under study and our results will be
presented in a future work.

IV. CONCLUSION

The present study explored a SSVEP-BCI paradigm as
a possible communication pathway under breathing con-
straints. Results suggest that this technique could be useful
to rapidly and automatically identify ventilatory discomfort
in healthy subjects to whom ventilation has been artificially
impaired.

The proposed approach is fully on-line, calibration free
and utilizes only three scalp EEG electrodes and a reference,
constituting an easy-to-use alternative in clinical monitoring
environments. Although SSVEP detections were less effec-
tive during inspiratory constricting tasks than during normal
breathing, our preliminary results show that detection of
different respiratory states based on respiratory signals under-
perform those based on EEG (65% and 70-83% respectively).

The performance of detection can be tuned with the
parameter ρ. This parameter can be chosen to set low false
alarm rates (by increasing ρ), or leave it to 0 to obtain the
performances of a classical k-median classifier. In a practical

TABLE I
RESULTS OF THE BCI PERFORMANCE FOR THE FIVE TEST SUBJECTS

EMPLOYING ρ = 20 TO REDUCE FALSE ALARM RATES.

Subject #1 #2 #3 #4 #5 Mean
15 Hz % success 93 82 74 93 72 83
20 Hz % success 10 40 100 100 100 70

setting, ρ could be fixed in terms of sensitivity/specificity to
fulfill a particular clinical requirement (e.g. high sensitivity
in critically ill patients).

From the clinical point of view, our approach could
be used in intensive care unit patients under mechanical
ventilation. Detecting ventilatory discomfort and informing
caregivers of its occurrence would lead them to initiate thera-
peutic actions to restore ventilatory comfort. This technique
could also allow the identification of the inspiratory relief
produced by an intervention, helping caregivers to ensure
they met their objectives.
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