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Abstract— Non-invasive brain machine interfaces (BMIs) on 

motor imagery movements have been widely studied and used 

for many years to take advantage of the intuitive link between 

imagined motor tasks and natural actions. En route to future 

technical applications of neuromorphic computing, a major 

current challenge lies in the identification and implementation 

of brain inspired algorithms to decode recorded signals. Neuro-

morphic computing is believed to allow real-time implemen-

tation of large scale spiking models for processing and compu-

tation in non-invasive BMIs. Taking inspiration from the 

olfactory system of insects, we advance and implement a novel 

approach to decode and predict imaginary movements from 

electroencephalogram (EEG) signals. We use a spiking neural 

network implemented on SpiNNaker (4 chip, 64 cores) neuro-

morphic hardware. Our work provides a proof of concept for a 

successful implementation of a functional spiking neural 

network for decoding two motor imagery (MI) movements on 

the SpiNNaker system. The approach can be extended to 

classify more complex MI movements on larger SpiNNaker 

systems. 

I. INTRODUCTION 

Neuromorphic platforms use a different architecture 

compared to sequential computing, one that mimics brain 

processing with neurons and synapses. These hardware 

systems achieve a speedup and support massively parallel 

data processing in a brain-inspired fashion. In contrast to 

expectations according to Moore's law, the integration 

density of digital processors ceased to grow during the last 

decade and is unlikely to increase again. Hence, 

neuromorphic architectures are perceived to be a potential 

solution for this issue, as they express fundamental 

differences and advantages when compared to conventional 

computing infrastructure [1]. 

To meet the challenge of efficient neuromorphic 

computing, a number of neuromorphic platforms have been 

and continue to be developed such as SpiNNaker, 
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BrainScales hardware or IBM’s True North [2]. SpiNNaker 

is a novel massively-parallel computer architecture, inspired 

by the fundamental structure and function of the human 

brain. Each chip is a multi-core system, consisting of 18 

ARM968-based cores and also several internetworking 

elements and supporting modules. Thus, it supports an 

emulation of up to 12,000 neurons in biologically plausible 

real-time per board (SpiNNaker-3) [3] or even about 

200,000 neurons per board (SpiNNaker-5).  

This work presents a first attempt to use the potential 

advantages of neuromorphic computing and spiking neural 

network algorithms to decode brain signals and as per our 

knowledge no similar work has been published before. This 

new technology can enhance EEG based brain-machine 

interface classification performance which still suffers from 

limited motor imagery (MI) task detection and low accuracy 

due to non-stationary and non-linear characteristics of the 

brain signal. 

The aim of this work is therefore to decode EEG patterns 

generated during two MI movements (motor imagery of left 

and right hand) using a spiking neural network decoder. 

Here, as the first proof-of-principle, features of EEG signals 

were extracted and a classifier inspired by the olfactory 

system of insects was employed and implemented on 

SpiNNaker to recognize the two different MI movements.  

II. METHODS 

A. Data Description 

Our work is based on experimental data recorded by the 

Institute for Knowledge Discovery (Laboratory of Brain-

Computer Interfaces), Graz University of Technology. EEG 

signals were collected from 9 subjects that were able to 

perform long and stable motor imagery over a minimum time 

of 2-s and data were sampled at 250Hz. More experimental 

details are provided in [4]. 

B. Preprocessing and Feature Extraction  

MI describes the mental rehearsal of a motor task without 

its execution, such as imagination of squeezing a training 

ball. These tasks induce a power increase or decrease of 

EEG amplitudes in certain frequency bands (mainly alpha 

and beta band) relative to a reference period and are referred 
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as event-related (de)synchronization (ERD/ERS) [5]. Hence, 

three EEG bipolar channels C3, Cz and C4 (according to the 

10/20-system) have been used to analyze these imaginations 

and to convert them into commands. Epochs of 2000ms with 

500ms pre-stimulus baseline were extracted from the 

continuous EEG data.  

First, all the signals are filtered using a digital Butterworth 

FIR band pass filter of order 5 in the range 8-30Hz, because 

the mu rhythm (8-13Hz) and beta band (14-30Hz) fall within 

this range.  

Afterwards, band power (BP) features were estimated from 

the ongoing EEG signal. For each of the three bipolar 

channels, BP features in 72 frequency bands were calculated 

using different overlapping narrow bands between 8 and 30 

Hz yielding a total of 216 BP features [4]. As the 

dimensionality of the extracted EEG features is usually quite 

high, it is necessary to reduce the dimensionality of the 

features before we use them. For this purpose, a standard 

principal component algorithm PCA was applied for 

dimensionality reduction leading to only 10 features [6]. 

Moreover, to compare performance against our method a 

Support Vector Machine linear classifier [7] for two MI was 

used to test and validate the feature extraction step. A 

classification accuracy of 77.49 % was obtained. Note that 

this classifier has been used solely for performance and 

accuracy comparison with our proposed spiking neural 

network classifier. 

Finally, the features were fed into SpiNNaker and a 

spiking neural network was trained to classify two-class MI 

data (left vs right). 

C.  Network Architecture and Model Design  

Classical machine learning algorithms have been widely 

used for EEG signals decoding [8]. However, in order to 

exploit the native communication protocol within the brain 

(i.e. discrete events so-called spikes) in brain machine 

interfaces we need to use an appropriate processing 

paradigm. Such a paradigm is provided by artificial spiking 

neural networks which, by using temporal information 

associated with the spikes to compute, can be used to classify 

remarkable events in brain signals they represent. 

In this paper, we used a classifier network based on a 

spiking model of the insect olfactory system [9], which has 

been previously described and investigated in detail in [9-

10]. The model’s three-stage architecture consists of (1) an 

input layer designed to encode multivariate, real-valued data 

samples into a population-based, positive, bounded, firing-

rate representation, (2) a decorrelation layer used for filtering 

and reducing correlation between inputs (where populations 

are grouped in ensembles that represent the so-called 

glomeruli in the insect antennal lobe) and finally (3) an 

association layer that forms a winner-take-all decision circuit 

through strong lateral inhibition. Figure 1 presents the 

spiking network model based on the olfactory system of 

insects.  

Spike trains are generated in neurons in the input layer and 

propagated to the decorelation layer, where projection 

neuron populations to the excitatory association neurons 

(orange in the association layer) are adapted by a supervised 

learning mechanism during training [10]. 

D. Implementation on SpiNNaker   

We implemented a spiking neural network that decodes 

motor imagery movements from recorded EEG signals. The 

network runs on SpiNNaker neuromorphic hardware and 

performs its computations in a “purely spike-based fashion” 

[10]. It incorporates an insect-brain-inspired, three-layer 

neural architecture. Each of the 10 features from EEG data 

was encoded in 20 population-coding neurons. The 

activation of the different population-coded neurons was 

determined by a Gaussian function and implemented on 

SpiNNaker as spike source array. 



Fig.1. Spiking Neural Network model [10]. 

Each spike source array is connected to a population of 

neurons in the encoding (input) layer. The input layer 

consists of 200 populations of 10 neurons each, which 

connect one-to one to the second (decorrelation) layer. 

The decorrelation layer is organized in so-called 

glomeruli, which are functional groups of neurons that exist 

in the real biological model. Each glomerulus consists of the 

same number (here 200*10) of populations and neurons as 

the previous one.  

Each glomerulus in the decorrelation layer has inhibitory 

connections with other glomeruli with a probability of 40%. 

The second layer has excitatory connections to the neurons 

in the association layer with a probability of 50%. 

The association layer consists of two inhibitory and two 

excitatory glomeruli. Each of the inhibitory population has 

inhibitory connections to the excitatory one with a 70% 

probability. 
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

Fig.2. Spiking Neural Network Classifier Implementation on SpiNNaker. 

The Spike Source Arrays is connected to the encoding 

layer by 0.2nA weights, the connection weights between 

encoding layer and decorrelation layer are 0.6nA, the 

inhibitory connection weights inside the decorrelation layer 

are 0.03nA, the excitatory connections weights from second 

layer to association layer are 0.08nA, the excitatory 

connections weights inside the association layer are 0.9nA 

and the inhibitory connection weights in the same layer are 

0.1nA. The delay of projections was set to 1ms. 

Implemented neurons are leaky integrate and fire type 

neurons, and the synapse models are exponential current-

based synapses. The model parameters used are described in 

detail in [11]. Furthermore, we used 60 Poisson Generators 

as noise sources that excite the input layer with 10Hz firing 

rate and 0.02nA connection weight. 

The classification output of the network corresponds to 

two labeled (left vs. right) populations in the third layer. The 

difference in the firing rates of each neuron at the 

decorrelation layer for each class was computed and 

compared to a fixed threshold. Consequently, we were able 

to determine the activity of each neuron and to determine the 

one with higher spike count for a certain class. If this 

difference exceeds an acceptance threshold for one class, the 

connection was potentiated with a certain weight value 

between the associated population in the second layer and 

the AN population represented the same class in the output 

layer.  

We wish to emphasize that we didn't use directly a Spike-

timing dependent plasticity (STDP) to adjust the connections 

between filtering layer and association layer [11].  

III. RESULTS 

We tested and validated the performance of our spiking 

neural network classifier implemented on SpiNNaker 

neuromorphic hardware. The accuracy of our classifier 

during the validation step was 75% for a single subject after 

120 trials. We wish to emphasize that the massive 

parallelism of SpiNNaker here is a potential advantage over 

conventional computing when processing large amounts of 

data in parallel. Results obtained by the implementation on 

SpiNNaker are shown in the upcoming figures and discussed 

below. 

Figure 3 shows the total spiking activity of neurons at the 

decorelation layer for each class. These neurons present 

excitatory connections to the two populations AN1 and AN2 

of the output layer. This figure shows the number of active 

neurons in the second layer for the features related to each 

class separately. As seen, a neuron that is significantly more 

active for one class makes a connection to the neurons of the 

same class at the association layer, whereas the less active 

neurons remain unconnected. Hence, some of the neurons 

contribute to different classes to make a winner-take all 

decision and form a winner population. 



Fig.3. Spiking activity of the neurons in the second layer. 

Figure 4 shows the spike trains that we obtained of all 

neurons in the association layer during a single validation 

trial. In this figure, vertical lines separate each trial of 200 

ms, and dots show the time of occurrence of each spike with 

its corresponding neuron. 



Fig.4. Spiking activity of the neurons in the association layer during 

validation step (AN1 and AN2 are the two populations in the third layer 

presenting the two classes). 

To test the network's prediction abilities, 20 trials (10 for 

each class) of non-trained data were used to validate the 

performance of our classifier. Results are shown in figure 5. 
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

Fig.5. Total spikes at each AN population for each trial during the 

validation step 

The winner for each trial is the AN class that has more 

spikes. In the figure, the triangles refer to class 1 and the 

squares refer to class 2. Notably, the blue color presents the 

correctly classified trials whereas the red color presents the 

misclassified trials. If the blue square appears above the blue 

triangle, the class 2 is considered to be the winner for that 

trial and vice versa. To achieve better classification results, it 

is utmost important to improve the used method for learning. 

STDP can be an efficient strategy for our future work.   

IV. DISCUSSION 

In our work, an off-line classification of two MI 

movements from recorded EEG signals has been achieved. 

Our model uses a spiking neural network implemented on 

SpiNNaker for time series data classification. The model 

architecture is inspired by the olfactory system of insects and 

mimics biological information processing. We achieved 75% 

of correctly predicted motor imagery movement on non-

trained data. 

We wish to point out that the achieved result is still 

slightly lower than e.g. SVM classifier (77.49%). As a 

consequence, we are aiming to improve classification 

performance by using a biologically plausible STDP method 

to further train our network. We would like to stress that our 

current approach presents a proof of concept for decoding 

non-invasive brain signals using the scalable SpiNNaker 

spiking neurocomputing hardware, rather than providing a 

final system. We are currently running the system on the 

smallest existing SpiNNaker boards, and expect significant 

improvements in accuracy when scaling-up our spiking 

model in future research. 

As short term goal, we will work on extending the model 

by incorporating also electromyography (EMG) signals, 

which will be used for decoding different hand movements. 

V. CONCLUSION 

The above results show that using a spiking neural network 

classifier can enhance the average imagery classification 

accuracy in training and evaluation stages with reduced 

training time and smaller energy and power consumption.  

In future work, we are aiming to scale up our model to 

classify various more complex imaginary movements within 

the same limb and to move from the classic motor imagery 

detection (left vs right movement) to decoding complex 

movement intentions. Furthermore, we are aiming to focus 

on the kinematic level, where movement direction and hand 

position or velocity can be decoded from EEG signals and 

can be used for real-time neuroprosthesis control. 

As a long-term research vision, it is likely that the model 

can be improved also by explicitly including feedback. This 

will be done by decoding the error-related potential (ErrP), a 

time-locked potential elicited when actions do not match the 

users’ expectations [9]. Such decoded information from EEG 

signals will be used as a reward signal to learn and adjust the 

desired behavior in a closed-loop brain machine interface. 
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