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Abstract— Analog, unclocked, spiking neuromorphic mi-
crochips open new perspectives for implantable or wearable
biosensors and biocontrollers, due to their low energy con-
sumption and heat dissipation. However, the challenges from a
computational point of view are formidable. Here we outline
our solutions to realize the reservoir computing paradigm on
such hardware and address the combined problems of low bit
resolution, device mismatch, approximate neuron models, and
timescale mismatch. The main contribution is a computational
scheme, called Reservoir Transfer, which enables us to transfer
the dynamical properties of a well-performing neural network
which has been optimized on a digital computer, onto neuromor-
phic hardware that displays the abovementioned problematic
properties. Here we present a case study of implementing an
ECG heartbeat abnormality detector to showcase the proposed
method.

I. INTRODUCTION

Implantable or wearable biosensors, signal generators,
controllers or bidirectional brain-machine interfacing mod-
ules are widely investigated. For such devices, a very small
energy consumption is always desirable and sometimes
mandatory – for instance, in brain implants that must not
dissipate noticeable heat [1]. A promising route toward such
devices is to develop analog, unclocked, spiking neuro-
morphic microchips implementing artificial neural networks
(ANNs). These ANNs obtain their functionality by being
trained rather than being programmed, using methods from
machine learning. With regards to the latter we perceive
two main trends. First, adapt deep learning methods [2] to
spiking neural networks (for instance [3]). Second, transfer
computational mechanisms known from biological brains to
neuromorphic hardware [4]. Here we follow the second route
and employ principles of reservoir computing to realize a
heartbeat abnormality detector on an analog spiking neuro-
morphic device.

Reservoir computing (RC) is a learning paradigm in
recurrent neural networks (RNNs) for processing temporal
input signals. The core RC principles have been discovered
several times independently, both in AI/machine learning
and in computational/cognitive neuroscience (brief history
in [5]), indicative of the nature of RC as bridging between
machine learning and neuroscience. Within computational
neuroscience, RC is best known as liquid state machines
(LSMs) [6], whereas the approach is known as echo state
networks (ESNs) [7] in machine learning. Reflecting the
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different objectives in these fields, LSM models are typically
built around more or less detailed, spiking neuron models
with biologically plausible parametrizations, while ESNs
mostly use highly abstracted rate models for its neurons.

An RC architecture is composed of three major parts: the
input layer feeds the input signal into a random, large, fixed
recurrent neural network that constitutes the reservoir, from
which the neurons in the output layer read out a desired
output signal. In traditional (and “deep”) RNN training meth-
ods, all synaptic weights in a neural learning architecture are
optimized by descent on the output error gradient. In contrast,
the input-to-reservoir and the recurrent reservoir-to-reservoir
weights in an RC system are left unchanged after a random
initialization, and only the reservoir-to-output weights are
optimized during training – typically by minimizing the mean
square error between the teacher signal and the network’s
output signal through linear regression.

In the work reported here, we sought to create a functional
spiking reservoir on an analog, unclocked, spiking neuromor-
phic microprocessor board. The system’s task is to detect and
classify heartbeat abnormalities from electrocardiographic
(ECG) input signals. The system should function in an
online processing mode in real-time. Our hardware is the
Dynap-se board [8]. This work constituted a work package
in the European Horizon 2020 project NeuRAM3 (http:
//neuram3.vsos.ethz.ch/), which is concerned with
the design and fabrication of memristor-based, spiking neu-
romorphic microchips.

II. THE CHALLENGES

Our project encountered interesting difficulties that arose
from its dual nature of being half engineering/machine
learning, half bio-/neuroscience:

Machine learning: We want to achieve numerically ac-
curate and robust information processing performance, goals
which are characteristic for machine learning rather than for
computational neuroscience. This would suggest using the
machine learning version of RC, namely ESNs. Indeed we
found that the addressed processing task could be solved by
the standard ESN methods with high performance. However,
standard ESN methods rely on floating-point precision and
reproducible arithmetics, and ESN neuron models are non-
spiking and thus entirely inappropriate to capture Dynap-se
neurons.

Bio-/neuroscience: The physical neurons on the Dynap-
se board share core properties with biological neurons. They
are spiking, unclocked, individually different from each other
(“device mismatch”), (slightly) noisy, and must be (approx-
imately) modeled by rather intricate, multi-parameter ODEs
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with several time constants. Furthermore, the input ECG
signal is of biological origin and must be processed with the
appropriate biological timescales. All of this would indicate
to use LSM models. The LSM literature offers numerous
successful accounts of modeling biological neural systems.
However, these reports did not provide useful guidance for us
because first, they rest on approximate copies of biological
systems whose neuron models and parameters (especially
time constants) are incommensurate with our physical device,
and second, LSM literature reports are typically proof of
concept studies whose numerical accuracy or robustness
would not match our needs.

Additional challenges result from the circumstance that
many physical variables (currents and potentials) determining
the behavior of Dynap-se neurons are not measurable – a
condition familiar to neuroscientists but alien to machine
learning programmers.

In summary, we were suspended between two well-proven
computational paradigms of which we would want to use the
first for accuracy and robustness, the other for matching our
hardware, but none of the two could easily be accommo-
dated.

The solution came from an unexpected side. In our ini-
tial investigations, we found ourselves confronted with yet
another problem which we did not anticipate: a mismatch
of timescales. Our Dynap-se hardware was far too fast for
processing our slow ECG signals in a time-coupled online
fashion. Classifying a heartbeat as normal vs. abnormal
requires to integrate information over a timespan in the
order of 1 second. Even when the few programmable time
constants on the Dynap-se board were set to the slowest
possible values, the Dynap-se dynamics was still inherently
too fast to realize the requisite real-time memory spans.

At this point, we recall some facts about short-term mem-
ory in RNNs. There are two complementary mechanisms by
which information is preserved through time in an RNN (or,
in fact, in any input-driven dynamical system modeled by
ODEs):

• The model’s timescale can be set by the time constants
of the governing equations. With large (slow) time con-
stants, the effects of an input signal u will only slowly
“wash out” over time. However, large time constants
amount to smoothing the effects of the input signal on
the current system state. In our concrete case, if we
would induce slowness solely by slow time constants,
any characteristic of the input signal u(t0) which is
relevant for the classification at time t0+1 (sec) would
become overshadowed by almost equally preserved but
distracting information from earlier input times.

• The second mechanism is inherent in the nonlinear
geometry of dynamical systems. In its core, it is
captured by extensions of Takens’ theorem [9], [10].
Roughly speaking, in any dynamical system (continuous
or discrete time) some portion of the preceding input
and internal state history is nonlinearly encoded in the
current system state, such that parts of the previous
input history can be recovered from the current state.

This effect has been investigated in depth in the RNN
literature in general and the ESN literature in particular
(for instance [11], [12]). This dynamical short-term
memory capacity is unfortunately quite sensitive to
system noise.

After setting the accessible hardware time constants on
the Dynap-se board to their slowest values, we capitalized
on the second mechanism to bridge the remaining memory
gap into the required 1 second time range. To this end we first
optimized the Takens-type dynamic memory characteristics
of a standard ESN with leaky integrator neurons using on a
digital computer, employing routine methods from the ESN
field. The optimized dynamics of this reservoir was then
“mirrored” in a hardware reservoir on the Dynap-se board
with the same number of neurons, in a novel, local, neuron-
by-neuron training scheme that relied on linear regression.
In this hardware training process, the reservoir-to-reservoir
synaptic weights on the Dynap-se board were determined
in a way that made the hardware reservoir inherits the
(slow, input-history preserving) dynamical characteristics of
the optimized source ESN. By using a regularized version
of linear regression, the noise robustness of the hardware
reservoir was optimized as a side-effect.

In summary, solving the slow timescale problem resulted
in a Reservoir Transfer Method which effectively built a
bridge from the engineering/machine learning world of ESNs
to the bio/neuroscience world of LSM-like systems. We gave
a preliminary account of this method in [20]. We proceed by
providing the technical details.

III. RESERVOIR TRANSFER METHOD

Given an ESN with leaky integrator neurons driven by
some m-dimensional input signal u(t)

ẋ(t) = −λxx(t) + tanh(Wx(t) +W inu(t)), (1)

where x(t) is the n-dimensional state vector of the network
at time t, λx the leaking rate, W in and W are input and re-
current weights. x(t) can be considered as high-dimensional
temporal features of u(t), which we would like to transfer to
a reservoir of leaky integrate-and-fire (LIF) neurons, whose
dynamics is approximately modeled by:

v̇(t) = −λvv(t)− θs(t) + Ŵr(t) +W inu(t) + I, (2)
ṙ(t) = −λsr(t) + s(t), (3)

where v, s, r are all n-dimensional vectors whose i-th entries
are denoted as vi, si and ri, respectively. vi is the membrane
potential of the i-th neuron, and si(t) =

∑
ts
δ(t − ts) is

its output spike train with spike times ts and Dirac delta
function δ, θ is the difference between spiking threshold
and reset potential; ri is the exponentially decaying synaptic
currents triggered by si. I is a constant current set near or
at the rheobase (threshold to spiking) value, as used in [26].
To transfer the temporal features x(t), we inject the ESN
feature signals x(t) element-wise into the corresponding LIF
neurons, replacing the recurrent inputs Ŵ r(t). This results
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in the dynamics:

v̇x(t) = −λvvx(t)− θsx(t) + x(t) +W inu(t) + I (4)
ṙx(t) = −λsrx(t) + sx(t) (5)

Ideally, we would like the same dynamics vx(t) to be
sustained by the recurrent input Ŵr(t) instead of the teacher
signal x(t). In other words, if we consider y(t) := Ŵrx(t)
as the state vector of the spiking reservoir, we aim to learn the
weight matrix Ŵ such that y(t) = x(t). In order to make the
learned weights generic and input-independent, we choose
u(t) to be a white noise signal for training, and compute the
weights by linear regression to minimize

∑
tk
||Ŵrx(tk) −

x(tk)||22, where tk are discrete time samples. In this way, we
have turned the weight initialization problem into a linear
regression problem.
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Fig. 1. Dynamics of different reservoirs in response to a sinusoidal
input. For visual simplicity, only the first four dimensions of the state
vectors are displayed. Top: x(t) in a leaky ESN teacher reservoir. Middle:
corresponding y(t) in the target LIF reservoir created using the reservoir
transfer method. Bottom: corresponding ỹ(t) in a reservoir whose recurrent
weights are from a sparse matrix with randomly distributed values (for
explanation, see text).

Figure 1 shows the dynamics y(t) = Ŵr(t) of a reservoir
of 100 LIF neurons created in Brian simulator [27] using
this method and the dynamics x(t) of its teacher leaky
ESN reservoir of the same size when they are driven by
a sinusoidal input. Only the first four dimensions of x(t)
and y(t) are displayed for visual simplicity. One can see
that although the reservoir was trained using white noise
input, its similarity to the teacher reservoir can generalize
to other types of input signals (a sinusoidal wave in this
case). For comparison, we also created a LIF reservoir whose
recurrent weights W̃ are from a sparse matrix with values
first randomly sampled from a standard normal distribution,
then scaled by a constant so that the recurrent dynamics do
not evoke constant bursts of spikes. The first four dimensions
of its response ỹ(t) = W̃r(t) to the same sinusoidal input
is shown in the bottom panel of Figure 1.

IV. EXPERIMENTS

We empirically evaluate the transferred reservoirs by
experiments with both software simulation and hardware

experiments.

A. Short-term Memory of Transferred Reservoir

In order to validate that the reservoir generated from the
transfer learning method has short-term memory despite the
connections are of low bit-precision and there is no synaptic
short-term plasticity, we created such a reservoir in Brian
simulator [27]. Instead of using the standard ridge regression
during transfer learning, we used ternarized linear regression
[13] so that the resulting weights are of ternary precision:
−a, 0, a. To test its short-term memory, a sequence of pulses
with very short pulse widths (10 ms) separated by long (200
ms) periods of silence was used as input to drive the ternary
reservoir. A linear full precision readout was then trained to
map the filtered spikes to a reverse-chirp signal. The time
constant of the exponential decay kernel used to filter spike
trains is only 15 ms. Since the output depends on the past
input values, it can only be possible if the reservoir preserves
some information about the input history. Figure 2 shows the
step signal, the output of the reservoir and its target during
the testing phase.
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Fig. 2. A reverse-chirp signal can be generated by a reservoir of LIF
neurons with ternary weights when it is driven by a step signal with very
short (10 ms) high signal followed by a long (200 ms) silence.

B. ECG Monitoring using Dynap-se

In this experiment, we exploited our transferred spiking
reservoir in a patient-customized electrocardiogram (ECG)
beat classification task realized on Dynap-se, an unclocked
analog spiking neural network hardware [8]. On a Dynap-se
board, each of the four neuro-chips contains four cores with
256 neurons each. The behavior of one neuron is character-
ized by parameters such as injection current level, refractory
period length, time constants, and synaptic efficacy. These
parameters can be set globally for each of the cores but
not on the individual neuron level. Due to device mismatch,
effective values of these parameters vary across a neuron
population. As a result, although we can specify the same
parameter bias for all neurons on Dynap-se, every individual
neuron exhibits very different behavior, as reported in the

1236



Dynap-se user guide1. Moreover, the connections between
neurons are restricted to only ternary values +a,−a, 0 (the
scaling factor a can be set per core), corresponding to
excitatory, inhibitory or no connections. Finally, since the
chip is an analog device, state variables such as membrane
potentials and post-synaptic currents are only observable
through an oscilloscope. For information processing and
learning, only spike trains can be recorded and used.

To circumvent these constraints imposed by hardware,
we implemented the above-mentioned Reservoir Transfer
method to create a reservoir using 3 cores on Dynap-se.
A leaky ESN of equal size was created in simulation as a
teacher reservoir, and its response to white noise input signal
u(t) was collected and converted into spike trains to be sent
to the target reservoir in Dynap-se. After the output spike
trains from the hardware neurons are recorded, we smooth
both the input and output spike trains by an exponential
decay kernel to get x(t) and r(t), respectively. Finally,
ternarized linear regression [13] was applied to compute the
ternary weight matrix Wternary such that x(t) ≈ Wternaryr(t).
In this way, there is no need to know the exact values of
the membrane potentials and other parameters, which are
unobservable and varying across individual neurons. The
neurons do not have to share the same parameter value
as long as their collective response to the input current
x(t) contains enough information to linearly decode x(t).
Moreover, learning is needed only once using a white noise
signal, afterwards the connection weights can stay fixed.
Hence no online adaptation on hardware is needed.

Fig. 3. Left panel: a normal heartbeat. Right panel: a PVC heart beat.

To verify that the transfer learning method yields a func-
tional physical spiking reservoir, we conducted an ECG
signal classification experiment using the learned reservoir
on Dynap-se. The experiment aims to detect Premature Ven-
tricular Contractions (PVCs), which are abnormal heartbeats
initiated by the heart ventricles. Figure 3 shows a normal
heartbeat and a PVC. More concretely, we formulate the
PVC detection task as a supervised temporal classification
problem which demands a binary output signal z(n) for each
heartbeat indexed by n:

1See the legacy documentation in https://ai-ctx.com/support

z(n) =

{
1 if the n-th heartbeat is a PVC,
0 otherwise.

(6)

The experiment was conducted with the following routine.
(1) ECG pre-processing: we removed the baseline drift from
an ECG signal by applying a high-pass Butterworth filter and
then normalized the signal into the numerical range [0,1].
(2) Signal-to-spike conversion: we placed a spike at a time
index if the increase/decrease of the ECG signal relative to
its value at the previous spike time surpassed a threshold of
numerical value 0.1. (3) Reservoir response harvesting: we
sent ECG-converted spike trains into Dynap-se to harvest
the reservoir responses, which were in the form of spike
trains. (4) Spike-to-signal conversion: on a digital computer,
we smoothed the spike trains collected from the physical
reservoir to continuous-valued time-series by an exponential
decay kernel with a decay time constant 3.5. (5) Classifier
training: the training of the readout mechanism amounted
to solving a linear regression problem, where the input for
linear regression was the smoothed reservoir responses and
the target output was a {0, 1}-valued binary signal indicating
the correct labels of heartbeats. (6) Result evaluation: with a
testing ECG time-series, we repeated the above procedure to
procure its smoothed reservoir responses and then readout the
predicted labels with learned weights. We used the following
standard metrics to evaluate the classification performance:
accuracy (Ac), sensitivity (Se), precision (P), and F1-score.

We used MIT-BIH ECG arrhythmia database [23], [24] in
this experiment. The database provides 48 half-hour excerpts
of two-channel ambulatory ECG recording files, obtained
from 47 different patients. The recordings were digitized with
a sampling frequency of 360 Hz and acquired with 11-bit
resolution over a 10mV range. Each record was annotated
by two or more cardiologists independently, both in timing
information and beat classification. In this work, we present
the results of a case study where recordings from lead II of
file #119 (female, age 51) and its corresponding annotation
file were used to train the test classifier: we employed the first
10 minutes of the recording signal for training and the next 5
minutes for testing. A comparison of classification accuracy
on testing data between the low-precision spiking reservoir
and the digitally simulated, high-precision reservoir baseline
is provided in Table I. Simulation on baseline standard ESN
was performed with parameters set as leakage rate = 0.99,
spectral radius= 0.9 and regression parameter = 1e-6.

TABLE I
PVC DETECTION RESULTS ON TESTING DATA

Ac Se P F1

Standard ESN 98.24 % 92.21 % 100 % 95.95 %
Dynap-se reservoir 97.56% 87.50 % 98.00 % 92.45 %

V. CONCLUSION

Implementing efficient algorithms on neuromorphic hard-
ware with low energy consumption is a promising yet
challenging path towards novel brain-machine interfacing
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neuro-technologies. In this paper, we reviewed the major dif-
ficulties we encountered along this path: low bit resolution,
device mismatch, uncharacterized neural models, unavailable
state variables, physical system noise and most importantly,
timescale mismatch. As a solution, we proposed a computa-
tional scheme called Reservoir Transfer to circumvent these
difficulties and created a functional spiking reservoir on the
Dynap-se analog asynchronous neuromorphic microproces-
sor board. Empirical results from an ECG signal monitoring
task showed that this reservoir with ternary weights was able
to not only integrate information over a time span longer than
the timescale of individual neurons but also functioned as an
information processing medium with performance close to a
standard, high precision, deterministic, non-spiking ESN.

For future work, it remains to be understood how a
transferred weight matrix is related to the time constant and
leakage rate of the teacher reservoir. In addition, applying
this method to transferring trained recurrent neural networks
instead of a randomly created ESN will also be an exciting
direction for further research.
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