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Decoding Lip Movements During Continuous Speech using
Electrocorticography

Srdjan Lesaja, Christian Herff, Garett D. Johnson, Jerry J. Shih, Tanja Schultz,
Dean J. Krusienski, Senior Member, IEEE

Abstract— Recent work has shown that it is possible to
decode aspects of continuously-spoken speech from electrocor-
ticographic (ECoG) signals recorded on the cortical surface.
The ultimate objective is to develop a speech neuroprosthetic
that can provide seamless, real-time synthesis of continuous
speech directly from brain activity. Instead of decoding acoustic
properties or classes of speech, such a neuroprosthetic might
be realized by decoding articulator movements associated with
speech production, as recent work highlights a representation
of articulator movement in ECoG signals. The aim of this work
is to investigate the neural correlates of speech-related lip move-
ments from video recordings. We present how characteristics
of lip movement can be decoded and lip-landmark positions
can be predicted.

I. INTRODUCTION

Neuroprosthesis based on the decoding of speech pro-
cesses would present a fast and intuitive way of commu-
nication for severely paralyzed patients [1]. The electrocor-
ticogram (ECoG) is an invasive measurement of the electrical
potentials generated from the neocortex of the brain [2] that
is particularly well suited for the decoding of such speech
processes due to its high spatiatl and temporal resolution
[3]. The long-term viability of ECoG recordings have been
established in humans [4], making it a suitable platform for
the development of neuroprosthetic devices. Recent studies
have shown that it is possible to decode certain aspects of
continuously-spoken speech from ECoG signals including
phonemes [5], words [6] and sentences [7] or reconstruct
accoustic properties of perceived [8] and produced speech
[9], [10]. Alternatively, motor representations of speech
might be a better target for reconstruction due to the localized
representation in speech motor cortex [11]. Conant et al.,
used ultrasound and video monitoring of the supralarungeal
actuators in conjunction with ECoG to investigate the rela-
tionship between the articulator movement kinematics and
the neural activity in the ventral sensory-motor cortex [12],
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[13]. Other studies used inverse mapping of acoustics to ar-
ticulatory features to investigate the representation of speech
production [14], [15].

In the present study, we use simultaneous ECoG and
video recordings to investigate the neural correlates of lip
movements and develop predictive models of lip-movement
features to predict lip landmark positions.

II. METHODOLOGY

A. Data Acquisition

A subject with intractable epilepsy was implanted with a
64-contact ECoG array (Figure 1) for clinical monitoring at
Mayo Clinic Florida.

Fig. 1. Electrode locations.

The participant was asked to repeat sentences from the
Harvard sentence corpus [16] that were presented both
visually on a screen and aurally. The participant consented
to participate in the study as approved by the IRB of both
Mayo Clinic and ODU. During speech production, ECoG
data, acoustic waveform and facial video were recorded and
synchronized using BCI2000 [17]. ECoG data were digitized
and sampled at 1200 Hz using g.tec gUSBamp biosignal
amplifiers. Audio data were recorded using Snowball iCE
microphone (Blue Microphones, California) and sampled at
48 kHz. Sampling rates video A diagram of the experimental
setup is provided in Figure 2.

B. Signal Processing

A common-average reference (CAR) was applied to each
ECoG channel and the resulting signals were band-pass
filtered between 70 and 115 Hz using a zero-phase FIR filter
in order to extract the gamma band. An FFT was performed
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Fig. 2. Diagram of the experimental setup. Figure does not contain video camera

using 60 ms segments with 30 ms overlap, and the average
of the average power of the entire gamma band was used as
the feature for each channel.

C. Video Features

Dlib, an open source facial recognition library [18], was
used to detect the subjects face in each video frame, and
draw facial landmarks. Of 68 facial landmark points, 20
were used to outline the inner and outer lines of the lips, as
shown in Figure 3. These 20 points were used to calculate
four lip features: area of outer lip perimeter, area of inner
lip perimeter, distance between outer top and bottom lips,
distance between inner top and bottom lips.

Each frame of the video taken during the patient trial was
input into the facial recognition library. If the library could
find a face, then it would also assign the facial landmarks
for the face, and the lip features could be extracted for that
frame. Due to the inconsistent nature, and the angle of the
patient’s head position during trials made it so a face could
not be detected by the library on all frames. We excluded
trials in which the face could not be detected. This was
the case for large portions of several trials. The analysis
presented here is based on the two trials that had the greatest
number of frames with detected faces, and thus, available
facial landmarks.

D. Correlations

The first step in the analysis was to assess the correlation
between each lip feature and the average power features. To
analyze whether and where the lip features were correlated
to brain activity we calculated correlations by shifting the
two time series signals. The correlation between the two
unshifted series represents the correlation between a lip
feature and the brain signals happening at that moment.
In order to see the correlation between brain signals that
occurred, for example 100 ms before the lip features, the time
series were shifted by the appropriate time steps. Correlations
for every electrode location were calculated in this manner

Fig. 3. The 68 facial landmarks defined in Dlib (top). Facial landmarks in
blue superimposed on a video frame (bottom).

at 25 ms time lags, from 1000 ms before to 1500 ms after
the current reference frame.

To ensure the correlations were significant, a randomiza-
tion test was performed. The normal maximum likelihood
parameters were estimated for each electrode signal. One
thousand simulated random electrode signals were generated
and the correlations were computed. These simulated correla-
tions were used to construct an empirical distribution. Each
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Fig. 4. Topographies of the correlation index at different time lags.

actual measurement was compared to this distribution and
its p-value calculated to ensure the correlations were greater
than random chance.

E. Classification

A classifier was developed to predict the state of the
lips from the ECoG signals. The outer lip feature was
dichotomized into ‘open’ if the area was above a threshold,
or ‘closed’ otherwise. Because there was no clear distinction
in the ‘open’ and ‘closed’ states based on the lip features
distribution, the threshold was chosen for a number of image
pixels that split the lip features into approximately equal sets
for the two categories.

The average power was computed from 0.5 s before to
0.5 s after a video frame for 1, 5, 10 and 20 uniformly-
spaced time intervals. This was done to explore the effect of
time resolution on classification accuracy. These measures
for all electrodes constituted the features for classification.
The classification was performed using a Support Vector
Machine (SVM) with a linear kernel.

F. Location Predictive Model

In addition to the classification model, the ECoG signals
were used to predict the location of the mouth landmarks.
The relative lack of available data make Bayesian framework
or artificial neural network models impractical. Instead, a
multivariate normal regression model was implemented. For
each frame, the pixel positions of each landmark were
normalized in reference to the left mouth corner landmark
(location 49 in Figure 3), which was set to (0,0). The
independent variables in the multivariate regression were the
horizontal and vertical coordinates of each mouth landmark,

Fig. 5. Results of SVM classifier prediction of mouth ‘open’ versus
‘closed’.

except for the reference landmark. The dependent variables
were the average gamma power for all electrodes. Different
time spans for average power were evaluated, ranging from
500 ms to 41.67 ms (the frame rate of the video).

III. RESULTS

Figure 4 shows the correlation for different time lags,
with predominant activation of Brocas area from -500 ms
to 200 ms, and the superior temporal gyrus from 300 ms
to 500 ms. The maximum correlation across channels was
0.26, with no simulated electrode reaching above 0.03. This
result suggests that the correlations between lip features and

524



Fig. 6. Exemplary lip-landmark frame predicted from multivariate model.

the ECoG signal are significantly better than random chance.
An analysis of the facial feature performance indicated that
outer lip area was the highest correlated feature.

The accuracy of the SVM classifier for each of the time
interval sets is shown in Figure 5. There was a distinct
increase in the accuracy as the number of time intervals
increased form 1 to 10, with the performance peaking at 65%
(50% chance) for 10 intervals. This implies that a temporal
resolution near 100 ms may be optimal for capturing the
disrciminable features. The right panel of Figure 6 shows
the actual facial landmarks and landmarks predicted by the
location predictive model with 100 ms resolution for a
representative image frame.

IV. DISCUSSION

The results indicate clear neural correlates of lip move-
ments obtained from video recordings, and that there is
potential for these neural signatures to provide predictive
information that may benefit the development of future neu-
roprothetics. The neural correlates appear in the anticipated
brain regions (i.e., Broca’s area, motor cortex) and tempo-
ral onsets. However, there is later activity in the superior
temporal gyrus that warrants further examination.

There are obvious limitations to this preliminary analysis.
Video recordings were only available from a single subject.
Furthermore, limited data were available due to the patient’s
inconsistent head position, which caused the facial landmark-
ing to fail for a large number of video frames. This issue can
be easily mitigated in the future with a simple changes to the
test protocol to ensure consistent video and face angle. While
the lip position classifier approached an accuracy of 65% for
discriminating ‘open’ versus ‘closed’, this result is expected
to significantly improve with additional training data.

Future research will work to create a more robust video
acquisition protocol to facilitate better usage and tuning of
facial recognition libraries. The ultimate objective is to use
this information in conjunction with recent findings from the
speech signal and other biosignals to improve understanding
of the brain processes and the predictive power of speech
decoding models.
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