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Abstract— Retinal prostheses aim to restore visual percep-
tion in patients blinded by photoreceptor degeneration, by
stimulating surviving retinal ganglion cells (RGCs), causing
them to send artificial visual signals to the brain. Present-day
devices produce limited vision, in part due to indiscriminate and
simultaneous activation of many RGCs of different types that
normally signal asynchronously. To improve artificial vision,
we propose a closed-loop, cellular-resolution device that auto-
matically identifies the types and properties of nearby RGCs,
calibrates its stimulation to produce a dictionary of achievable
RGC activity patterns, and then uses this dictionary to optimize
stimulation patterns based on the incoming visual image. To
test this concept, we use a high-density multi-electrode array
as a lab prototype, and deliver a rapid sequence of electrical
stimuli from the dictionary, progressively assembling a visual
image within the visual integration time of the brain. Greedily
minimizing the error between the visual stimulus and a linear
reconstruction (as a surrogate for perception) yields a real-
time algorithm with an efficiency of 96% relative to optimum.
This framework also provides insights for developing efficient
hardware. For example, using only the most effective 50% of
electrodes minimally affects performance, suggesting that an
adaptive device configured using measured properties of the
patient’s retina may permit efficiency with accuracy.

I. INTRODUCTION

Future neural interfaces will be used to treat a wide range
of incurable diseases, from sensory and motor degeneration
to psychiatric disorders. A prominent present-day example
is a retinal prosthesis, which aims to stimulate the retinal
ganglion cells (RGCs) to restore visual perception in pa-
tients blinded by photoreceptor degeneration (e.g macular
degeneration or retinitis pigmentosa). Even though retinal
prostheses have been successfully implanted in patients, the
elicited perception has limited fidelity [1], [2], [3]. To im-
prove perception, multiple technological advances are being
pursued, including higher density electrode arrays [4], [5].

However, most of the technological advances being pur-
sued do not address a fundamental problem. To produce high
fidelity vision, future devices may need to accurately repro-
duce the diverse and specific firing pattern of 20 different
RGC types [6] that asynchronously convey distinct visual
features to the brain. When a single stimulation electrode
simultaneously activates multiple nearby RGCs irrespective
of their type, reproducing the asynchronous neural code is
impossible [7]. To address this problem, it will be necessary
for a future high resolution device to operate in a closed-
loop manner - identifying the RGCs of different types in a
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patient’s retina, measuring their responses to electrical stim-
ulation, and using this information to optimize the artificial
visual signal. Even though prior studies have used closed-
loop experimental methods to optimize response selectivity
[8] or perception in existing low resolution devices [9],
it remains unclear how a future closed-loop device would
function in real time to precisely reproduce the retinal code
at cellular resolution.

Here, we present an approach to this problem using a
laboratory prototype of a future high-resolution, closed-
loop device. The lab prototype consists of a multi-electrode
array preparation for stimulating and recording from isolated
primate retina. Our solution for faithfully reproducing natural
visual sensations relies on three main pillars: a) minimizing
the error between expected perception and the target visual
stimulus, rather than attempting to match evoked spikes
exactly; b) developing and exploiting a calibrated dictionary
of achievable RGC response patterns, and c) exploiting
temporal dithering – sequential stimulation at a rate faster
than the integration time of visual perception – to accumulate
an optimal visual image without having to calibrate the
device for all spatial patterns of stimulation.

In this paper, we use experimental data to show that the
approach significantly improves the predicted perception of
a visual image. Subsequently, we show that the algorithmic
framework can be used to guide the design of more efficient
hardware and electrical stimulation patterns in a future high-
resolution device.

II. GREEDY DICTIONARY BASED STIMULATION

In this section, we formalize the problem and present a
simple, real-time algorithm to optimize stimulation.

A. Functional components of the prosthesis

In a healthy retina, light from a visual stimulus is encoded
in neural responses, which the brain reconstructs to perceive
the outside world (Figure 1, top row). In a blind patient,
we aim to replace the function of degraded neural circuitry
by implanting a chip that encodes the visual stimulus in
electrical stimulation patterns that directly elicit responses in
RGCs (Figure 1, bottom row). Our goal is to provide the pat-
terns of stimulation that produce the highest-fidelity artificial
vision. This is accomplished in three steps. First, a model is
developed describing how the patient perceives the artificial
image, assuming that the brain optimally exploits the signals
transmitted by the retina. Second, electrical stimulation and
recording are used to develop a calibrated dictionary of RGC
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Fig. 1. Functional components of a prosthesis. The diagram indicates
the steps of visual encoding in a healthy retina and with a retinal prosthesis,
and the postulated reconstruction that gives rise to perception.

activity patterns that are possible with the specific implanted
device. Finally, after calibration, the device operates in run-
time by processing the incoming visual image and selecting a
sequence of calibrated stimulation patterns that produces the
most accurate inferred perception, using greedy optimization.

B. Notation

• S : Target visual stimulus (dimensions: # pixels× 1).
• R : Neural responses (dimensions: # cells× 1).
• A : Reconstruction matrix (dimensions : # pixels ×

# cells). Columns of A correspond to the reconstruc-
tion filters of different cells.

• D = {(ed, ad, pd)}d=|D|d=1 : Stimulation dictionary, each
element d consists of stimulation electrodes (ed), current
amplitudes (ad) and response probability vector (pd ∈
[0, 1]# cells×1). Response for cell i, Ri

d ∼ Bernoulli(pid)
when current pattern d is stimulated.

C. Assumptions

• S is a static frame of the visual stimulus. We assume
that a dynamic stimulus can be approximated with a
sequence of static frames.

• A sequence of retinal responses, produced in rapid
succession by electrical stimulation, is summed by the
brain to produce a single perceived image. Hence, the
reconstructed stimulus for the sequence R1, · · · , RT is
given by R =

∑t=T
t=1 Rt (Figure 2).

• Responses generated by a stimulation pattern, dt, are
independent of the responses to the previous stimula-
tion patterns, d1, · · · , dt−1, as long as no stimulus is
delivered to a cell during its spiking refractory period.

• The difference between the visual stimulus and achieved
perception to be minimized is the mean-squared error
(MSE): ρ(S, Ŝ) = ‖S − Ŝ‖22

• The perceived visual image is approximated by linearly
reconstructing neural responses : Ŝ = AR, with A an
optimal linear filter.

In a later section, we discuss the limitations of these
assumptions, and how to overcome them.

D. Greedy algorithm

The problem reduces to choosing a sequence of dictionary
elements d1, · · · , dT to minimize the expected error in the
perceived visual image ρ as follows:

Eρ(S, Ŝ) = E‖S −AR‖22 (1)

= E‖S −A(R1 + · · ·+RT )‖22 (2)

A simple algorithm for minimizing ρ in a dynamic and
unpredictable sequence of incoming images is to choose the
dictionary elements greedily, maximizing the reduction in
error at each time step. The stimulation choice at time step
t is given by:

dt = argmind∈D E ‖S −A(
l=t−1∑
l=1

Rl +Rd)‖22 (3)

where the expectation is over R1, · · · , Rt−1, the re-
sponses elicited in previous time steps (with Rl ∼
Bernoulli(pdl

) ∀l ∈ {0, · · · , t− 1}).
For the choices of linear reconstruction and mean-squared

error, the greedy algorithm can be implemented efficiently
by decomposing the objective into bias and variance compo-
nents (Equation 5). Because the responses at each time step
are assumed to be independent of preceding responses, the
total variance decomposes as the sum of the variance in all
time steps (Equation 6):

E ‖S −A(
l=t−1∑
l=1

Rl +Rd)‖22 (4)

= ‖S − E[A(
l=t−1∑
l=1

Rl +Rd)]‖22 +

∑
i∈pixels

var(Ai(

l=t−1∑
l=1

Rl +Rd)) (5)

= ‖S − (S̃t−1 +Apd)‖22 + vd + Ṽt−1 (6)

where Ai is the ith row of A; Apdt
and vd are the

contributions to mean and variance in perception for the dth
dictionary element; S̃t (= S̃t−1 + Apdt) and Ṽt (= Ṽt−1 +
vdt

) are the cumulative mean and variance in perception
due to stimulation patterns chosen in time steps {1, · · · , t}.
To satisfy the independence assumption, it is necessary to
avoid stimulating a cell during its refractory period. To
accomplish this, the dictionary in Equation (3) was restricted
to stimulation patterns that do not activate cells that were
already targeted (firing probability greater than 0.1) in the
preceding 5ms.

III. APPLICATION TO RECORDED DATA

A. Data

We used our lab prototype to evaluate the stimulus recon-
struction associated with the greedy stimulation algorithm.
A high density multi-electrode array (512-channels, 60 µm
pitch, 20 kHz) was used to stimulate and record from several
hundred RGCs over a ∼2mm × 2mm region of isolated
primate retina [10]. To calibrate response properties for the
lab prototype, we use the fact that we can identify RGC
types using visually evoked responses in our recordings from
healthy retina. Responses to a 30 min white noise visual
stimulus (80×40 pixel grid, refresh rate 120 Hz) were used
to identify the cells, their types, and their locations [11],
[12]. We restrict the subsequent analysis to two numeri-
cally dominant RGC types - ON parasol (116 cells) and



Fig. 2. Fast, sequential stimulation to reproduce the neural code
of the retina. Temporal dithering is achieved by exploiting the assumed
slow integration time of brain: the inferred visual image is assumed to
depend only on the total number of spikes in each cell generated within a
temporal integration window. Based on the visual stimulus, a rapid sequence
of current patterns is delivered, with the time between successive stimuli
much smaller than this temporal integration window).

OFF parasol (150 cells) cells, which are sampled efficiently
in these experiments and formed nearly complete mosaics
covering the region recorded. The stimulus reconstruction
filter was first estimated from the continuous white noise
stimulus, followed by a scaling based on the response to
flashes of static white noise frames, averaged across different
recordings. Note that although we identified the cell types
and reconstruction filters from light-evoked responses for
convenience, we have shown previously that for the future
clinical application, the distinct cell types can be identified
from spontaneous electrical activity [13].

The dictionary was estimated by stimulating each of the
512 electrodes individually, with 40 different current ampli-
tudes (250 nA - 4 µA), 27 times each. Response probabilities
for each stimulation pattern were identified after removing
electrical artifacts using custom spike sorting software [14].
Dictionary elements that stimulated cells along their axons,
with somas off the electrode array, were removed due to their
unknown receptive field locations and thus uncertain contri-
bution to stimulus reconstruction [7]. Finally, only dictionary
elements that activated at least one cell with probability
≥ 0.01 were retained, resulting in 4,233 dictionary elements.
A single dictionary element that does not activate any cell
(pd = 0) was added to allow the greedy algorithm to avoid
stimulation when any real stimulation pattern would increase
error.

B. Algorithm progressively captures perception

The stimulation sequence chosen by the greedy algorithm
progressively reconstructed the visual stimulus. This was
seen by sampling responses according to the RGC response
probabilities associated with the selected dictionary elements,
and then reconstructing the stimulus linearly from these
responses. The algorithm stimulated a spatially diverse se-
quence of electrodes, and the reconstructed stimulus con-
verged toward a smoothed version of the target (Figure

Fig. 3. Stimulus reconstruction achieved using the greedy algorithm.
(A-C) Responses to electrical stimulation patterns, accumulated over time,
produces inferred perception (stochastic; single trial and expected value
shown). (D) The difference between target and reconstructed stimulus
declines as a function of the number of stimulation patterns. (E) The target
visual stimulus which the electrical stimulation is intended to reproduce.

3A). Since responses were generated stochastically according
to the measured firing probabilities, variability across trials
is expected in the reconstructed stimulus. However, the
reconstruction in a single trial was similar to the expected
reconstruction across trials (Figure 3(A), right two columns).
Across 20 distinct visual targets, the error monotonically
decreased with the number of stimulation patterns delivered,
but saturated after ∼4, 000, because the reduction in bias was
not sufficient to counter the increase in variance .

Note that the 4, 000 stimulation patterns required for
asymptotic performance must be delivered within a single
integration time window, i.e. the time over which the brain
integrates RGC inputs, in order to produce a single perceived
image. For the 10 kHz stimulation frequency used here, this
nominally requires a 400 ms integration time, much longer
than likely integration times in the brain. Although the true
integration time of visual circuitry of the brain is not known,
a more realistic estimate would be tens of ms, as suggested
by sampling rates appropriate for psychophysical experi-
ments [15] and by the refresh rates used in cinematography
[16]. To achieve 4,000 stimulation patterns in this shorter
time would therefore require presenting several pulses during
the same time step, and/or increasing the sampling frequency
of the device. Note that the latter change would also influence
the exclusion of stimulation patterns during the refractory
period.



C. Near optimal perception achieved by greedy algorithm

In this section, we test whether the achieved reconstruction
was limited by either a) the greedy nature of the algorithm,
or b) the limited dictionary of single-electrode stimulation
patterns. To answer this question, the error between achieved
perception and the target stimulus was compared to two
different lower bounds:

1) Lower bound with any algorithm and fixed dic-
tionary: Let w ∈ Z|D|×1+ be the total number of
times each dictionary element is chosen during the
course of stimulation and let D ∈ [0, 1]# cells×|D|

be the dictionary matrix, with dth column equal to
the probability vector pd. The stimulus reconstruction
A
∑
Rt has mean ADw and variance V Tw, where

V ∈ R|D|×1+ is a vector of variances of dictionary
elements. Minimizing the expected mean-squared error
between the target and estimated perception with the
positive integer constraint on w is difficult. However,
a lower bound can be obtained by relaxing the inte-
ger spike count constraint and solving the following
convex optimization problem:

minimizew≥0 [‖S −ADw‖22 + V Tw] (7)

2) Lower bound of error with any algorithm and
any dictionary: Let q ∈ Z#cells×1

+ denote the total
number of spikes for each cell during the course of
stimulation (q =

∑
tRt). Assume that we have a

”perfect” dictionary, such that an arbitrary number of
spikes can be evoked in all cells using the entries in
the dictionary. Then, a lower bound is estimated by
solving the following convex optimization problem:

minimizeq≥0 [‖S −Aq‖22] (8)

The stimulus reconstruction achieved by the greedy al-
gorithm was very similar to that achieved by the optimal
algorithm (Figure 4B, C for an example target, Figure 4E
for summary across retinas), capturing ∼50% and ∼48%
of the target stimulus variance respectively. Moreover, the
error was ∼35% when an ideal stimulation dictionary was
available (Figure 4 (D, E)). In both cases, the upper bound
derived by discretizing the optimal solution did not change
these observations. Hence, the performance of the greedy
algorithm was very close that of an optimal algorithm for the
single electrode stimulation dictionary, and the improvement
in performance requires a better stimulation dictionary.

D. Guiding hardware design

The results indicate that efficient hardware can be designed
by limiting stimulation to the most frequently stimulated
electrodes. Across 20 different target images, the distribution
of stimulated electrodes was spatially non-uniform. More
frequently chosen electrodes had larger number of axons
nearby (Figure 5(A)). These electrodes typically stimulated
multiple cells simultaneously, indicating that the algorithm
exploits non-selective stimulation patterns. This suggests
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Fig. 4. Quantitative evaluation of greedy algorithm. (A) Target visual
stimulus. (B) Expected perception (stimulus reconstruction) using greedy
stimulation. (C) Reconstruction using an optimal algorithm and the fixed
dictionary. (D) Reconstruction using an optimal algorithm and optimal
dictionary. (E) Histogram of relative mean squared error (normalized by
magnitude of target) across 20 different examples.

that previous approaches to optimal stimulation based on
maximizing selectivity are not always the most effective [17].

To understand if this finding can guide efficient hardware
design, the dictionary was restricted to the most frequently
chosen electrodes. The greedy algorithm was applied with
the restricted dictionary, and reconstruction error was aver-
aged across 20 random targets. A minimal increase in error
was observed even after reducing the number of available
electrodes by 50% (Figure 5 (B) individual targets and
Figure 5 (C, D, E, F) for an example target image). On
reducing the number of available electrodes further, the error
increased gradually. This increase was not due to the greedy
stimulation choices, as a lower bound for the best algorithm
showed similar behavior (Figure 5(B), green curve). These
results suggest that an efficient device could maintain a
reduced dictionary in which ∼ 50% of the stimulating units
are turned off, reducing memory access and static power.
Note that all stimulating units are required during the initial
calibration phase to select the most frequently used subset
of electrodes - similar to previously developed methods in
cochlear implants [18].

IV. CONCLUSIONS

We present a novel framework for optimizing cellular-
resolution electrical stimulation in a closed-loop visual pros-
thesis. This framework enables adaptation of the device



target stimulus

all electrodes60% of electrodes20% of electrodes

stimulation frequency 
of electrodes

A C

FED

B

OFF-parasol
ON-parasol fraction of electrodes

re
la

tiv
e 

m
ea

n 
sq

ua
re

d 
er

ro
r greedy algorithm

optimal algorithm

0 0.2 0.4 0.6 0.8 10.5
0.55
0.6

0.65
0.7

0.75
0.8

0.85
0.9

0.95

Fig. 5. Subsampling electrodes with minimal effect on stimulus
reconstruction. (A) Frequency of stimulating different electrodes (size of
circles), overlaid with axons (lines) and somas (colored circles) inferred
from electrophysiological imaging. (B) Reconstruction error as a function
of the fraction of electrodes included in the dictionary for multiple targets
(black, thin lines) and average over 20 targets (black, thick line). Lower
bound on error of any algorithm for the subsampled dictionaries for
individual targets (green, thin lines) and averaged across targets (green,
thick line). (C) Target stimulus. (D-F) Reconstruction using the dictionary
with most frequently used 20%, 60% and 100% of electrodes, respectively.

encoding to a patient’s measured electrical (dictionary) and
visual (reconstruction) response properties.

For a linear stimulus reconstruction and a single electrode
stimulation dictionary, the greedy algorithm was surprisingly
close to optimal. Further work will be needed to assess the
quality of the elicited image with more accurate stimula-
tion algorithms, nonlinear reconstruction methods, perceptual
similarity measures, and dictionaries with multi-electrode
stimulation patterns. Also, the temporal integration of retinal
signals in the brain, and its impact on stimulation frequency,
requires further investigation.

The modular nature of the greedy algorithm may help with
design decisions for a future advanced device. For example,
the impact of different electrical stimulation patterns such as
current steering [17], [19], [20] and local return [21], [22]
can be directly compared by evaluating the quality of the
final inferred visual image.

Finally, applying the algorithm to experimental data can
lead to concrete insights for building efficient hardware, such
as exclusion of unimportant electrodes to save power. This
approach can therefore be useful for designing a sensory
neural interface, based on a rigorous experimental prototype.
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