
 

Abstract— the aim of this study was to evaluate whether 

transfer-learning with pre-trained deep convolutional neural 

networks (deep CNNs) can be used for assessing patient 

outcomes in epilepsy. Transfer-learning with the GoogLeNet 

InceptionV3 CNN model pre-trained on the large ImageNet 

dataset (~1.2 million images) was able to differentiate upper 

(n=12) and lower (n=9) response quartile mesiotemporal lobe 

epilepsy patients in the NeuroPace® RNS® System clinical trials 

with ~76% classification accuracy based on chronic 

ambulatory baseline electrocorticographic (ECoG) data. These 

promising findings justify further research using deep CNNs 

for assessing patient outcomes in epilepsy. 

I. INTRODUCTION 

A major challenge in epilepsy is assessing effectiveness of 

treatment [1, 2]. Using measures derived from interictal 

chronic ambulatory intracranial electrographic recordings 

(ECoGs) to assess patient outcomes may help with quickly 

iterating through therapy options and optimizing treatment 

for individual patients [3].  

Patient-specific modeling studies have explored 

relationships between interictal electrographic features (e.g. 

interictal spikes, spectral power bands, etc.) and clinical 

outcomes with promising results [4, 5]. However, patient 

specific-models require prior collection of substantial 

amounts of data from a given patient before the trained 

model can be applied to the patient, thus reducing their 

applicability to new patients or patients with limited ECoG 

data. Electrographic features and models which can 

generalize well in new epileptic patients remain an unmet 

need. One limitation of previous studies is the use of hand-

crafted features which rely on accurately identifying and 

extracting the features. Supervised feature engineering also 

misses the opportunity to discover novel patterns [6].  

Deep learning algorithms can perform end-to-end learning 

from data and do not rely on feature-engineering [7]. Deep 

convolutional neural networks (deep CNNs) have made 

breakthroughs in the field of computer vision with CNN 

depths often positively correlated with model performance, 

since similar to the human visual processing system, deeper 

layers of CNNs can learn more complex data patterns 

compared to the initial shallow CNN layers [7]. Training 

deep CNNs from scratch for complex problems requires 

very large datasets usually on the order of millions of data 

points. However, through the process of transfer learning, 

the weights learned by a deep CNN on a large dataset may 

be applied to a small dataset with some customization to 

tune the network to the small dataset [8]. Transfer learning 
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with pre-trained deep CNNs has demonstrated impressive 

performance in several domains [8, 9].  

The goals of the analyses in this paper were to determine (1) 

whether pre-trained deep convolutional neural networks are 

capable of identifying ECoG similarities within groups of 

epileptic patients with similar clinical outcomes and (2) 

whether deep CNNs can be used to assess treatment outcome 

in a new patient whose data was not used for training.  

Although transfer-learning with pre-trained deep CNNs 

has been widely reported in computer vision, speech and text 

processing [7, 8], their role in analyzing neural signals has 

been very limited. A few recent studies have trained CNNs 

for seizure detection and forecasting [10], but to the best of 

our knowledge, this is the first study to use pre-trained deep 

CNNs for assessing therapy outcomes in epilepsy using 

baseline chronic human ambulatory ECoG data.  

II. METHODS

The dataset used here comes from patients implanted with 

the NeuroPace
®
 RNS

®
 System in clinical trials (n = 256 

patients) [11] with a median follow-up period of 8.97 years. 

Since the objective of this analysis is to test the utility of 

transfer-learning for differentiating patients with different 

clinical outcomes, we selected two groups of patients with 

vastly different clinical outcomes.  That is, patients in the 

upper and lower seizure reduction response quartiles after 7 

years of treatment. Further, in this analysis we only included 

patients with mesiotemporal lobe (MTL) epilepsies to limit 

the analysis to a fairly homogeneous patient population.  

A. The RNS System 

The NeuroPace
®
 RNS

®
 System was approved by the FDA in 

2013 for the adjunctive treatment of patients with partial 

onset epilepsy having 1-2 seizure foci. Details about the 

RNS System can be found in several previous publications 

[11, 12]. In brief, the RNS System consists of a closed-loop 

responsive neurostimulator device implanted in the skull, 

with 1 or 2 quadripolar depth or strip leads connected (Fig. 

1). Leads are implanted at the seizure foci. MTL patients 

received mostly bilateral hippocampal depth leads. The 

neurostimulator continuously monitors differentially 

recorded neural activity using a patient-specific detection 

algorithm and delivers electrical stimulation when abnormal 

activity is detected. ECoGs with 1-4 channels are recorded 

from the implanted leads and stored in the neurostimulator, 

then wirelessly downloaded by the patient using an internet-

connected Remote Monitor.  ECoG records have a data 

sampling rate of 250 Hz per channel and are typically 90 

seconds in duration (Fig. 2A); however the length of stored 

ECoGs can vary and is determined by the treating physician, 
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with a maximum length of 180 seconds. ECoG storage is 

most frequently triggered by detection of epileptiform 

activity but may also be scheduled based on time of day. 

Approximately 1/3 of stored ECoGs are scheduled and 

contain baseline interictal activity.  

 
 

B. Patient selection for this study 

Out of 256 patients enrolled in the RNS System clinical 

trials, 111 had mesiotemporal lobe (MTL) epilepsy. Of 

these, 79 patients had at least 7 years of follow-up after the 

initial implant of the RNS System [11]. The 20 (out of 79) 

patients with the greatest reduction in patient-reported 

clinical seizures at year 7 post-implant compared to a 3-

month pre-implant baseline period were classified as the 

upper response quartile (URQ; -96.5% median change in 

clinical seizure rate), and the 20 patients with the least 

seizure reduction were classified as the lower response 

quartile (LRQ; -17.4% median change). An inclusion criteria 

of at least 5 scheduled ECoGs captured in year 7 was set for 

a patient to be included in the analysis.  

C. Computing spectrograms 

Since the goal of this analysis was to classify patients into 

upper and lower response quartiles based on baseline non-

ictal ECoG data, only scheduled ECoG records containing 

interictal baseline activity were used. To simply analysis, 

only data from ECoG channel 1 were used for training and 

testing. Python 3.5 was used for all analyses. Any 

stimulation artifacts in the ECoG data were deleted along 

with 40 ms before and 120 ms after the artifact, 

concatenating the portions of the ECoG before and after the 

artifacts. After removal of any stimulation artifacts, ECoG 

records <85 seconds long were excluded from analysis. Only 

the first 90 seconds of ECoG records longer than 90 seconds 

were used for analysis. This was done to ensure that the data 

used for computing spectrograms were of similar lengths. 

Spectrogram images were computed using 

matplotlib.pyplot.specgram. A window size of 256 data 

points (~1 second of ECoG data) and step size of 128 data 

points was used for computing the spectrograms between ~1 

Hz and 125 Hz. The resulting spectrograms were saved as 

299 (height) x 299 (width) pixel PNG images using a gray 

color scale.    

 
 

Figure 2. (A) Example time-series of channel 1 data from scheduled ECoGs. (B) 

Corresponding grayscale spectrogram images derived from the time-series ECoG. 

D. Model training and testing 

GoogLeNet Inception v3 CNN pre-trained on the ImageNet 

dataset (image-net.org) consisting of 1.2 million everyday 

images in 1,000 categories was used to analyze spectrogram 

data using methods inspired by Esteva et al. [8] where pre-

trained deep CNNs were used for classifying skin cancer 

images.  

 
 

 

 

 

The only preprocessing performed was the standard 

procedure of normalizing pixel values to a range between 0 

and 1 by dividing by 255. As shown in Fig. 3A, the initial 

CNN layers used weights from the GoogLeNet model pre-

trained on the ImageNet dataset, and the final classification 

layers were trained to classify the input spectrograms into 

upper and lower response quartile classes. Informed by 

preliminary experiments, training was performed for a 

maximum of 10 epochs. Learning rates between 0.01 and 

0.00001, with and without a learning rate decay factor of 

10% over each subsequent training epoch, were evaluated 

using a train and test batch size of 32 and 64. Stochastic 

gradient descent with momentum of 0.9 for the 

backpropagation process was used for training optimization. 

All analyses were performed using Keras v2.2.2 with 

Tensorflow v1.10.1 backend on an Ubuntu 16.04 computer 

with 4 NVIDIA GeForce GTX 1080 Ti GPUs. All 4 GPUs 

were used in parallel for model training and testing.  

To assess  whether CNNs can be used to assess treatment 

outcome in a new patient, the CNN was compiled and 

trained (Fig. 3B) for each patient held out as the test patient. 

For each iteration, the training dataset consisted of 

spectrograms from all patients minus holdout, and the test 

dataset included only the holdout patient.   

E. Dimensionality reduction and feature visualization  
Inspired by previous studies in computer vision, a two-step 

dimensionality reduction process was used for visualizing 

the features extracted by the CNNs [8]. First, principal 

component analysis (sklearn.decomposition.PCA) was used 

to reduce the number of features extracted by the final pre-

trained model layer from ~131,000 to 50. Second, t-

distributed stochastic neighbor embedding 

(sklearn.manifold.TSNE) further reduced the number of 

dimensions from 50 to 2 which were used for the 2D 

visualizations (Fig. 4).  

A B

Figure 3. (A) GoogLeNet with Inception V3 modules 

pre-trained on the ImageNet dataset was used for 

extracting features from spectrograms. The features 

were passed through classifier layers which were 

trained to classify spectrograms into upper or lower 

response quartile images. (Figure adapted from 

https://cloud.google.com/tpu/docs/inception-v3-

advanced.) 

(B)  GoogleNet with Inception V3 modules along with the top classifier layers was 

compiled and trained on spectrograms from 20 patients and tested on one holdout 

patient’s data. This was repeated once with each patient as the holdout.  

Figure 1. (A) 

Illustration of the 

RNS System with the 

neurostimulator 

implanted in the skull 

and connected to a 

strip lead and a depth 

lead. (B) Photograph 

of the RNS System. 
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III. RESULTS 

Nine patients from the lower quartile and 12 patients from 

the upper quartile met the analysis inclusion criteria of 

having at least 5 ECoGs captured during Year 7 after initial 

implant of the RNS System. The number of ECoGs from 

URQ patients ranged from 19 to 536, and totaled 1447. LRQ 

patients had between 6 to 404 ECoGs each, and totaled 990.  

A. Visualization of features extracted by GoogLeNet  

A two-dimensional representation of the features extracted 

by the pre-trained GoogleNet Inception v3 model from 

upper and lower response quartile patients is shown in 

Fig. 4 A-C. Visualization of spectrograms from two 

extreme end regions and the mid region of the two 

dimensional feature space (dotted boxes a, b and c 

respectively in Fig. 4A) shows stratification of 

spectrograms within the feature space. Spectrograms 

containing a large amount of spiking and other signal 

features characteristic of the epileptic brain (i.e., feature-

rich spectrograms) are concentrated at the top of the plot, 

spectrograms containing moderate amount of spiking and 

other epileptic signal features are grouped in the center,  

relatively quiet spectrograms with little spiking are 

concentrated at the bottom of the plot. The URQ patients 

contribute relatively more spectrograms to the lower 

portion of the feature space with relatively quiet 

spectrograms, whereas the LRQ patients contribute 

relatively more spectrograms to the upper portion of the 

feature space. A large overlap in spectrograms from the 

LRQ and URQ patients can be seen towards the center of 

the feature space. Spectrograms from within the same LRQ 

and URQ patient can be either tightly (e.g. B3 and C3) or 

loosely clustered (e.g. B2 and C2) in the 2D feature space. 

 

 

Figure 4: GoogLeNet Inceptionv3 ECoG features extracted from grayscale 
spectrograms from upper response quartile (URQ) patient ECoGs (n = 

1447) and lower response quartile (LRQ) patient ECoGs (n = 990) are 

shown in green squares and blue circles, respectively. B1-3: ECoG features 
from 3 individual lower quartile patients are shown with red stars. C1-3 

ECoG features from 3 individual upper quartile patients are shown with red 

stars.Spectrograms labeled a,b,c: Example spectrograms from the 2 extreme 
end regions (a,c) and the mid region (b) of the 2 dimensional feature space 

depicted with dotted boxes a,b,c in panel A.  
B. Classification performance of the CNN 

The majority of training conditions (12 out of 16) produced 

above chance-level classification accuracy on the test data.  

That is, the majority of spectrograms were correctly 

classified in at least 50% of all patients. Among the different 

initial learning rates (ILR) and learning rate decay factors 

(LRDF) tested, lower ILRs (≤0.0001) comparatively 

produced better classification performances. An ILR of 

0.0001 with no learning rate decay and batch size of 32 

produced the highest classification accuracy of 76.2% with a 

similar percentage of LRQ (77.8%) and URQ (75%) patients 

correctly classified.  Example trends of training and test 

accuracies with incremental training in 3 test patients with 

ILR 0.0001 and no LRDF are shown in figure 5. Under these 

training conditions, a rapid increase in accuracy was 

generally observed across all test patients over the 1
st
 3-5 

training epochs. This was followed by saturation, 

improvements or decline in test accuracy with subsequent 

training. Training accuracy improvements were nearly 

uniform across the 21 training iterations (one training 

iteration for each patient held out as test) and reached 80.2% 

accuracy by the 5
th

 training epoch and 85.2% accuracy by 

the 10
th

 training epoch. Among the 15 different ILRs and 

LRDFs experimented with, results from the top experiment 

are summarized in Table 1.  

 
Figure 5: Training (blue) and test (red) accuracy for 3 example test/holdout 
patients over 10 training epochs for the model summarized in Table 1. A 

large increase in test accuracy over the 1st 3-5 training epochs was observed 

across all patients.  
Table 1: Classification performance 

Initial Learning rate 

(ILR), Learning decay 

rate (LDR), Batch Size 

(BS), Number of 

training epochs (TE) 

Fraction of  

patients 

correctly 

classified† 

%of URQ and 

LRQ patients 

correctly 

classified† 

Average test 

accuracy in 

correctly 

classified 

patients 

ILR = 0.0001 

LDR = none 

BS = 32 

TE= 10 

16/21 

(76.2%) 

URQ:  75% 

LRQ:  77.8% 

72.8% 

†Note: Final test accuracies used for generating metrics in this table were 

computed as the average of test accuracies during final 3 training epochs to 

dampen noise. 

IV. DISCUSSION AND CONCLUSION 

The findings in this paper are novel and significant for 

several reasons: (1) ECoG and clinical data from the 

NeuroPace RNS System clinical trials provide a unique 

opportunity to study electrographic correlates of clinical 

outcomes in epilepsy since it is the only dataset available 

that contains long-term (mean follow-up period of ~9 years) 
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chronic ambulatory human ECoG data [11].  (2) To the best 

of our knowledge, transfer learning with pre-trained deep 

convolutional neural networks has not been explored before 

as a tool for assessing patient outcomes in epilepsy based on 

chronic interictal ECoG data. (3) Despite the presence of 

large patient-to-patient variations in ECoG features between 

and within the MTL patients (Figure 4 B1-3 and C1-3), deep 

CNNs are able to extract and learn ECoG patterns which can 

differentiate clinical responder and non-responder MTL 

patients (Figure 4 A). (4) We have shown that transfer 

learning with weights from a CNN pre-trained on everyday 

images can be applied to spectrograms of brain activity, a 

completely different type of dataset, to achieve well above 

the performance of uninformed random selection (Table 1). 

These promising results justify further expansion of this 

work. 

After dimensionality reduction for feature visualization, 

stratification of spectrograms was observed in the 2 

dimensional features space with segregation of those 

containing apparent spiking and other visible signal features 

characteristic of an epileptic brain  (i.e., feature-rich) from 

those with little or no visible spiking on the other side 

(Fig. 4). Although loose or no obvious clustering of 

spectrogram features from within the same patient was 

observed in several cases (Fig. 4, B2 and C2), spectrograms 

from the LRQ MTL patients were generally concentrated in 

the feature-rich region of the 2D feature space and those 

from the URQ MTL patients were generally concentrated in 

the feature-poor region, suggesting that LRQ MTL patients 

have more interictal epileptiform discharges compared to the 

URQ patients. This type of data visualization could inform 

hand engineering of a relatively small feature set that may be 

directly incorporated into computationally-constrained 

implanted neurostimulators for online assessment of patient 

brain states and continuous modulation of neurostimulation.  

 Neural network classification layers trained with an initial 

learning rate of 0.0001 on features extracted with pre-trained 

GoogLeNet InceptionV3 layers produced a classification 

accuracy of ~76% i.e., 16/21 patients were correctly 

classified . However, only a small range of three 

hyperparameters i.e., the initial learning rate, the learning 

rate decay factor and batch size were explored. The initial 

learning rate and learning rate decay factor are among 

hyperparameters often having the greatest impact on model 

performance [13] and hence these were characterized first. 

In addition to further exploring these hyperparameters, 

future studies will be devoted to testing other model 

architectures and training hyperparameters by leveraging the 

automated neural network architecture search and 

hyperparameter optimization tools offered by cloud service 

providers such as the Google Cloud Platform.  Other 

spectrogram color scales, window lengths and step sizes, 

along with the size and resolution of the saved PNG images 

will also be explored. 

 In this analysis, only the final classification layers of the 

deep CNN were trained, with the rest of the model 

employing pre-trained weights. Future studies should be 

devoted to examining the effects of fine-tuning the number 

of pre-trained networks layers on the classification 

performance. Additionally, features extracted at several 

different depths of the CNN should be visualized and used 

for training neural network and other types of machine 

learning classifiers.  

  Only one channel of data per ECoG record was used for 

training and classification. This was done to simplify the 

training and test process since the number of channels per 

ECoG can vary across patients and within a patient over 

time. Although the selection of the 1
st
 channel of ECoG data 

from all ECoG records should not bias the analysis in any 

way, future analyses should be designed to include data from 

all available channels in a patient for training and testing. In 

fact, a multi ECoG-channel approach may improve model 

performance and produce greater model output confidence 

compared to a single-channel approach. 

Finally, the aim of this paper was not to optimize deep 

CNNs for assessing clinical outcomes in epilepsy, but 

instead to test the feasibility of transfer learning for finding 

similar ECoG patterns within epilepsy clinical responders 

and non-responders. Through preliminary data visualization 

and classification training experiments, transfer learning 

with the pre-trained GoogLeNet Inception-V3 model has 

shown promise in differentiating MTL epilepsy patients who 

respond to treatment from those who do not. 
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