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Abstract— Local field potential (LFP) has gained increas-
ing interest as an alternative input signal for brain-machine
interfaces (BMIs) due to its informative features, long-term
stability, and low frequency content. However, despite these
interesting properties, LFP-based BMIs have been reported
to yield low decoding performances compared to spike-based
BMIs. In this paper, we propose a new decoder based on long
short-term memory (LSTM) network which aims to improve
the decoding performance of LFP-based BMIs. We compare
offline decoding performance of the proposed LSTM decoder
to a commonly used Kalman filter (KF) decoder on hand
kinematics prediction tasks from multichannel LFPs. We also
benchmark the performance of LFP-driven LSTM decoder
against KF decoder driven by two types of spike signals: single-
unit activity (SUA) and multi-unit activity (MUA). Our results
show that LFP-driven LSTM decoder achieves significantly
better decoding performance than LFP-, SUA-, and MUA-
driven KF decoders. This suggests that LFPs coupled with
LSTM decoder could provide high decoding performance,
robust, and low power BMIs.

I. INTRODUCTION

Brain machine interfaces (BMIs) hold the promise to
restore lost motor function in persons with neurological
disorders (e.g. spinal cord injury) by enabling interaction
with the environment through their neural activity. A key
component of a BMI system is the decoder which translates
neural activity (i.e. intentions) into motor commands to
control external devices such as computer cursors and robotic
arms, or the subject’s own muscles. To date, high decod-
ing performance BMIs have predominantly utilized spikes
as the decoder’s input signals which are recorded using
intracortical microelectrode arrays [1]. Despite compelling
results reported in several studies [2], [3], spike-based BMIs
face two major challenges towards their clinically viable
translation [4]. First, the number of recorded spike signals
declines over time, which can degrade the performance of
BMI decoder. This long-term instability is thought to be
caused by scar tissue formation around the electrodes and
micromotion of the electrodes [4], [5]. Second, due to high
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sampling rate (>10 kHz), detecting and sorting spikes in an
implanted circuitry or transmitting the raw data require high
power consumption, which will in turn increase heat and
limit the device’s battery lifetime [4].

One approach to address these challenges is to utilize
another signal modality within neural activity, namely local
field potential (LFP), as an alternative input signal for BMI
decoder. LFP is a low frequency extracellular voltage thought
to be mainly generated from postsynaptic currents and reflect
activity of population of neurons in the vicinity of the
electrodes. LFP is thus believed to be less sensitive to scar
formation and micromotion of the electrodes [4]. Several
studies have shown that LFPs are more stable than spikes and
that considerable amount of movement-related information
contained within LFPs are still present even after spikes are
lost [1], [6], [7]. In addition, LFPs can be processed at signif-
icantly lower sampling rate than spikes, which translates into
lower power consumption and lower complexity (i.e. memory
requirements). However, despite these interesting properties,
LFP-based BMIs have been shown to yield low decoding
performances compared to spike-based BMIs [1], [5], [6],
[8], [9]. Most of LFP-based BMIs employ Kalman filter
(KF) decoder which assumes linear and Gaussian distribution
on both the observation and state dynamics. However, since
LFPs exhibit nonlinear, non-stationary, and non-Gaussian
characteristics [10], aforementioned assumptions could lead
to suboptimal results. Therefore, a more flexible and effec-
tive decoding method is required to improve the decoding
performance of LFP-based BMIs.

One promising solution to this issue is recurrent neural
networks with long short-term memory (LSTM) architecture,
which do not require any assumption on the data. In fact,
LSTMs have become the state-of-the-art methods for various
applications ranging from speech recognition and synthesis,
language modeling and translation, to audio and video anal-
ysis [11]. Despite the successes in a variety of fields, to our
knowledge, however, LSTMs have not been applied to LFP-
based BMI decoding.

In light of this, in the present paper, we propose an LSTM-
based decoder for decoding hand kinematics from multichan-
nel LFPs recorded intracortically from non-human primate
(NHP) during free-reaching tasks. We then compare offline
decoding performance of the proposed LSTM decoder to a
commonly used Kalman filter (KF) decoder. Additionally,
we also benchmark the decoding performance between LFP-
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Fig. 1. Block diagram of LFP-based BMI decoding using an LSTM network. The larger gray-shaded block illustrates a detailed schematic of an LSTM.

driven LSTM decoder and KF decoder driven by two types
of spike signals: single-unit activity (SUA) and multi-unit
activity (MUA).

II. METHODS

A. Neural Recording and Behavioral Task

In this study, we used two datasets (dataset I:
I 20170124 01; dataset II: I 20170127 03) from a public
neural data recorded from primary motor cortex (M1) area
of an adult male Rhesus macaque monkey (Macaca mulata)
by Sabes Lab [12]. Recording duration for dataset I and
II were 9 and 12 minutes, respectively. The neural data
was recorded using 96-channel silicon microelectrode array
(Utah array with 400µm inter-electrode distance and 1 mm
electrode length) while the monkey was performing self-
paced reaching tasks without inter-trial intervals within 8-by-
8 square grid. The recording was referenced to a silver wire
placed under the dura (several cm away from the electrodes).
The neural data was sampled at 24.4 kHz and filtered with
a 4th oder low-pass filter at 7.5 kHz. Fingertip position in
x-y coordinates was sampled at 250 Hz. Velocity was then
computed from position by using discrete derivative. A more
detailed description of the experiment setup is given in [13].

B. Neural Signal Processing

LFPs were obtained by low pass filtering raw neural data
using 4th order Butterworth filter at 300 Hz and then down-
sampling them to 1 kHz. LFPs have been shown to contain
common noises, partly arising from the use of a single,
distal reference (unipolar) [14]. To remove these common
noises, we performed common average reference (CAR) and
subtracted it from LFP signal in each channel. At each
time instant, CAR was computed by averaging LFP signals
across all channels. Two LFP features, local motor potential
(LMP) [1], [6], [9] and delta Hilbert envelope (DHE), were
extracted. LMPs were computed from LFPs by using time-
domain moving average filter. DHEs were calculated firstly
by low pass filtering LFPs with 4th order Butterworth filter
at 4 Hz and then computing the envelope (i.e. instantaneous
amplitude) of their analytic signals through Hilbert transform

(HT). We computed Hilbert envelope only from delta band
(0-4 Hz) since other frequency bands in our data did not
contain significant information as observed through time-
frequency decomposition. Both LMP and DHE features were
computed within overlapping windows that slide every 4 ms
to match the timescale of hand kinematics. We used window
widths ranging from 32 ms to 512 ms with an increment of
32 ms. For performance evaluation, we selected a window
width and LFP features that yielded the best decoding
performance on validation set. The processing steps of our
LFP-based BMI decoding is illustrated in Fig. 1.

Spikes were extracted from each channel by band pass
filtering (from 500 to 5000 Hz) raw neural data and then
detecting the filtered signal amplitudes that crossed a prede-
termined threshold value. All the detected spikes within sin-
gle channel are referred to as multi-unit activity (MUA). To
extract single-unit activity (SUA), the detected spikes were
sorted (i.e. classified) into distinct putative single units. More
detailed information on spike detection and sorting processes
can be found in [13]. In this study, units with spike rates
below 0.5 Hz were excluded [13] thus leaving only 130 (124)
SUAs and 91 (94) MUAs for dataset I (II). We computed
spike counts within different overlapping bin/window widths
(same range as of LFPs) sliding every 4 ms (corresponding
to the kinematics time scale). Overlapping bin was used
because it has been demonstrated to yield better decoding
performance than non-overlap bin [15], [16]. Similar to that
of LFP-based decoding, we selected a bin width that resulted
in the best decoding performance on validation set.

C. Long Short-Term Memory (LSTM) Network

Long short-term memory (LSTM) is a type of recurrent
neural networks (RNNs) that was developed by Hochreiter
and Schmidhuber in 1997 [17]. It has successfully addressed
the vanishing or exploding gradient problem encountered
when training traditional RNNs. LSTM is very well suited
to many sequential data problems as it is capable of learning
long-term temporal dependencies through gating mechanism.
A commonly used variant of LSTM units contains three gates
(forget, input, and output) and a memory cell that control the



TABLE I
HYPERPARAMETERS FOR LSTM DECODER

Hyperparameter Values

Number of units {50, 75, 100, · · · , 200}
Number of epochs {2, 3, 4, · · · , 8}
Batch size {32, 64, 96, 128}
Dropout rate {0, 0.1, 0.2, 0.3, 0.4}
Learning rate {0.001, 0.0015, 0.002, · · · , 0.003}

flow of information. In this study, we used this LSTM variant
where its components’ state at time instant t can be described
by:

ft = σ(Wfxt + Ufht−1 + bf )
it = σ(Wixt + Uiht−1 + bi)
c̃t = tanh(Wcxt + Ucht−1 + bc)
ct = ft � ct−1 + it � c̃t
ot = σ(Woxt + Uoht−1 + bo)
ht = tanh(ct)� ot

(1)

where x, h, f, i, o, c represent the input, output, forget gate,
input gate, output gate, and memory cell, respectively; σ
and tanh denote sigmoid and hyperbolic tangent activation
functions, respectively; � denotes element-wise multiplica-
tion. W,U, b are weight matrices and bias vector parameters
that need to be learned during training.

Training an LSTM decoder requires setting up configura-
tion parameters called hyperparameters, which in this study
are given in Table I. The hyperparameter configuration was
tuned through a Bayesian optimization library (Hyperopt)
[18] with 200 iterations. The LSTM decoder was imple-
mented using Keras framework with TensorFlow backend
and trained using RMSprop optimizer and root mean squared
error (RMSE) loss function.

D. Performance Evaluation and Metrics

To evaluate the performance of the LSTM decoder, we
used two common metrics, namely, root mean squared error
(RMSE) and Pearson’s correlation coefficient. These metrics
were computed between decoded and actual velocities on
x- and y- coordinates. We split each dataset into k = 10
subdatasets which were then categorized into a training
set (concatenation of k − 2 subdatasets), validation set (1
subdataset), and testing set (1 subdataset). The training set
was used to find values of the LSTM parameters (W,U, b).
The validation set (from dataset I) was used to find the opti-
mal configuration of LSTM hyperparameters, LFP features,
window widths, and lags between LFP/spike features and
the kinematics that minimized average RMSE across x-y
coordinates. This configuration was then used for evaluating
the performance of LSTM decoder on testing sets. We
iterated the performance evaluation on k different testing sets
for each dataset.

III. RESULTS

According to our evaluation on validation set (dataset I),
the following configuration of LSTM hyperparameters led
to smallest average RMSE: number of layer = 1, number of
timesteps = 2, number of units = 100, number of epochs = 6,
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Fig. 2. Comparison of decoding performance of LSTM decoder under
different LFP features and window widths. Red stars indicate window widths
that yielded smallest average RMSEs on validation set of dataset I.

batch size = 32, dropout rate = 0.2, and learning rate = 0.001.
This configuration was then used to find the optimal LFP
features and window width using the validation set (dataset I)
and to benchmark the performance of LSTM decoder against
KF decoder using the testing sets (dataset I and II).

A. LFP Feature and Window Width Selection

The LFP features used for comparison were LMP, DHE,
and combination of both, which were extracted from two
reference schemes (unipolar and CAR). According to our
results, CAR-based LFP features led to superior decoding
performance than unipolar-based LFP features. LMP, on
average, resulted in better performance than DHE. Combi-
nation of both LMP and DHE features yielded improved
performance than that of single LFP feature. In regards
to different window widths ({32, 64, 96, · · · , 512}ms), we
observed a similar trend across different LFP features. The
decoding performance increased (smaller average RMSE) as
the window width increased up to a particular point where
above this point the performance would decrease. This par-
ticular point corresponds to a window width within a range of
256− 320ms. The summary of LSTM decoder performance
with respect to different LFP features and window widths
is depicted in Fig. 2. For performance benchmark against
KF decoder on testing sets, we selected a combination of
LMP and DHE features extracted from CAR-based LFPs
with 320ms window width. Through the same procedure, we
selected a combination of LMP and DHE features extracted
from unipolar-based LFPs with 256ms for KF decoder
(figure is not shown due to page limitation).

B. Window Width Selection for Spike-driven Decoders

We also investigated the impact of different window
widths to decoding performance of LSTM and KF decoders
driven by spike signals (SUA and MUA). A similar trend
as in LFP-driven decoders was also observed in the cases
of spike-driven LSTM and KF decoders. The decoding
performance improved as the window width increased and
at a particular point the performance would decline. The
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widths that yielded smallest average RMSEs on validation set of dataset I.

summary of spike-driven LSTM decoder performance with
respect to different window widths is shown in Fig. 3. Due
to page limitation, the summary of spike-driven KF decoder
is not shown. For performance comparison on testing sets,
we selected a window width of 256ms for both SUA- and
MUA-driven LSTM decoders. Window widths of 256ms
and 288ms were selected for SUA- and MUA-driven KF
decoders, respectively.

C. Decoding Performance Comparison

Firstly, we compared the decoding performance of our
proposed LFP-driven LSTM decoder to LFP-, SUA-, and
MUA-driven KF decoder (referred to as LFP-LSTM, LFP-
KF, SUA-KF, and MUA-KF respectively). As shown in
Fig. 4, LFP-LSTM achieved significantly better decoding
performance than LFP-KF, SUA-KF, and MUA-KF mea-
sured in both metrics (RMSE and correlation) for both
datasets (I and II). LFP-LSTM yielded average RMSE of
36.90 ± 2.85 (43.60 ± 2.31) mm/s and average correlation
of 0.83± 0.02 (0.82± 0.02) for dataset I (II). This average
RMSE value corresponded to performance improvement of
35.59±4.77 (32.93±3.78)% for dataset I (II) with respect to
LFP-KF as shown in Fig. 5. In term of average correlation,
the performance improvement made by LFP-LSTM over
LFP-KF was 17.32 ± 2.85 (14.98 ± 2.65)% for dataset I
(II).

In addition, we also compared the decoding performance
of LFP-LSTM to SUA- and MUA-driven LSTM decoder
(referred to as SUA-LSTM and MUA-LSTM). The results
show that LFP-LSTM outperformed SUA-LSTM but was
outperformed by MUA-LSTM for both datasets. The overall
performance comparison among different decoding meth-
ods is shown in Fig. 4. We plotted performance improve-
ment/decrease of different decoders with respect to LFP-
KF as can be seen in Fig. 5. MUA-LSTM yielded largest
performance improvement of 40.15±5.07 (36.15±4.42)% in
average RMSE and 20.91±2.40 (17.81±3.78)% in average
correlation for dataset I (II). SUA-KF showed improved
performance than LFP-KF in dataset I but worse performance
in dataset II. Examples of actual and decoded velocities (in
x and y directions) from LFP-LSTM and LFP-KF are given
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Fig. 4. Decoding performance comparison of LSTM and KF decoders
under different input signals. Black horizontal lines inside the boxes repre-
sent the medians; red stars represent the means; colored boxes denote the
interquartile ranges; whiskers extend 1.5× from upper and lower quartiles.

in Fig. 6. For the sake of readability, only decoded velocities
from these two decoders are shown.

IV. DISCUSSION

In this study, we propose a new decoder based on LSTM
network to predict (offline) hand kinematics from multichan-
nel LFPs of an NHP subject. We have shown that LFP-driven
LSTM decoder significantly outperforms KF decoder driven
by LFP, SUA, and MUA. This demonstrates the effectiveness
of LSTM decoder in capturing nonlinear and complex rela-
tionship between LFPs and hand kinematics. On the other
hand, KF decoder with its inherent assumptions results in
poor performance, especially for LFPs that exhibit high spa-
tial correlation [14]. LFPs recorded from unipolar reference
are often contaminated by spatially correlated noises, which
affects the decoding performance. These noises can be elimi-
nated by using common average reference (CAR) employed
prior to LFP feature extraction process. Our results show
that CAR can lead to improved decoding performance. Our
results also show that LMP contains significant amount of
movement-related information as indicated by good decoding
performance compared to other LFP features, which is in
good agreement with [1]. However, our results differs from
[1] in that delta band of LFP is more informative than the
higher bands. By combining LMP with DHE as the input
for LSTM decoder, the performance of LSTM decoder can
be improved. Prior studies demonstrated that LFP-driven
decoder performed slightly worse or comparable to spike-
driven decoder [1], [5]. Using hybrid LFP-spike signals,
they could achieve better decoding performance than that
of spikes only. Here, we show that using only LFP signals,
our proposed LFP-driven LSTM decoder can significantly
outperform spike-driven KF decoder.

Performance comparison using the same LSTM decoder
with different input signals (LFP, SUA, and MUA) show
that MUA-LSTM achieves the best decoding performance,
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Fig. 5. Performance comparison of different decoders relative to LFP-KF.
A Positive (negative) value indicates performance improvement (decrease).
Black error bars represent 95% confidence intervals.

followed by LFP-LSTM and SUA-LSTM, respectively. This
may indicate that MUA contains more movement-related
information than that of SUA. Better performance of MUA
over SUA for both KF and LSTM decoders obtained from
this study offers a new perspective to the debate whether
or not spikes should be sorted [19], [20]. However, the
changes of spike amplitude and waveform over time pose
critical challenges in adjusting the threshold crossing value
for spike detection, sorting and tracking the spikes into the
same putative single units. Furthermore, the high sampling
rate required for these spike processing demands high power
consumption that hinders the implementation of wireless,
scalable, and implantable BMIs. LFP offers attractive proper-
ties to address these challenges: long-term stability and low-
frequency content (i.e. low sampling rate). In this study, we
only use two datasets corresponding two recording sessions
(3 days gap between the sessions). For future work, we will
investigate the stability and robustness of LFP-, SUA-, and
MUA-driven LSTM decoders over long period of time.

Overall, our results suggest that LFP indeed contains a rich
movement-related information, which corroborates the idea
that LFP is a promising alternative signal input for BMIs.
Along with their stable and low-frequency properties, LFPs
coupled with LSTM decoder could potentially provide high
decoding performance, robust, and low power BMIs.
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