
  

  

Abstract— Surface electromyography (sEMG) has been 
increasingly used to evaluate neurophysiological aspects of 
movements, especially for rehabilitation. The traditional muscle-
specific sEMG approach requires considerable expertise to 
correctly position bipolar derivations over each muscle of 
interest. This reduced the availability of myoelectric imaging 
tools for non-professional users in everyday life conditions. 
High-density EMG (HDsEMG) consists of recording the sEMG 
via a dense array of electrodes. The high number of channels 
required to perform proper HDsEMG however restricts the 
surface that can be imaged only to a narrow area, which limits 
the usability of the approach to few applications. Here we 
demonstrate the usability and advantages of a medium-density 
sEMG (MDsEMG). We recorded the muscle activity of a subject 
performing repeated arm flexion and extension simultaneously 
using both, muscle-specific sEMG (4 derivations over the biceps 
and triceps) and MDsEMG (28 monopolar derivations, 
positioned around the arm circumference). Additionally, the 
elbow angle was measured. Grand-average dynamic-time-
warped amplitudes showed similar activation patterns for both 
modalities. However, MDsEMG allowed to extract activation 
maps that highlighted the spatial activation of muscles at 
different movement phases (namely minimum and maximum 
acceleration). MDsEMG also proved superior in decoding the 
elbow angle and allowed to map the regions of maximum 
significance. In conclusion, MDsEMG is a viable alternative to 
muscle-specific and HD sEMG. It does not require expertise in 
electrode positioning and is able to cover large surfaces. It thus 
can pave the way to easier myoelectric imaging in everyday life 
and more effective rehabilitation treatments.   
 

I. INTRODUCTION 

Surface electromyography (sEMG) is becoming 
increasingly important in many applications, including 
clinical/biomedical assessment, control of prostheses or 
rehabilitation devices, human machine interactions etc. The 
recording and analysis of myoelectric activity allows a more 
standardized and precise evaluation of the neurophysiological 
aspects of movement, in particular in rehabilitative and 
assistive contexts [1].  

Despite the growing interest of the research community in 
myoelectric imaging and the promising results, limitations in 
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mobility and robustness of current EMG devices limit their 
use in everyday life situations [2, 3].  

Current standard practice for measuring sEMG consists of 
carefully positioning for each muscle of interest, a pair of 
electrodes on top of the muscle plus often a reference on a 
neutral region (e.g. elbow) to form bipolar derivations [4, 5].  

Correct positioning and labelling of the electrodes as well 
as selection of the muscles of interest for a particular 
application requires a certain degree of specialized 
knowledge, often available only to clinicians. This is a further 
barrier to the widespread use of myoelectrical imaging in in 
everyday contexts. On top of that, especially for myoelectric 
control of prostheses for upper limb amputees, low residual 
muscle innervation might render correct positioning very 
difficult, even to a specialized clinician [6]. 

Another setup called high-density EMG (HDsEMG), has 
been proposed by several authors [7] with the aim of partly 
overcoming the aforementioned issues. HDsEMG consists of 
measuring the EMG with a grid of electrodes, i.e., an 
ensemble of sensors that records spatially-correlated data. As 
showed by Afsharipour et al. [8], the inter-electrode distance 
(IED) needs to be smaller than 10 mm to avoid spatial aliasing 
effects. Plus, constraints on the number of channels that can 
be acquired, narrow the surface area that can actually be 
covered, limiting HDsEMG for everyday applications.   

A trade-off solution is spreading a number of electrodes 
(32, 64 or 128 monopolar derivations – easily recorded by 
most compact amplifiers) on the skin, irrespectively to the 
muscle positions or application [9, 10] and with larger IED, 
to form a “medium density EMG” - MDsEMG.  

Inzelberg et al. [11] used a similar method to acquire sEMG 
data on facial muscles to investigate human facial expressions 
in everyday life situations. They used the spatial information 
obtained to discriminate between different active muscles to 
identify the relevant muscles contributing to each expression. 
Also, they point out the advantage of the simple placement 
procedure. In [12] MDsEMG was used to achieve 
simultaneous, proportional, multi-axis prosthesis control. 
Spatial information obtained by means of an electrode grid 
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was used to decode hand and finger movements 
proportionally and with high accuracy.  

In [13] MDsEMG activation maps were derived from 
forearms during wrist and finger movements. After reducing 
the data dimensionality using non-negative matrix 
Factorization, segmentation of the activation areas could be 
achieved. It was shown that for every finger there exists a 
special area on the forearm, where muscle activation can be 
measured during movement. 

Despite the easy placement of electrodes, MDsEMG is still 
not widely used. The aim of this work is to demonstrate the 
usability and advantages of muscle-unspecific multichannel 
sEMG by means of an example experiment. We tested both 
muscle-specific (sEMG with four bipolar derivations) and 
muscle-unspecific MDsEMG by recording them 
simultaneously in one setup. The difference between the 
measurements was evaluated in terms of EMG envelopes and 
accuracy in movement- trajectory decoding.  

Lastly, we computed the muscle activation maps and 
decoding accuracy maps to highlight the spatial information 
yielded by the multichannel approach. 

II. METHODS  

A. Subject and Task 
The experiment was carried on one healthy, male subject 

who gave his written informed consent. The recordings were 
carried out in agreement with the Declaration of Helsinki. He 
was asked to flex and extend his forearm 
repeatedly without supination and 
pronation. The task was repeated 25 
times per trial. Three trials were 
recorded, separated by 2-minute breaks 
to avoid fatigue. 

B. Experimental Setup 
Surface electromyogram (sEMG) was 

simultaneously recorded with two 
modalities. First, muscle-specific sEMG 
was measured by placing two pairs of 
bipolar channels respectively on the 
biceps brachii and triceps brachii. The 
signals were recorded with a wireless 
Noraxon system (Telemyo Desktop 
DTS). Muscle-unspecific multichannel 
sEMG (MDsEMG) was simultaneously 
measured around the whole upper arm 
via a total of 28 electrodes, placed in 4 

rows around the circumference of the arm, each including 7 
monopolar channels. The IED was around 30 mm. The 
MDsEMG signals were recorded via an “ANT Neuro EEGO 
Mylab” EEG amplifier with reference and ground electrodes 
placed over the elbow bones. For both recording modalities, 
conventional disposable medium size Ag/AgCl sEMG 
electrodes (spes medica DENIS01520) were used. Movement 
kinematics were recorded with a Vicon motion capture 
system. All measurements were offline synchronized by 
means of TTL pulses sent directly to all recording devices via 
a Labjack T7Pro as in [14]. The task and electrode positioning 
can be seen in Figure 1. 

C. Data Processing 
Elbow angles and angular accelerations were calculated 

from the motion capture data. Raw EMG signals, recorded at 
a sampling frequency of 2000Hz (both bipolar and monopolar 
derivations) were high-pass filtered (zero-phase 15 Hz, 18th 
order, Butterworth) to ensure stationarity and remove 
movement artifacts [15], and low-pass filtered (zero-phase 
300 Hz, 11th order , Butterworth) to remove high-frequency 
noise. EMG envelopes were computed by rectifying the 
filtered data and further applying a low-pass filter (zero-
phase, 10Hz, 10th order, Butterworth) to smooth the data. To 
compute the activation maps we epoched the single sEMG 
derivation data, according to each movement repetition. To 
account for different lengths of each epoch we performed 
dynamic time warping [16]. We computed the grand average 
(± standard deviation) over all movements and extracted the 
“activation map” (color-coded amplitudes, smoothed with a 
2D spline interpolation) at the times of maximum and 
minimum accelerations.   

D. Movement decoding 
We also evaluated the performance in decoding the elbow 

angle. To this aim we performed a least-square regression on 
the movement trajectory (elbow angle) using either the 4 
bipolar (sEMG) or 28 monopolar (MDsEMG) derivations. To 
extract the features for the decoding, we used 150ms 

 
Figure 1. Task and Electrode placement. The monopolar 

electrode grid is shown in red, the bipolar pairs in 
blue. 

 

 
Figure 2. EMG envelopes of muscle-specifc channels and the nearest bipolar derivations of 

the MD sEMG grid on the biceps brachii and triceps brachii 

 

 



  

windowing with 50% overlap. For each window the mean 
average value (MAV) and root mean square value (RMS) 
were extracted as simple features. We performed the 
regression using each single and bipolar sEMG derivation. 
We solved the linear regression model  
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where Y is the matrix containing the elbow angle over time, 
X the features and 𝜃𝜃� the estimated model. 𝜃𝜃� = 𝑋𝑋+𝑌𝑌 with 
𝑋𝑋+ the pseudoinverse of X. The regression model was trained 
on 70% of the data and tested on the remaining 30%.  
To assess the performance of the various approaches the 
correlation coefficient (coc) between the real and estimated 
angles was computed as 
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where 𝑥𝑥𝑖𝑖 is the real and 𝑥𝑥�𝑖𝑖 the estimated angle, 𝐶𝐶𝑥𝑥𝑥𝑥� the 
covariance and 𝜎𝜎𝑥𝑥,  𝜎𝜎𝑥𝑥� the  respective standard deviations.  
To estimate the indepent information of each channel, first the 
coc was computed using only the channels signal. Then, the 
difference between one and the coc using all channels 
information except the regarded, was substracted. The results 

were plotted as a topographic map of relative information 
content. 

III. RESULTS 

Though placed irrespectively of the muscle positions, the 
EMG envelopes of bipolar derivations obtained from the 
multichannel grid (MDsEMG) show high resemblance to 
those of muscle-specific channels (Figure 2). 

This is further confirmed by Figure 3: the grand-average 
EMG envelopes per movement are shown together with their 
standard deviation. It is possible to observe that both 
modalities highlight significant information on muscle 
activity. Thanks to the electrode grid, it was possible to extract 
the activation maps (Figure 3, bottom panels) that clearly 
highlight the muscle activity during different instances of the 
movement. The left side map shows the main activation of the 
Biceps, the right side one that of the Triceps. 

Figure 4 highlights the results of the decoding of the elbow 
angle. It can be seen that both modalities are able to decode 
the movement with multichannel EMG performing 
significantly better than the other modality. The correlation 
coefficient was 0.66 for the muscle-specific EMG and 0.95 
for the multichannel electrode grid. 

The map of the relative information content of the channels 
(Figure 5) shows that the area pertaining to the triceps carries 
the highest information content. 

IV. DISCUSSION 

As it is possible to observe from Figures 2 and 3, there is 
no significant difference between the (averaged) EMG 
envelopes of muscle-specific sEMG and -unspecific 
MDsEMG measurements. Both modalities enabled to extract 
significant information and could therefore be used to 
measure muscle activity. In fact, as long as MDsEMG 
electrodes placement is sufficiently dense, bipolar derivations 
can always be reconstructed from monopolar ones.  

The main advantage of multichannel EMG is however not 
only that of allowing the extraction of any number of bipolar 
derivations (depending on the number of electrodes), but also 
the possibility of dynamically visualizing spatial information 
on muscle activation, as shown in Figure 3 (bottom panels). 
This information has used for instance for facial 
electromyography [11], to better assess muscle fatigue [17] or 
even as feature to increase myoelectric control performance 
[7].  

 

Figure 3. Average EMG envelopes per movement. The blue 
lines represent the muscle-specific EMG, the red ones 
the measurements by the electrode grid. The 
activation maps are shown for maximum and 
minimum acceleration. The axis indicate the electrode 
column and row. 

 

  
 
Figure 5. Map of the relative information content (decoding 

accuracy) of each channel. The axis indicate the 
electrode column and row. 

 



  

Even without any spatial information (i.e. electrodes were 
not specifically placed over the muscle), as Figure 4 shows, 
the multichannel approach gives better results in decoding the 
elbow angle (regression approach).  

The multichannel sEMG recording also enabled us to 
assess the information yielded by every channel (Figure 5). A 
possible explanation for the high information content of 
electrodes over the triceps, with respect to that of the biceps 
is likely due to the nature of the task, i.e., the biceps had a 
constantly higher activation level (Figure 3) than the triceps. 
This may have decreased the relative difference in the 
myoelectric activity during the task compared to the 
background signal, thereby effectively reducing the 
information level. Consequently, channels near the muscles 
but not directly on top of them might have had increased 
influence over the decoding performance. 

The MDsEMG approach, with electrodes spread around the 
circumference of the arm yielded information not available 
with conventional muscle-specific sEMG. MDsEMG is thus 
very likely to enable better decoding of movement intentions 
for amputees, thus potentially allowing a better control of 
myoelectric prostheses. Though the MDsEMG setup required 
more materials available, it was easier and did not require any 
specific anatomical knowledge. With respect to HD sEMG 
approaches, a larger area was coverable. Therefore this 
approach paves the way to new opportunities concerning the 
standardization of EMG measurement setups and extends the 
possibility of muscle activity measurement also to non-
professional users.  

V. CONCLUSION 

This work shows that multichannel sEMG is more than able 
to make up for muscle-unspecific electrode placement in 
terms of information yielded to the user. It can thus be 
considered as a valuable alternative to common muscle-
specific sEMG systems. Furthermore, the additional 
information gathered by the higher number of electrodes can 
be used to increase decoding accuracy, as well as robustness. 
However, the loss of information caused by spatial aliasing 
needs to be considered and quantified. Due to their numerous 
advantages, MDsEMG systems will potentially become more 
relevant in the future in everyday life applications or for 
increasing the performance of myoelectric prostheses for 
amputees. Further studies could reveal new methods on how 

to use the extra information to further increase the accuracy 
and robustness of multichannel-based EMG decoding. 

REFERENCES 
[1] R. H. Chowdhury, M. B. Reaz, M. A. B. M. Ali, A. A. Bakar, K. 

Chellappan, and T. G. Chang, "Surface electromyography signal 
processing and classification techniques," Sensors, vol. 13, no. 9, pp. 
12431-12466, 2013. 

[2] N. Jiang, S. Dosen, K.-R. Muller, and D. Farina, "Myoelectric 
control of artificial limbs—is there a need to change focus?[In the 
spotlight]," IEEE Signal Processing Magazine, vol. 29, no. 5, pp. 
152-150, 2012. 

[3] M. Atzori and H. Müller, "Control capabilities of myoelectric 
robotic prostheses by hand amputees: a scientific research and 
market overview," Frontiers in systems neuroscience, vol. 9, p. 162, 
2015. 

[4] M. Khezri and M. Jahed, "Real-time intelligent pattern recognition 
algorithm for surface EMG signals," Biomedical engineering online, 
vol. 6, no. 1, p. 45, 2007. 

[5] Y. Zhang et al., "Non-uniform Sample Assignment in Training Set 
Improving Recognition of Hand Gestures Dominated with Similar 
Muscle Activities," Frontiers in Neurorobotics, vol. 12, p. 3, 2018. 

[6] M. A. Oskoei and H. Hu, "Myoelectric control systems—A survey," 
Biomedical Signal Processing and Control, vol. 2, no. 4, pp. 275-
294, 2007. 

[7] A. Stango, F. Negro, and D. Farina, "Spatial correlation of high 
density EMG signals provides features robust to electrode number 
and shift in pattern recognition for myocontrol," IEEE Transactions 
on Neural Systems and Rehabilitation Engineering, vol. 23, no. 2, 
pp. 189-198, 2015. 

[8] B. Afsharipour, K. Ullah and R. Merletti, "Amplitude indicators and 
spatial aliasing in high density surface electromyography 
recordings," Biomedical Signal Processing and Control, pp. 170-
179, 2015. 

[9] M. AbdelMaseeh, T.-W. Chen, and D. W. Stashuk, "Extraction and 
classification of multichannel electromyographic activation 
trajectories for hand movement recognition," IEEE Transactions on 
Neural Systems and Rehabilitation Engineering, vol. 24, no. 6, pp. 
662-673, 2016. 

[10] Y. Fang, X. Zhu, and H. Liu, "Development of a surface emg 
acquisition system with novel electrodes configuration and signal 
representation," in International Conference on Intelligent Robotics 
and Applications, 2013, pp. 405-414: Springer. 

[11] L. Inzelberg, D. Rand, S. Steinberg, M. David-Pur, and Y. Hanein, 
"A Wearable High-Resolution Facial Electromyography for Long 
Term Recordings in Freely Behaving Humans," Scientific reports, 
vol. 8, no. 1, p. 2058, 2018. 

[12] D. Yatsenko, D. McDonnall, and K. S. Guillory, "Simultaneous, 
proportional, multi-axis prosthesis control using multichannel 
surface EMG," in Engineering in Medicine and Biology Society, 
2007. EMBS 2007. 29th Annual International Conference of the 
IEEE, 2007, pp. 6133-6136: IEEE. 

[13] M. Gazzoni, N. Celadon, D. Mastrapasqua, M. Paleari, V. Margaria 
and P. Ariano, "Quantifiying forearm muscle activity during wrist 
and finger movements by means of multi-channel 
electromyography," PloS one, vol 10, 2014. 

[14] F. Artoni, A. Barsotti, E. Guanziroli, S. Micera, A. Landi, and F. 
Molteni, "Effective Synchronization of EEG and EMG for Mobile 
Brain/Body Imaging in Clinical Settings," Frontiers in Human 
Neuroscience, vol. 11, p. 652, 2017. 

[15] F. Artoni, V. Monaco, and S. Micera, "Selecting the best number of 
synergies in gait: preliminary results on young and elderly people," 
IEEE Int Conf Rehabil Robot, vol. 2013, p. 6650416, Jun 2013. 

[16] M. Müller, "Dynamic time warping," Information retrieval for 
music and motion, pp. 69-84, 2007. 

[17] G. Marco, B. Alberto, and V. Taian, "Surface EMG and muscle 
fatigue: multi-channel approaches to the study of myoelectric 
manifestations of muscle fatigue," Physiological measurement, vol. 
38, no. 5, p. R27, 2017. 

 
 

 
Figure 4. Prediction of the elbow angle based on the sEMG 
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