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Abstract— We have pioneered the Where-You-Look-Is 

Where-You-Go approach to controlling mobility platforms by 

decoding how the user looks at the environment to understand 

where they want to navigate their mobility device. However, 

many natural eye-movements are not relevant for action 

intention decoding, only some are, which places a challenge on 

decoding, the so-called Midas Touch Problem. Here, we present 

a new solution, consisting of 1. deep computer vision to 

understand what object a user is looking at in their field of view, 

with 2. an analysis of where on the object’s bounding box the 

user is looking, to 3. use a simple machine learning classifier to 

determine whether the overt visual attention on the object is 

predictive of a navigation intention to that object. Our decoding 

system ultimately determines whether the user wants to drive to 

e.g., a door or just looks at it. Crucially, we find that when users 

look at an object and imagine they were moving towards it, the 

resulting eye-movements from this motor imagery (akin to 

neural interfaces) remain decodable. Once a driving intention 

and thus also the location is detected our system instructs our 

autonomous wheelchair platform, the A.Eye-Drive, to navigate 

to the desired object while avoiding static and moving obstacles. 

Thus, for navigation purposes, we have realised a cognitive-level 

human interface, as it requires the user only to cognitively 

interact with the desired goal, not to continuously steer their 

wheelchair to the target (low-level human interfacing).  

I. INTRODUCTION 

Wheelchairs and exoskeletons provide independence to 
people suffering from the loss of mobility. For people with 
more severe disabilities, such as amyotrophic lateral sclerosis 
(ALS) or high-level spinal cord injuries interfaces such as 
joysticks are inadequate. Alternative interface methods 
include sip-and-puff, head-mount gyroscope-based devices, 
gaze-controlled graphical user interfaces (GUIs) and 
electroencephalography (EEG)-based steering. However, 
these methods involve a high cognitive load due to attention 
switching between interface and environment, and they often 
only allow low-level navigational input (e.g., requiring 
continuous steering commands to turn). Besides, clinicians 
have observed that nearly half of their patients who cannot use 
conventional wheelchair control methods would benefit from 
navigational assistance [1]. Hence, there is a need for better 
human interfacing in wheelchairs with autonomous driving 
capabilities.  

In gaze-controlled wheelchair systems, the driver's eye 
movements are recorded and different processing methods of 
the gaze information result in different control options for the 
driver. Simple methods use the gaze direction and map it 
directly to wheelchair control commands, meaning that the 
eyes essentially act as a joystick [2,3]. These types of eye 
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movements, however, may feel unnatural and strenuous for the 
driver, especially after a long period of use. Others have shown 
the use of gaze to select navigation options on a graphical user 
interface (GUI) [4,5]. In [6], fuzzy set theory is used to 
combine information obtained from the user's gaze fixations, 
and the surrounding environment, to initiate navigation. We 
have shown the use of supervised learning to infer directional 
intention from motor imagery-based gaze patterns [7]. Such 
interfaces which involve the user looking at their environment 
to initiate motion will be more comfortable for prolonged use, 
as opposed to cases requiring them e.g., to gaze upon a screen. 
An intuitive gaze interface would allow users to gaze upon 
their environment naturally and detect driving intention purely 
from natural gaze dynamics and the context of the 
environment. This brings us to the Midas Touch problem: not 
every part of the environment you gaze upon, is one you intend 
to act upon or drive to. It is therefore essential to build systems 
that can differentiate between natural gazing without an 
interactive intention and gaze that is the result of an intention 
of action [8]. The appeal of using natural behaviour predictive 
of future actions for assistive technology [7, 9-13] arises from 
the fact that users do not have to learn to operate a control 
system (e.g., by looking at a computer screen while being eye-
tracked), or learn unnatural behaviours that facilitate decoding 
(e.g., staring at things to generate artificial long dwell times or 
perform gaze gestures), but simply behave normally.  

Gaze patterns are known to vary based on the observer's 
intention [14], making it a source for information about the 
user's intentions. Classifiers based on machine learning 
methods have been shown to identify the task given to the 
observer (up to 70% accuracy for non-binary classification) 
based on saccade information: mainly spatial density, timing, 
and length of gaze [15]. In our case, the task of the wheelchair 
user is to select a target location via gaze. We propose to fulfil 
this task based on the user's natural gaze features by deploying 
machine learning methods to identify the context of the gaze, 
i.e., which object they are looking at and to analyse the visual 
attention upon that given object to predict the intention of 
navigation towards the object. Our gazeinformatics-based 
intention decoder is used to continuously decode the intentions 
of the wheelchair user, i.e., continuously detecting the 
navigational intentions they are trying to achieve, while our 
autonomous wheelchair platform, the A.Eye-Drive, is on the 
move and is accounting for any static and dynamic obstacles 
faced. This structure allows the user to merely provide 
destination commands via natural gaze, with the system 
decoding it, while the autonomous wheelchair keeps track of 
obstacles, and takes care of path planning and navigation. This 
significantly reduces the cognitive load for the user and 
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eliminates the need to interact with a wheelchair control 
interface all the time; replacing it with a natural interface 
instead. 

II. MATERIAL AND METHODS  

A. System architecture 
Our system consists of two modules (I) The autonomous 

wheelchair platform consists of Real-time SLAM 
(Simultaneous Localisation and Mapping), navigation and 
wheelchair control. A two-dimensional online-SLAM 
algorithm is used to both create the map and perform 
localisation in real-time. The wheelchair localisation is 
enhanced by deploying Lidar-based odometry from the 2D 
SLAM. Scan match between consecutive laser scans is done 
to estimate the position of the lidar. Point clouds from both the 
2D Lidar and the RGB-D camera are used for obstacle 
detection. Modified Dijkstra's algorithm and dynamic window 
approach are used for path planning and obstacle avoidance. 
(II) The autonomous navigation architecture was then 
incorporated with the gaze-based destination commands i.e., 
firstly upon classifying the user's gaze pattern, the natural 
gaze-based intention decoder module publishes predictor 
messages and object identifier messages, i.e., whether the user 
intends to interact with the object of interest within the field of 
view. Next, the gaze monitor subscribes to these messages, and 
the gaze-based commands are published. Finally, 3D gaze-
based end-point control (‘Wink’ detection) was used as a 
double confirmation of the decoded high-level intention and 
an option for low-level intention (free navigation) input as 
well. Now the predicted intention has been converted to a goal 

based on the object of interest's location. Once a path to the 
goal has been computed, the required velocity commands are 
sent to the dual h-bridge, which is the driver for the wheel 
motors. And all these processes were achieved in real-time. 
Gaze-based intention decoding, and target localization are 
explained in the following subsections. 

B. Gaze informatics for intention decoding 
We studied gaze fixations in different intention scenarios, 

to build an intention decoding engine. This module decodes 
the users' high-level intention. Subjects perform tasks with and 
without interactive intentions and the gaze tracking software 
tool records the corresponding gaze patterns. Classifiers are 
then trained on this data. To collect the data for model training 
and evaluation, we perform data collection sessions with 5 
healthy subjects. During the sessions, each subject wears SMI 
eye-tracking glasses and performs 11-14 trials. We propose 
interactive observation tasks, in which participants are shown 
a target object and are asked to perform different actions with 
them (see Fig. 1). Orange crosshair is the relative 2D gaze (X, 
Y), binocular. Orange circle around the crosshair is the gaze 
fixation duration, i.e., how long the user is fixing his gaze at 
that position (X, Y). A computer provides voice commands 
based on these tasks for each subject and the gaze tracking 
software tool records the corresponding gaze patterns. Target 
objects used in the scope of this paper were {TV, Laptop and 
Chair}. Fig. 1. illustrates the bounding boxes that we used for 
object labelling. We then map the gaze point to object labels. 
From one image to another, the bounding box that is drawn for 
a single object might change because of head movement, 
different object locations, and different viewing points (see 
Fig. 1). To account for this, we average bounding boxes per 
object and normalize gaze point position within it. We 
collected approximately 3500-3700 gaze points for each 
object.  

To predict a high-level intention, we used visual attention 
density to determine intention. To this end, we used a simple 
but robust approach: gaze locations within the object bounding 
box were normalised. This 2D location was fed to an object-
specific Fine Gaussian Support Vector Machine (SVM) or 
Weighted K-Nearest Neighbours (KNN) that was trained on 

Figure 1. Gaze pattern comparison from labelled ego-centric images 
between non-interactive (left side) and interactive (right side) tasks 
for one subject and three objects: TV, laptop, and chair. The first and 
third columns show the saccade, where the orange crosshair and 
circle diameter represents gaze fixation and fixation duration, 
respectively. The second and fourth columns are heatmaps – Red 
(High intensity) to Green (Low Intensity). The tasks given were: (1a 
and 1b) - Look at the TV; (1c and 1d) - Look at the TV and imagine 
watching a movie; (2a and 2b) - Look at the laptop; (2c and 2d) - 
Look at the laptop and imagine reading a paragraph; (3a and 3b) - 
Look at the chair; (3c and 3d) - Look at the chair and imagine sitting 
on it. 

Figure 2. Natural gaze informatics-based intention decoder training 
pipeline. 
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the two classes (10-fold cross-validated) i.e., Class 1 -- non-
interactive tasks; Class 2 -- interactive tasks. Each frame 
classification output was fed into a ring-buffer of 40 frames, 
and we performed a winner-take-all vote to determine the so 
temporally averaged intention. The intention decoder pipeline 
can be seen in Fig. 2. The above process was done offline, but 
to achieve real-time intention decoding, Semantic Fovea was 
used to compute object label and bounding box [16]. 

C. Integration  
The intention decoder outputs the intention Boolean, and 

corresponding 3D gaze point coordinates, i.e., object of 
interest's location, is received from the 3D Gaze Estimation 
module (see Fig. 3). The 3D gaze Estimation procedure is 
explained in our earlier studies [7,17]. For the experimental 
setup in this paper, we communicate the detected intention to 
the user and ask them to confirm with a wink. This is done for 
safety reasons, as the system's performance is undergoing 
evaluation. Once the wink is detected on an interactive type 
intention, the 3D gaze point coordinates are sent to the 
navigation node as a goal. After a path to the intended 
destination has been planned based on the occupancy grid 
map, the required linear and angular velocity commands are 
sent to the wheelchair drive node - which is the driver for the 
wheel motors. These nodes are entirely native to this 
architecture. All of these processes were achieved online. 

Using the integrated system, the user simply needs to look 
at the object within a room that they would like to interact 
with; the classifier will detect this intention, while the gaze 
monitor system stores the point in space that the wheelchair 
would have to go to. Once confirmed by the user through a 
wink, the wheelchair will autonomously navigate to the given 
point, avoiding obstacles and collisions. The above-described 
individual models and the integrated system are evaluated with 
results described in the next section. 

III. RESULTS AND DISCUSSION 

A. Gazeinformatics-based intention decoder evaluation 
The accuracy level results of the classifiers trained on gaze 

data is given below. For each object, we have listed the 

classifier that provides the best result and the result value. This 
is generally higher than 78.8%. In Fig. 1, we can observe a 
clear separation between the positions of gaze point for 
different tasks. As the classifiers are trained on natural human 
behavioural data, their usage can result in a more intuitive 
command interface. We did take different approaches when it 
came to the Machine Learning based Classifier. And chose the 
one which gave high classification accuracy after training. 
Often this accuracy for the classification techniques varied 
depending on the object and its features.  

The classifier that gave the highest accuracy for the objects 
were: TV (Fine Gaussian Support Vector Machine – 78.80%), 
Laptop (Weighted K-Nearest Neighbor – 86.20%), and Chair 
(Weighted K-Nearest Neighbor – 84.80%). We chose SVM 
and KNN as they performed well with respect to others in most 
cases (objects) and were computationally inexpensive. We 
integrate the trained models within the real-time gaze 
monitoring system. After building the real-time intention 
decoder, we recruited 10 healthy subjects different from the 
ones whose gaze behaviour were used to train the classifier. 
We recorded the gaze movements for these new subjects for 
the same interactive and non-interactive tasks to be classified 
using our real-time intention decoder. Accuracy of the 
resulting intention Boolean (0: Non-interactive, 1: Interactive) 
was evaluated. Real-time intention decoder performance 
evaluation results with standard error provided in Fig. 4 is 
obtained from tests with 10 subjects (n=12). From the results, 
we see that classifiers generally perform well in detecting non-
interactive intention but have varied performance when it 
comes to detecting interactive ones. From the trend in Fig. 4, 
we can infer that real-time interactive intention decoding 
accuracy is higher for objects with a higher number of visual 
features (i.e., see results for the chair as opposed to TV in Fig. 
4). While earlier studies demonstrate gaze-based prediction of 
human intention (up to 80 % accuracy) as well as the desired 
object before the user could reach out for the said object [18], 
task prediction experimentation results does reveal that spatial 
position and local features are of importance while 
differentiating task categories [15]. 

B. Integrated system evaluation   
With the complete integrated system, we demonstrate that 

if, given a high-level cognitive intention (e.g., ‘want to interact 
with the TV’), the wheelchair platform can successfully 
identify and act on low-level intentions of the driver, i.e., 
navigational intentions. The evaluation results are provided 
below. Every time users look at the objects: TV, Laptop and 
Chair (the list can be extended) with an interactive intention, 

Figure 3. Real-time gazeinformatics-based intention decoder. 
Different coloured boxes denote the identified objects with object 
detection accuracy. The green circle denotes the gaze point 
(binocular) and non-interactive gaze class. It turns purple when an 
interactive type intention is decoded.  Gaze on TV: Non-interactive 
(1a), Interactive (1b). Gaze on Laptop: Non-interactive (2a), 
Interactive (2b). 

Figure 4. Real-time gaze informatics-based intention decoder 
accuracy. 
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the wheelchair autonomously navigates to the intended 
destination, i.e., to the object of interest's location. The results 
with standard error (n=6) from 2 subjects are provided as proof 
of concept. Experiments with further subjects are ongoing. 
During the evaluation of the intention decoding semi-
autonomous wheelchair setup, around 29.1±1.97 seconds were 
taken to reach the goal during a single navigation run. The 
static obstacle detection and avoidance rate was 95±5% and 
the dynamic obstacle detection and avoidance rate was 
90±6.12%. Most importantly, the average stop distance from 
the goal was about 24±9.79cm and the number of stops (in case 
of emergency) was lower than 1 i.e., 0.4±0.24. When 
compared with earlier studies [7, 17, 19] that tried to achieve 
natural gaze data-driven wheelchair navigation, the subjects 
seemed to perform faster with a low number of stops during 
navigation. This is understandable as the autonomous platform 
take over obstacle identification and low-level navigational 
intentions. Most of all the integrated system provides better 
control of the wheelchair with the introduction of object-
specific interactive intention mediated goal definition as well 
as 3D gaze-based endpoint control. Which is much more 
intuitive than our previous gaze-based Natural Decoder [7], 
Continuous Control Field [7], and “Look where you Want To 
Go” [19] wheelchair interfaces. 

IV. CONCLUSION 

The technology presented here aims to tackle a 
fundamental challenge to independent mobility of severely 
disabled wheelchair users: the obligation to interact and 
provide continuous navigational commands. Eye movements 
are a natural human interface that are intuitive for users and 
tend to be retained in even the most severe types of motor 
impairments. Typical gaze interfaces for assistive devices tend 
to rely on unnatural gaze patterns, i.e., forcing the user to fixate 
for a period of time, or draw gaze gestures, to indicate a certain 
intention. Here, we present a solution in the form of a seamless 
and straightforward gaze interface, which allows the user to 
naturally gaze upon their desired destination and have their 
intention decoded, effectively overcoming the Midas Touch 
problem of identifying the relevant natural eye-movements for 
action intention decoding. The decoded intention is seamlessly 
communicated to our autonomous wheelchair platform, the 
A.Eye-Drive, which proceeds to take care of the tedious 
navigational work involving motion and path planning for 
static and dynamic obstacles.  

Previous work has shown implementations of gaze-based 
intention decoding with more sophisticated formulations such 
as Hidden Markov Models and Partially Observable Markov 
Decision Processes [18, 20]. Here, we have demonstrated a 
robust, yet very computationally light classifier capable of 
class contingent real-time intention decoding from the 
wheelchair user's natural gaze. This system is a dynamic 
equivalent to the static histogram-based classifier that we 
proposed earlier [7] and presents an opportunity for further 
development by adding more objects and intention classes to 
the system allowing for more challenging scenarios during 
evaluation. 
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