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Searching for waveforms on spatially-filtered epileptic ECoG

Carlos H. Mendoza-Cardenas! and Austin J. Brockmeier?

Abstract— Seizures are one of the defining symptoms in pa-
tients with epilepsy, and due to their unannounced occurrence,
they can pose a severe risk for the individual that suffers it.
New research efforts are showing a promising future for the
prediction and preemption of imminent seizures, and with those
efforts, a vast and diverse set of features have been proposed
for seizure prediction algorithms. However, the data-driven
discovery of nonsinusoidal waveforms for seizure prediction is
lacking in the literature, which is in stark contrast with recent
works that show the close connection between the waveform
morphology of neural oscillations and the physiology and
pathophysiology of the brain, and especially its use in effectively
discriminating between normal and abnormal oscillations in
electrocorticographic (ECoG) recordings of epileptic patients.
Here, we explore a scalable, energy-guided waveform search
strategy on spatially-projected continuous multi-day ECoG data
sets. Our work shows that data-driven waveform learning
methods have the potential to not only contribute features with
predictive power for seizure prediction, but also to facilitate the
discovery of oscillatory patterns that could contribute to our
understanding of the pathophysiology and etiology of seizures.

I. INTRODUCTION

The spontaneous and usually unforeseen nature of seizures
is a major risk factor in individuals with epilepsy, causing
unintentional injuries, drowning, anxiety, depression, and,
overall, a premature mortality rate up to three times higher
than the general population [1]. Furthermore, around one-
third of the population with epilepsy has a drug-resistant
epilepsy. All this has motivated research efforts in seizure
prediction for more than three decades, with recent advances
in methods and devices showing a promising future for the
prediction and preemption of impending seizures [2].

A great diversity of electroencephalographic (EEG) fea-
tures have been developed and used in seizure prediction
algorithms, from correlation [3] and phase synchronization
[4] features, to chaos measures [5] (see [6] and [7] for a
review of EEG features and algorithms in seizure prediction).
Most of the measures developed so far are obtained through
either a linear or non-linear transformation, or a space/time-
delay embedding, of the EEG time series, without regard to
the waveform morphologies of the neural oscillations.

Recent works have highlighted the importance of stereo-
typed nonsinusoidal EEG waveform morphologies in brain
physiology and pathophysiology [8], [9], [10], and in partic-
ular, its utility to distinguish between normal and abnormal
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high-frequency oscillations (HFO) in electrocorticographic
(ECoG) recordings from epileptic patients [11]. Although
several works have developed shift-invariant, and data-driven
methods that learn waveforms from EEG data in an unsu-
pervised manner [12], [13], [14], only one work, to the best
of our knowledge, has explored the discovery and use of
stereotyped temporal waveforms in seizure prediction [15].
Motivated by these previous works on waveform learning and
its almost absent application to seizure detection, we present
here an exploratory study of a waveform search strategy
applied to continuous multi-day ECoG recordings from two
epileptic patients.

In seizure prediction algorithms, it is customary to define
two classes of segments in an epileptic EEG recording:
(1) preictal segments that can last from minutes to hours,
located just before the onset of a seizure, usually with a time
gap called minimum intervention time [6]; and (2) interictal
segments well-separated in time from any seizure. In this
work, we aim to find waveforms identified by their spatial
pattern that are discriminative of the interictal and preictal
state of an ECoG recording. Discriminative in the sense that
the waveforms are more prevalent in one state compared
to the other. To guide our search for those waveforms, we
first look at specific spectral bands. We use the common
spatial patterns (CSP) method to compute spatial filters that
maximize the spectral band power of ECoG windows from
one condition while minimizing it for windows from the
other condition.

In contrast to our work, the bag-of-waves (BoWav) repre-
sentation proposed in [15] uses two codebooks of preictal and
interictal waveforms that are built by applying the k-means
clustering algorithm on a random sample of small, single-
channel windows of a multi-channel EEG recording, without
any type of channel re-referencing or spatial filtering. The
BoWav features are histograms of the codebook waveforms
and are built by sliding a window through all the EEG
channels during a given period.

With a scalable spatial projection (CSP) and our energy-
guided strategy, we found waveforms that are discriminative
of the preictal and interictal state, and, in some cases, are
well-known epileptiform patterns. Our work offers prelim-
inary evidence of the potential that data-driven waveform
learning methods have in automating the discovery of EEG
patterns, designing new features from those patterns that
could be used for seizure prediction, and helping advance
our understanding of the pathophysiology of the brain.

Finally, in addition to the waveform search strategy ex-
plored here, we performed an extensive visual inspection
of the 28 data sets of epileptic ECoG data that were



used in [16] and built a preprocessing pipeline after iden-
tifying some artifacts that were common among several
of those continuous multi-day ECoG recordings. We work
here with two of those data sets. Our code base, in-
cluding our preprocessing pipeline, is publicly available at
github.com/chmendoza/cspwave for research repro-
ducibility and for the benefit of other researchers that might
be interested in working with those data sets.

II. METHODS
A. Notation

Let gw(X) = w'X € R’ denote the projection of
X € RY%L onto the spatial filter w € R®, with C' and
L denoting the number of EEG channels and time points,
respectively. We will call this product a CSP signal. Let
U = {u; € REi € [m]} be a set of CSP signals, and
hi(U) = arg maxzc i), 7=k > iezllusl[3 denote the set of
indices of the k£ CSP signals in ¢/ with the highest energy,
with [m] = {1,...,m}, |Z| being the cardinality of Z, and
|I]l2 denoting the Euclidean norm.

B. Data

The data sets used in this work are continuous long-term
multichannel ECoG recordings from two epileptic patients
publicly available at ieeg.org [17]. Table[l presents some
characteristics of the data after preprocessing: the patient’s
age in years; the number of channels (C') and seizures (N.S);
the seizure type (S.T), either simple partial seizure (SPS) or
complex partial seizure (CPS); and the total length of the
preictal and interictal intervals in hours (h) and minutes (m).
We discarded the same EEG channels per patient, and use
the same seizure annotations as in [16]; more details about
the data can be found in that reference. The relevant clinical
seizure markings for this work are the earliest EEG change
(EEC), which is the point in time with the first clear and
sustained change from the patient’s EEG baseline before
the seizure onset, and the end of the seizure. We assume
that the activity happening between those two time points
represents the ictal state. Following the guidelines of two
Kaggle competitions of seizure prediction [18], [19], we
define the interictal state as the activity that happens at least
four hours away from the ictal state, and the preictal state as
the activity that occurs in the 1-hour interval that goes from
1:05 to 0:05 before EEC, with five minutes of minimum
intervention time.

C. Preprocessing

After an extensive visual inspection of the raw data,
we identified several artifacts (see Fig. [T) and applied the
following preprocessing pipeline. We discarded segments

TABLE I
DATA CHARACTERISTICS

Name Age C N.S. ST  Preictal Interictal
HUPO070 33 63 3 SPS 2h6m 40h 32m
HUPO078 54 101 3 CPS 1h30m 45h23m
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Fig. 1. Example artifacts. (left) Rail-to-rail oscillation, (middle) Broad 60
Hz peak after applying cleanLineNoise and (right) Anomalous spike.

with missing samples, or that have a constant amplitude for
more than 25 ms. Due to length restrictions imposed by some
spectral filtering functions used in later preprocessing stages,
we discarded segments that were less than 5 seconds long.
Some segments had a rail-to-rail oscillation, consisting of
frequent peaks that were saturated at the same amplitude.
Since the repeated occurrence of a specific amplitude value
is unlikely for time-varying signals that are quantized at a 24-
bit rate, we dealt with that artifact by discarding a segment if
at least one of its amplitude values has a relative frequency
higher than 5%. We applied a 1-Hz high pass filter [20],
and then the cleanLineNoise function [21] at {60, 120, 180}
Hz to remove the power line artifact. After this, we noticed
that the spectrum of some segments had a broad and strong
peak at 60 Hz, different from the narrow peak that was
eliminated after applying cleanLineNoise, likely due to the
modulation of the 60 Hz power line signal by movement
artifacts. We addressed that distortion by rejecting a segment
if its power in the 45-55 Hz band is lower than its power in
the 55-65 Hz band. We also found that some segments had
anomalous spikes in the time-series that were abnormally
high in amplitude and slope. We set an ad hoc threshold of 70
1V in the change of amplitude between consecutive samples
to detect and remove those anomalous spikes; we removed
the 2-minute windows centered at those spikes. Finally, the
data from all the patients were resampled to 512 Hz.

D. Spatial filters

Let X, = {X;, € RE*L}N be a training set of EEG
non-overlapping windows, sampled at random and uniformly
across all the EEG segments from either the preictal (s = 1)
or interictal (s = 2) condition, where C, L and N, are the
number of channels, time points and windows, respectively.
To further restrict and guide our search for the most discrim-
inative morphologies on the spatially-projected space, we
pass each EEG window through a band-pass filter f5(-), with
passband B € B = {4[1.5 —4],0[4 — 8], &[8 — 15], Biow[15 —
26], Brigh[26 — 35), Yiow[35 — 50], Ym:a[50 — T4], Yhign[76 —
120], HFO[120—220]}, in units of Hz. We use the method of
common spatial patterns (CSP) [22] to find two spatial filters
in R®, w; and wy, that maximize the energy of the CSP
signal under the preictal and interictal state, respectively. wy
can be expressed as the solution to the following Rayleigh
quotient maximization problem

B wis,w M
Wi = argv{[nax W (3 1 So)w'
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being the average estimated covariance of the set of N,
band-pass filtered windows from condition s € {1,2}.
Analogously, Eq. (I) can be solved to obtain ws, by using
35 on the numerator. Since the covariance matrices, and
the spatial filters, are computed on the temporally filtered
windows, we obtain nine sets of two spatial filters, one set
per spectral band.

E. Waveform search strategy

Our strategy to search for waveforms on the preictal
and interictal EEG segments has two main steps: 1)
identify the time windows with the highest energy after
temporal and spatial filtering, and 2) spatially filter the
EEG data located in those time windows, without temporal
filtering. More formally, let V {Vis € ]RCXL}?isl
be a test set of M, non-overlapping windows of length
L from condition s € {1,2}, sampled in the same way
as Xs. We filter those windows in time and space to get
u t {u1 s,t S ]R : uz,s,t Iw, (fB( ,)) (S [M]},
for s,t € {1,2}. We then find the index set of the k
CSP signals (or time windows) with the highest energy
in Z;Is’t, denoted as Ty ,, = h;g(l;{sﬁt). Finally, we apply
w1 and wo to the EEG windows in V, indexed by
Iy, thus getting the set of CSP signals Uy ,; =
{uj,s,t S RL ‘Wjst = Gw, (Vij,s) ) Z‘j S Ik,s,t; ] € [k}},
for k € N, and s,t € {1, 2}.

III. RESULTS

We did an 80/20 split of the available data for train-
ing and testing. The number of windows for training was
N; = {6000,4320} and N, = {116400,130000} for
{HUP070, HUP078}, and M; = {1500,1080} and My =
{29100, 32500} for testing. The window length was one
second (L = 512) for training and testing.

Although this work explores an energy-guided strategy
to find waveforms that are discriminative of the interictal
and preictal state, and not a classification method itself, we
use the area under the receiver operating characteristic curve
(AUC) of a binary classifier to quantify the performance of
w1 and w in discriminating between the two states. The i-th
EEG window V, , from state s is filtered in space and time,
yielding u; 5 ;, and a binary classifier makes a prediction 5 of
the state of that window using a hard threshold on the energy
of 4; 5, with ¢ € [M] and s,t,§ € {1,2}. Fig. and Fig.
show a pair-wise comparison of the boxplot of the log-energy
of each CSP filter output when that spatial filter is applied
to temporally-filtered windows from both conditions, as well
as the AUC values of such binary classifier. We found that
HUPO70 has large-energy artifacts that we did not account
for in our preprocessing pipeline (see Fig. ), which caused
poor performance of wo. In contrast, HUPO78 did not have
those artifacts, and thus the improved performance of wo for
that data set. The susceptibility of CSP to outliers is well-
known [22], and a more robust variant of CSP that uses some
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Fig. 2. Log-energy (wV?2) of CSP signals in HUPO070._(left) Log-energy
of signals in Us 1, for s € {1, 2}. (right) Log-energy of Ufs 2. Labels in the
bottom axis are the spectral bands over which the CSP filter was optimized,
and numbers in the top axis are the AUC values.
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Fig. 3. Log-energy (wV?2) of CSP signals in HUP07S. _(left) Log-energy

of signals in U1, for s € {1, 2}. (right) Log-energy of Z/{g o. Labels in the
bottom axis are the spectral bands over which the CSP filter was optimized,
and numbers in the top axis are the AUC values.
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Fig. 4. Signals in U10,2,2, for HUP070 and the two spectral bands with
highest test AUC.

type of regularization [23], a divergence-based framework
that accounts for outliers [24], or an information-theoretic
statistic [25], could be explored to solve this problem.

We used our waveform search strategy to visually explore
the morphologies of the spatially-projected signals. Fig. [j]
and Fig. @ show the waveforms in U4y 4,1 for the two datasets,
the preictal (s = 1) and interictal (s = 2) conditions, and
the two spectral bands with highest AUC in the test set.
These waveforms are the result of applying w; to the test
EEG windows (in V) corresponding to the 10 highest energy
signals (in L~{371) after temporal and spatial filtering.

We found that using a scalable spatial filtering method
(CSP) and our energy-guided search strategy, one can readily
and automatically discover nonsinusoidal waveforms mor-
phologies in the preictal and interictal state that are either
qualitatively (visually) distinct or more prevalent in one
condition. Some of those waveforms, like the sharp spikes
in the bottom row of Fig. [6] are well-known epileptiform
patterns [26]. Furthermore, we also found that at least
one of the two spatial filters exhibits a high discriminative
performance, measured by the AUC of a binary classifier.
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Fig. 5. Top 10 CSP signals in HUPO70 with highest energy from each

condition, after applying the w1 optimized for a given spectral band. Signals
in the top row are scaled by 2x to show waveform shape details.
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Fig. 6. Top 10 CSP signals in HUPO78 with highest energy from each
condition, after applying the w1 optimized for a given spectral band. Signals
in the top row are scaled by 10x to show waveform shape details.

Our results, and the recent works on waveform morphology
previously highlighted, suggest the potential that the data-
driven discovery of stereotyped nonsinusoidal waveform
shapes has, not only in the development of new features
with predictive power for seizure prediction, but also in its
contribution to our understanding of the pathophysiology and
etiology of seizures.
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