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Abstract

In this paper, we analyze the coding delay and the averagegddlay of Chunked network Codes (CC) over line
networks with Bernoulli losses and deterministic regulaiPoisson transmissions. Chunked codes are an attractive
alternative to random linear network codes due to their taveenplexity. Our results, which include upper bounds on
the delay and the average delay, are the first of their kindCforover networks with such probabilistic traffics. These
results demonstrate that a stand-alone CC or a precoded &@lgs a better tradeoff between the computational
complexity and the convergence speed to the network cgpaedr the probabilistic traffics compared to arbitrary
deterministic traffics. The performance of CC over the fatttaffics has already been studied in the literature.

I. INTRODUCTION

Chunked codes (CC), originally proposed in [1], generat@edom linear network codes (dense codes), and
operate by dividing the message of the source into non-appihg or overlapping sub-messages of equal size,
called chunks[1]-[3]. Each node at each transmission time randomly ck®@schunk, and transmits it by using
a dense code. In fact, a dense code is a CC with only one chutiledfize equal to the message size. Thus, CC
require less complex coding operations due to applyingrm@pdin chunks smaller than the original message. This
however comes at the cost of lower speed of convergence toathecity compared to dense codes.

The speed of convergence of CC to the capacity of line netsvaith arbitrary deterministic traffics was studied
in [1], [3]. In particular, it has been shown that (i) a CC ashas the capacity, so long as the size of the chunks
is lower bounded by a function super-logarithmic in the magsssize and super-log-cubic in the network length,
and (ii) a CC, preceded by a capacity-achieving erasure, @a®oaches the capacity with an arbitrarily small but
non-zero constant gap, so long as the size of the chunks &r lbaunded by a function constant in the message
size and log-cubic in the network length. There is howeveregult on the speed of convergence of CC to the
capacity over the networks with probabilistic traffics.

The speed of convergence of dense codes to the capacity @& pababilistic traffics was studied in [4], [5].

Very recently, in [6], we studied the coding delay and therage coding delay of a dense code over the traffics
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with deterministic regular or Poisson transmissions anth@aelli lossest The results were in some cases more
general, and in some other cases tighter, than the existingds in [4], [5].

In this paper, we generalize our analysis in [6], and for thet time, study the coding delay and the average
coding delay of CC for different ranges of the chunk sizes.

The main contributions of this work are:

o We derive upper bounds on the coding delay and the averagagcdeélay of a CC alone, or a CC with
precoding, over the traffics with deterministic regulams@issions or Poisson transmissions and Bernoulli
losses with arbitrary parameters or unequal parameters.

o We show that: (i) a CC achieves the capacity, so long as the afizhe chunks is bounded from below
by a function super-logarithmic in the message size andrdopgdinear in the network length, and (ii) the
combination of a CC and a capacity-achieving erasure cogmaphes the capacity with an arbitrarily small
non-zero constant gap, so long as the size of the chunks isdedurom below by a function constant in the
message size and log-linear in the network length. The I®eands in both cases are smaller than those over
the networks with arbitrary deterministic traffics. Thudlbooding schemes are less computationally complex
(require smaller chunks), for the same speed of convergenas such probabilistic traffics, compared to
arbitrary deterministic traffics.

o In a capacity-achieving scenario, for such probabilistaffics, we show that: (i) the upper bound on the
overhead grows sub-log-linearly with the message size and the nétemgth, and decays sub-linearly with
the size of the chunks, and (ii) the upper bound on the aveoagehead grows sub-log-linearly (or poly-
log-linearly) with the message size, and sub-log-lineéolylog-linearly) with the network length, and decays
sub-linearly (or linearly) with the size of the chunks, iretbase with arbitrary (or unequal) parameters. For
arbitrary deterministic traffics, the upper bound on therbgad was shown in [3] to be similar to (i), but with

a larger (super-linear) growth rate with the network length

II. NETWORK MODEL AND PROBLEM SETUP
A. Transmission and Loss Model

We consider a unicast problem (one-source one-sink) oviereanketwork with L links connectingl + 1 nodes
{vi}o<i<r in tandem. The source nodg has a message &fvectors (callednessage vectgrérom a vector space

F over[F,, and the sink node;, requires all the message vectors.

1The coding delayof a code over a network with a given traffic (schedule of maissions and losses) is the minimum time that the code
takes to transmit all the message vectors from the sourdeetsibk. The coding delay is a random variable due to the randss in both the
code and the traffic. Thaverage coding delapf a code with respect to a class of traffics is the coding defathe code averaged out over
all the traffics (but not the codes), and hence is a randonablaridue to the randomness in the code.

2|n this paper, we focus on CC with non-overlapping chunkse @halysis of CC with overlapping chunks is the focus of aroorgyresearch
project.

3The (averagé overheadis the difference between the (average) coding delay andatie of the message size to the capacity.

4The analysis in this paper is generalizable to finite fieldtaager size.

November 15, 2018 DRAFT



Each (non-sink) node at each transmission time transmit®defl) packet, which is a vector jA. The packet
transmissions are assumed to occur in discrete-time, anttahsmission times over different links are assumed to
follow independent stochastic processes. The transmisisiees over theé™ link are specified by (i) a deterministic
process where there is a packet transmission at each ti@ainer (ii) a Poisson process with parameter 0 <
i < 1, where),; is the average number of transmissions per time unit oveithimk. The transmission schedules
resulting from (i) and (ii) are referred to aketerministic regularand Poisson respectively.

Each transmitted packet either succeeds or fails to bevetdguccessful/s. lost). The successful packets are
assumed to arrive with zero delay, and the lost packets wilenarrive. The packets are assumed to be successful
independently over different links. The successful pasketer thei™ link are specified by a Bernoulli process with
(success) parametgy : 0 < p; < 1, wherep; is the average number of successes per transmission ovét timé.

The loss model defined as above is referred t@@sioulli. The special case of Bernoulli loss with alf's equal

to 1 is analogous to the lossless case.

B. Problem Setup

The goal in this paper is to derive upper bounds on the codalgydand the average coding delay of chunked
codes over line networks with deterministic regular or Boistransmissions and Bernoulli losses.

In a chunked coding scheme, the setkofessage vectors at the source node is dividedgrdsjoint subsets,
calledchunks each of sizex = k/q. The source node, at each transmission time, chooses a gtdependently at
random, and transmits a packet by randomly linearly combithe message vectors belonging to the underlying
chunk. Each non-source non-sink node, at the time of eanbrrigsion, chooses a chunk independently at random,
and transmits a packet by randomly linearly combining iesvusly received packets pertaining to the underlying
chunk. The global encoding vectoof each packet is assumed to be transmitted along with thieepathe sink
node can decode a chunk, so long as it receives an innovawlection of packets pertaining to the underlying

chunk of a size equal to the size of the chunk.

IIl. DETERMINISTIC REGULAR TRANSMISSIONS ANDBERNOULLI LOSSES

We first review the analysis of dense codes, which are a dpease of CC with one chunk, in two cases of
arbitrary or unequal (success) parameters, presented.inNéxt, we generalize the analysis to CC with more than
one chunk.

5The global encoding vectoof a packet is the vector of the coefficients representingnila@ping between the message vectors and the
packet.
A collection of packets isnnovativeif the global encoding vectors of the packets belonging todbllection are linearly independent.

“The details of the proofs in the case of arbitrary parametssee given in [6] and hence omitted. However, neither thaibietnor the
sketches of the proofs in the case of unequal parametersgivene in [6]. We present the sketches of the proofs in thisepdpr the purpose
of completeness.
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A. Dense Codes

The goal of the analysis is to lower bound (i) the size of a makidense collection of packets at the sink node
until a certain timé, and then, (ii) the probability that a sufficient number of kets in the underlying collection
are innovative.

Let Q;+1 andQ; be the decoding matrickst the (i + 1)th andi" nodes, respectively, arifi be a matrix over
Fy such thatQ; 1 = T;Q;. The entries ofY;,; and@Q; are inF,. Each row ofT; is the local encoding vectors of
a successful packet sent by tife node. LetQ’ be Q; restricted to its rows corresponding to the global encoding
vectors of the dense packets at tifenode. LetT?/, the transfer matrixat thes" node, be a matrix oveF, such
that Q; 1 = T/Q/. Each row of7T/ indicates the labels of the dense packets atitheode which contribute to a
successful packet sent by th& node.

For every matrix() over Fo, the densityof @, denoted byD(Q), is the size of a maximal dense collection of
rows in @, where a collection of rows idenseif the rows have all independent and uniformly distributestiBulli
entries. Furtherg) is called adense matrijf all its rows form a dense collection. For every matiixover I, the
rank of 7', denoted by rank"), is the size of a maximal collection of linearly independeosws in 7.

Lemma 1:Let ) be a dense matrix ovéfs, andT be a matrix oveitfy, where the number of rows i@ and
the number of columns ifi" are equal. If rankl’) > ~, thenD(T'Q) > ~.

Since Q11 = T/Q}, and Q) is dense,D(Q;+1) is lower bounded so long as rgfl) is lower bounded. As
shown in [6], the matrixI” includes a sub-matrix with the structure of a random blockeotriangular matrix,
and the rank of a matrix with such a structure is lower bouraedbllows.

Let w, » and {r; }1<j<. be arbitrary non-negative integers, and #gtx = max; r; and rmin = min; r;. Let
T, ; be anr x r; dense matrix oveF,, if 1 < j < i < w; or an arbitraryr x r; matrix overF,, otherwise. Let
T = [T; j]i<i,j<w- The matrixT is calledrandom block lower-triangulafRBLT).

Lemma 2:Let T be an RBLT matrix with parametets, » and{r; : 0 < r; < r}i<j<y. Letu = [(n —7)/rmin],
andn =}, r;. Foreveryinteged <y < n—1, Pr{r(T) <n—v} <u(l—-27"") 9=y +n—wr+(r—rmn)(u—1)

Lemma 3:Let T' be an RBLT matrix with parametets, » and{r; : 0 <r < r;}i<j<w. Letu = [(n —~)/r],
andn = wr. For every integed <y <n — 1, Pr{r(T) <n —~} <u (1 —277) 2 v wrmnt(rmn—r)(u=1)

The application of the lemmas is subject to useful and tidiuiaes ofw, r, andr;’s. Such parameters depend
on the traffic over the™ and (i + 1)" links, and hence not straightforward to optimize. Howesr,using a
probabilistic technique, tight bounds on such parametensbe derived.

Let (0, Nr] be the period of time over which the transmissions occur. (DefVy] be divided intow disjoint
partitions of lengthNr /w. For everyl < j < w, and1 < i < L, let I;; be thej™ partition pertaining to the™

link. For everyi, j: i < j <w— L +1, I;; is calledactive Let wr = L(w — L + 1) be the total number of active

8A collection of packets islenseif the local encoding vectors of the packets are linearlyepehdent, where the local encoding vector of a
packet is the vector of the coefficients of the linear comimmapertaining to the packet.

9The global encoding vectors of the packets at a node formaws of thedecoding matrixat the node.
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partitions.

Let ¢;; be the number of successful packets/jn By the assumptiong;; is a binomial random variable with
the expected valug; = p;Nr/w. Let p = minj<;<r, p;, andy = pNyp/w. For any real numbet, let & denote
x/2. By applying the Chernoff bound, one can show that is not larger than or equal to = (1 — v*)¢ with
probability (w.p.) bounded above by (b.a.b/wr, so long as) < v* < 1, wherey* ~ /(1/¢) In(wr /¢€). For all
i,7, suppose thap;; is larger than or equal to.

Let D(Q{) be the number of dense packets in the fjrsictive partitions over thé" link.

The packets over the first link are all dense. Thus, foy’aIP(Q{) > rj. For any other values af j, by applying
Lemma 2, it can be shown that the inequal®fQ?) > rj — j(1 + o(1)) log(wr/¢) fails w.p. b.a.bijé/wr, SO
long as

wlog =~ = o(pNr). (1)
This result shows that the number of dense packets at thensidé, D(Q,), fails to be larger than

pNt — O(pNrL/w)—

O(\/pNTw log(wL/e)) — O(wlog(wL/¢)), (2)

w.p. b.a.be. By condition (1), it follows that eact)(.) term in (2) iso(pN7) which ensures that the code achieves

the capacity. We specify by </pNrL2/log(pNrL/€) in order to maximize (2) subject to condition (1).

Let np be equal to (2). Thusyy fails to include anny x k dense sub-matrix w.p. b.a.b.

Lemma 4:Let Q be ann x k (k < n) dense matrix oveF,. Then,Pr{rank Q) < k} < 2=k,

By Lemma 4,Pr{rankQr) < k} is b.a.b.¢, so long ask < np — log(1/€). By replacinge with ¢, it follows
that the sink node can recover all the message vectors vab. b. so long ask < np — log(1/€) — 1. Let kmax
be the largest integér satisfying this inequality. Thugimax ~ pNr, and by replacingVr with &/p, the following
result is immediate.

Theorem 1:The coding delay of a dense code over a line network dihks with deterministic regular traffics

and Bernoulli losses with parametefrs; } is larger than

% <k+(1+0(1)) <%+“k (wlog%) +wlongL>>

w.p. b.a.b.e, wherew ~ (kLQ/log(kL/e))%, P = minj<;<r, p;.

In the case of the average coding delay, the analysis predegedeplacingr with ¢ in the preceding results,

and re-specifyingo by \/pNrL/log(pNrL/¢) in order to maximize
pNr — O(pNrL/w) — O(wlog(wL/e)), ®3)

instead of (2), subject to condition (1).

Theorem 2:The average coding delay of a dense code over a network sitoilBheorem 1 is larger than

]1? <k+ (1+0(1)) <%L +wlogw—€L>>
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w.p. b.a.b.e, wherew ~ (kL/log(kL/e))%.

In order to derive tighter bounds the actual values of thecesse parameter§p;} need to be taken into
consideration. In particular, the coding delay and the ayercoding delay of dense codes for a special case,
where no two links have equal success parameters, are uppedéd as follows.

Let us assume; > p; > --- > pr, without loss of generality. Lep = mini<;<z, pi, Ve = minj<i<r, 7Ye,, and

Ye; = |pi — pi—1]. Letr; = (1 —~)gi, Wwherep; = p; Ny /w andy; ~ /(1/4;)log(wr/é). Let ;; be defined as
before. For alli, j, suppose thap;; is larger than or equal to;.
Similarly as before, for allj, D(Q{) > r1j. For any other values af j, by applying Lemma 3, it can be shown

that the inequalityD(Q{) > r;j fails w.p. b.a.bijé/wr, so long as
w
wlog TT = o(YepNr). (4)

Let p, ¢, v* andr denotepy, ¢r, 75 andry, respectively. Thus, the inequaliy(Qr) > (1 — v*)pwr/L fails

w.p. b.a.b.e. By replacingy with pNp/w, the right-hand side of the last inequality can be written as

pNr — O(pNyL/w) — O(y/pNywlog(wL/e)). (5)

The rest of the analysis is similar to that of Theorem 1, ektegtt (5) excludes the last term in (2), and the choice
of w needs to satisfy condition (4), instead of condition (1).
Theorem 3:Consider a sequence of unequal paramefer$:<;<r. The coding delay of a dense code over a

line network of L links with deterministic regular traffics and Bernoulli s with parameters;} is larger than

1 kL wL
, (kz—i—(l—l—o(l)) (U—l-uk (wlog7>>>

1

w.p. b.a.b.e, wherew ~ . (kLQ/log(kL/e))E, P = minj<i<r Pi, Ye = MiNi<i<L Ve;» aNdYe, = |p; — pi—1].
In the case of the average coding delay, the analysis foltbesame line as that of Theorem 2, except that the
choice ofw needs to maximize

pN7 — O(pN7L/w) (6)

subject to condition (4), instead of (3) subject to condit{d).

Theorem 4:The average coding delay of a dense code over a network sitoilBheorem 3 is larger than

]1? <k + (1 +o(1) <%L>>

w.p. b.a.b.e, wherew ~ ~.k/(f(k)log(kL/¢)), and f (k) goes to infinity, as: goes to infinity, such thaf (k) =
o(rek/log(kL/c)).
B. CC: Capacity-Achieving

In a CC, at each transmission time, a chunk is chosen W@. and a packet transmission over tilink is
successful w.pp;. Thus the probability that a given packet transmission ¢lver™ link is successful and pertains

to a given chunk i®; /q. Thus by replacing; with p;/q in the analysis of dense codes in Section IlI-A, the coding

delay and the average coding delay of CC in a capacity-actgescenario will be upper bounded as follows.
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The results of dense codes are indeed a special case of th@e with one chunk of sizé. It is, however,

worth noting that, due to the change in the parameters, thebauof partitionsw needs to satisfy a new condition:

wrq _
€

wq log o(pNt) or wqlog *£2 = o(vy.pNr), instead of condition (1) or (4), in the proofs of Theorems 5

and 6, or those of Theorems 7 and 8, respectively. Furtheefacingw with its optimal choice in the new version
of (2), (3), (5) and (6), eacl)(.) term needs to be(pNr/q) in order to ensure that CC are capacity-achieving
in the underlying case. Such a condition lower bounds the gizhe chunksy by a function super-logarithmic in
the message size.

Theorem 5:The coding delay of a CC withh chunks over a line network af links with deterministic regular

traffics and Bernoulli losses with parametdys} is larger than

]% <k—|— (1+40(1)) <% +4/k (waog quL> + wqlog sz>>

w.p. b.a.be, so long asy = o(k/(Llog(kL/e€))), wherew ~ (kL?/(q log(kL/e)))%, andp = mini<;<z, p;.

Proof: The proof follows the same line as in that of Theorem 1 by imm@eting the following modifications.
Let us replacep and ¢ with p/q and¢/q, respectively. Thenp = pNp/wq, andr = (1 — v*)p, wherey* ~
V(1/@) In(wrq/é). Fix a chunkw. Foralll <i < L, and1 < j < w — L+ 1, let D(Q?)), D,(Q}), andr
be defined as before, but only restricted to the packetsipegato the chunku. Similarly as before, for alt, 7,
D(Q’?) can be lower bounded as follows: for all< j < w — L+ 1, D(Q}) > rj, and for all other values af, j,
D(QY) fails to be larger thamj — j(1 + o(1)) log(wrq/e), W.p. b.a.bijé/wrq, so long as

w
wqlog = = o(pNr). (7)

Thus the number of dense packets pertaining to the chuakthe sink node fails to be larger than

pNr 0 <pNTL) _
q wq

0< ZMIng_qL>—O<wlogqu), (8)
q €

€

w.p. b.a.b.e/q. In order to maximize (8) subject to condition (7), we spgaif by

3 pNpL?
qlog(pNrL/e)

Now let us assume tha¥, is (1 4 o(1))k/p. By replacinge with ¢, in the preceding results, and by replacing
ande with k/q andé/q, respectively, in Lemma 4, it follows that the sink nodeddib decode the chunk w.p.

b.a.b.c/q, so long asNy is larger than

]% <k+(1+0(1)) <%+1/k<waonglj> +waogw—ZL>> . 9)

Taking a union bound over all the chunks, it follows that tirek node fails to decode all the chunks w.p. b.a.b.

¢, SO long asNy is larger than (9). To ensure that the lower boundMnis (1 + o(1))k/p, all the terms in (9),
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excluding the first one, need to bék/p). This condition is met so long agis
) (. — 0
Llog(kL/e) )"

Theorem 6:The average coding delay of a CC wiilchunks over a network similar to Theorem 5 is larger than
1 kL L
- (k +(1+0(1)) (— + wqlog %))
p w €

w.p. b.a.be, so long as; = o(k/(Llog(kL/¢))), wherew ~ (kL/(qlog(kL/e)))%.
Proof: The proof is similar to that of Theorem 5, except thateeds to be replaced with. This implies that
the third term in (8) disappears. Thus by specifyingvith
pNrL
qlog(pNrL/e)
in order to maximize (8), excluding the third term, subjeztcbndition (7), it follows that the sink node fails to

decode all the chunks w.p. b.ad).so long asNr is larger than

wqL

% (k: +(1+o0(1)) (%L +wqlog T)) : (10)

The rest of the proof follows that of Theorem 5. |

In the case of unequal success parameters, the coding delay@ average coding delay are upper bounded as
follows.

Theorem 7:The coding delay of a CC with chunks over a line network af links with deterministic regular

traffics and Bernoulli losses with unequal paramefers is larger than

1 kL wqL
, (k—i— (1+40(1)) (U +1/k (waog T)))

w.p. b.a.b.e, so long asq = o (v2k/(Llog(kL/¢))), wherew ~ ~. (kL?/(qlog(kL/€)))®, p = mini<i<r p;,
Ye = Minj<i<r, Ye;, aNA7Ye, = [pi — pi-1l-
Proof: Fix a chunkw. By replacingp and e with p/q ande¢/q, respectively, in the proof of Theorem 3, it

follows that the number of dense packets pertaining to thakh at the sink node fails to be larger than
pNr o <pNTL> B

q wyq
o ( w_Twlogw_qL> | 1)
q €
w.p. b.a.be/q, so long as
w
wqlog =4 = o(3.pNr). (12)

The rest of the proof is similar to that of Theorem 5, except {11) excludes the last term in (8), and the choice

of w needs to satisfy condition (12), instead of condition (4. dpecifyingw with

3 VSPNTLQ
qlog(pNrL/€)

November 15, 2018 DRAFT



in order to maximize (11) subject to condition (12), it falle that the sink node fails to decode all the chunks w.p.

b.a.b.e, so long asNr is larger than

1 kL wqlL
5(/{—1—(14-0(1)) <$+1/k(waog ; ))) (13)

In (13), each term, except the largest one, needs to(bgp), and this condition is met so long asis

°($)- -

Theorem 8:The average coding delay of a CC wiilchunks over a network similar to Theorem 7 is larger than
1 kL
-k 1 1 —
3 (kr 0o (7))
w.p. b.a.b., so long asqy = o (v.k/(f(k)Llog(kL/¢))), wherew ~ ~.k/(qf(k)log(kL/¢)), and f(k) goes to
infinity, as k goes to infinity, such thaf (k) = o(~.k/(log(kL/¢))).
Proof: The proof follows the same line as that of Theorem 5, excegttttie choice ofv needs to maximize

pNT o <pNTL)

q wq

subject to condition (12). To do so, we specifyby

(14)

’YepNT
qf (pNr)log(pNrL/e)’

where f(n) goes to infinity, as: goes to infinity, such thaf(n) = o(v.n/(log(nL/¢))). The sink node fails to

decode all the chunks w.p. b.ad).so long asNy is larger than

{(veoean (%))

The second term in (15) needs to & /p), and this condition is met so long gsis

(i) -

C. CC with Precoding: Capacity-Approaching with A Gap

By the results of Section IlI-B, one can conclude that CC areaapacity-achieving if the size of the chunks
does not comply with condition = w(Llog(kL/¢)).1° The analysis of Section IlI-A further does not apply to CC
with chunks of small sizes violating the above conditiororRra computational complexity perspective, CC with
chunks of smaller sizes are, however, of more practicatéstee.g., linear-time CC with constant-size chunks). In
the following, we study CC with chunks of a size constant ie thessage size.

Let {p; }1<i< 1 be an arbitrary sequence of success parameters, gne-leting <;<, p;. Let the size of the chunks

a (= k/q) be a constant in the message sizd.e., « = O(1). Fix a chunk, and focus on the packets pertaining

1%For non-negative functiong(n) and g(n), we write f(n) = w(g(n)), if and only if lim,— o f(n)/g(n) = oco.
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10

to that chunk. Let the time intervgd, Nr] and itsw disjoint partitions be defined as before in Section IlI-AtLe
vi; be the number of packets (pertaining to the given chunk) éngirtition;;, andy; be the expected value of
©ij. Let o = mini<;<r, ;. Then,p; = p;Nr/wq, andg = pNrp/wq. Let Np = (1 + ~.)k/p, where0 < v, < 1

is an arbitrarily small constant. By replacidgr with (1 +~.)k/p, ¢ = (1 + v.)a/w, andp = O(1), asw is a
constant (otherwisep goes to0, as Ny goes to infinity).

By applying the Chernoff bound, it can be shown tRafy;; < (1 —1*)¢} < e=7"%, for every0) < v* < 1.
Takinge=7""% < ~»/wr, it follows thaty;; is not larger than or equal to= (1 —v*)¢ w.p. b.a.b~, /wr, where
~* is the smallest real number satisfying > +/(1/¢) In(wr /7s), such that- is an integer{* = O(1)). Taking a
union bound over all the active partitions of all links, itléws thaty;; is not larger than or equal tow.p. b.a.b.
Vo-

Let D(Q{) be the number of dense packets pertaining to the given chutiieifirst;j active partitions over the
i link.

By applying Lemma 3, it can be shown that: (i) for alK j <w — L + 1, D(Q{) >rj, (i) forall 1 <i <L,
the inequalityD(Q}) > r — log(wr /) fails w.p. b.a.b.iy,,/wr, and (iii) for all the otheri, j, the inequality

D(Q)) > — jlog(wr /) — log((j + 1wz /) fails w.p. b.a.bijy,/wr, so long as

a=Q <w2 log E) . (16)
Vb

By using the above results, it follows that the number of égmasckets pertaining to the given chunk at the sink

node fails to be lower bounded by

wrp wr wr wr | wr
— — 0= logc— | —O | — log — 17
L (L ch g%) (L g%) an

w.p. b.a.bsy,. The lower bound is non-negative so longeas- Q2 (wlog(wr/vp)), and this condition holds so long
as condition (16) holds. We specify by /aL2?/log(aL/~,) to maximize (17). By replacing in (16), it can be
rewritten as
a=Q <L4 log £) . (18)
Yo
By replacingy, with ~,, and by applying Lemma 4, it follows that the sink node failslecode the given chunk
w.p. b.a.by,, so long as (17) is larger tham+ log(1/+,). By replacing our choice ofv in (17), it can be seen
that, excluding the first term, the second term dominatesehke By replacinge with (1 + v.)a/w, and by using

the properties of the notatidf(.), the decoding condition becomes

L L
a=Q <—310g ) . (29)
Ve Yo Ve

Thus, the given chunk is undecodable w.p. b.g;h.so long as both conditions (18) and (19) are met. In other
words, the expected fraction of undecodable chunks is bedifrdm above byy,. By using a martingale argument
similar to the one in [3], the concentration of the fractidhumdecodable chunks around the expectation can be

shown as follows.
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Lemma 5:By applying a CC with chunks of size, satisfying both conditions (18) and (19), the fraction of
undecodable chunks at the sink node until tidde = (1 + ~.)k/p is larger than(1 + v,)v, W.p. b.a.be, so long
as

a® /a7 = ol(k/log(1/e)), (20)
where0 < vq, v, 7. < 1 are arbitrary constants.

By the result of Lemma 5, the fraction of chunks which are netatlable until timeN; becomes larger than
(14+74)vs, W.p. b.a.be. Sincev,, 7, are non-zero constants, a CC, alone, does not decode ahtimgs. However,
the completion of decoding of all the chunks is guaranteedidwsing a proper precoding scheme [3]. The precoding
works as follows: The set gf message vectors at the source node constitute the inputagfegcity-achieving (c.-a.)
erasure code, callgatecode The rate of the precode is— (1+~,)7s (i.e., the precode decoder can correct up to a
fraction (1++y, ), of erasures), and the number of the coded packets at thetaiitine precode, callethtermediate
packetsis (1 + (1 +v.)y + O(12)) k. By applying a CC with chunks of size, satisfying conditions (18), (19)
and (20), the fraction of the intermediate packets that aterecoverable at the output of the CC decoder until
time (1 +v.) (14 (14 7a)7 + O(13)) % is larger than(1 + ~,)7s, W.p. b.a.b.e. Then, the precode decoder can
recover all thek message vectors from the set of recovered intermediateesackherefore, the coding delay of a
CC with precoding (CCP) is upper bounded as follows.

Theorem 9:The coding delay of a CCP with chunks of sizeand a c.-a. erasure code of rdte- ~,, over a
line network of L links with deterministic regular traffics and Bernoulli s with parameters;} is larger than

(147 (1+ (1 +7)% + O(13)) £, w.p. babe, so long as

a= ({(%bg L ),(L410g£)}) ,
Ve Yo Ye b

anda? /22 = o(k/log(1/€)), where0 < v,,7,7. < 1 are arbitrary constants, and= mini<;<r, p;.

In the case of the average coding delay of a CC with precodhegfollowing can be shown similar to Theorem 9
by replacingr with ¢, and hence the proof is omitted.
Theorem 10:The average coding delay of a CCP with chunks of sizend a c.-a. erasure code of rate- ~,,

over a network similar to Theorem 9 is larger thdn+ v.) (1 + (1 +7v4)7 + O(12)) %, w.p. b.a.be, so long as

L L
a= <— log ) ,
Ve Vb Ve

anda? /y2~% = o(k/log(1/€)), where0 < ~,,v,7. < 1 are arbitrary constants.

In the special case of unequal success parameters, thegcoeliay and the average coding delay of CC with
precoding are upper bounded as follows. The proofs follosvgdame line as in the general case except that a new
set of conditions needs to be satisfied based on the assumtp&bno two success parameters are equal.

Theorem 11:The coding delay of a CCP with chunks of sizeand a c.-a. erasure code of rdte- v,, over
a line network ofL links with deterministic regular traffics and Bernoulli §&s with unequal parametefs;} is

larger than(1 + ;) (1 + (1 +7a)v + O(12)) g, w.p. b.a.be, so long as

L L L L
o ({(Feen) (eesz)):
Ye Ve Ve Ve Vb
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TABLE |
COMPARISON OFCHUNKED CODES OVERLINE NETWORKS WITHVARIOUS TRAFFICS

Overhead 1) .
Success Size of Chunks
Traffic and w Comments
Parameters - ()
Average Overheads]
Avrbitrar 1 .
e - n=ﬁ:O(kL(§IOg%)3> w(L31og%> )
Deterministig m = E2]og (kL’W)
T « [e%3
3 X
Deterministig n=1 ((1 +0(1)) (@ +kTm3 4+ m)) ( aL? ) f(k)=o (1 S )
Arbit ? v Llog kL log 7 N
Regular roitrary w | Llog = T . -
1 k L 2 limg o0 f(k) = 00
Transmissior|s =13 <(1 +o(1) (_ + m) Toe EL
E e/ Yei = |Pi — Pi—1]
3 2\ 3 .
and n=d (o) (S +iimd)) | w(Boets) | ()T | = mimasons
Bernoulli | Unequal 1 oL y . oL N — p=minj<;<r, P;
_ e =t=
L osses =1 ((+0) (52)) w () (£10g L)) | 1 (10; Q)
TABLE I
COMPARISON OFCHUNKED CODES WITHPRECODING (A CAPACITY-ACHIEVING ERASURECODE) OVER LINE NETWORKS WITHVARIOUS
TRAFFICS
Overhead 1) )
) Success Size of Chunks
Traffic b ) and @ Comments
arameters
Average Overheads) .
Arbitrar :
y - n=1="vk Q(g—;log%e/> 0 <Ya,Vbs7e <1
Deterministid c ¢
{Vas Vb, 7c} = O(1)
Deterministid prbirary n= yog Q ({ (% log %L%> , (L4 log %) }) - Yo =7e + (1 + )75
g TS
Regular ok o (L log L ) o ( ﬂiogl’; ) 75 = (1 +va)v + O(3)
Transmissiors =0y e Tbe ‘ Ye; = |Pi — Pi—1]
k| a({(ert) (s )])
Bernoulli Unequal . . i
= _ o k Q (L | L ) P =min<<L Pi
Losses ="y 25, log .5

and a?/v242 = o(k/log(1/e)), where0 < ~a,V,7. < 1 are arbitrary constantyy = mini<i<z pi, ve =
mini<i<r, Ye;, andye, = |pi — pi—1l.
Proof: Let us assumep; > py > --- > pp, without loss of generality. Lep = minj<;<z pi, Ve =

ming<i<r, Ye;» andvye, = |p; — pi—1|. Fix a chunk. Letr; = (1 — v/)p;, wherep; = p;Np/wq and v ~

V (1/¢) log(wr /), and0 <+, < 1 is an arbitrary constant. Let;; be the number of packets (pertaining to the
given chunk) in the partitiod,; (the ;™ partition pertaining to thé™ link), where the time interval0, N | is split
into w partitions of lengthNr/w, and lety; be the expected value qf;;. For all i, j, suppose thap;; is larger
than or equal ta-;. Let Ny = (1 + ~.)k/p, where0 < v. < 1 is an arbitrarily small constant. By replaciigr
with (1 +~.)k/p, i = (1 + vc)pia/pw, andp = O(1), similar to that in the proof of Theorem 9.

Similarly as before, for allj, D(Q{) > r1j. For any other values af j, by applying Lemma 3, it can be shown
that the inequalityD(Q-g) > r;j fails w.p. b.a.bijv,/wr, so long as

a=Q (%log %) . (22)

€
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Let ¢, v* andr denotey;, v; andry, respectively. Thus, the number od dense packets pertginithe given

chunk at the sink node fails to be larger than

a(l+7.) -0 (%) —0 (1 Jaw log %) . (22)

We specifyw by

(r)
log(wr /vs)
to maximize (22) subject to condition (21). For this choideug condition (21) is met so long as
a—Q(%log L > (23)
Ve VeV

By replacingy, with v, in the preceding results, and substitutimgn (22), the result of Lemma 4 shows that the
sink node fails to decode the given chunk w.p. b.aybso long as (22) is larger than+ log(1/4;). Based on the
properties of the notatiof2(.), the latter condition is met so long as

L L
a=Q <—310g ) . (24)
Ve Yo Ve

The rest of the proof is similar to the proof of Theorem 9, gtdhat in this case conditions (23) and (24) need

to be met, instead of conditions (18) and (19). [ |
Theorem 12:The average coding delay of a CCP with chunks of sizend a c.-a. erasure code of rate- ~,,

over a network similar to Theorem 11 is larger than+ y.) (1 + (1 +va)v + O(7%)) %, w.p. b.a.be, so long as

L L
a= < 5— log ) ,
YeVe Ve

anda?/v2+% = o(k/log(1/¢)), where0 < v,,7,7. < 1 are arbitrary constants.

Proof: The proof follows the same line as that of Theorem 11, exdegitthe choice ofv needs to maximize
L
a(l+7v)—0 <%> (25)

subject to condition (21). To do so, the choicewfeeds to b&)(L/4.), and hence, condition (21) becomes

L L
a=9 ( 5— log ) : O
YeVe Ve

IV. POISSONTRANSMISSIONS ANDBERNOULLI LOSSES

In the case of Bernoulli losses and Poisson transmissiotispairametergp; }1<i<z, and{\; }1<;<r, the points
in time at which the arrivals/departures occur over iflelink follow a Poisson process with parametgp;.
Thus the number of packets pertaining to a given chunk, i gactition pertaining to theé" link, has a Poisson
distribution with the expected value p; N1 /wq. Since the result of Chernoff bound also holds for Poissodoan
variables, the main results in Section Il apply to this chgereplacingp with Ap, where{\, p} = {\,,p,}, and

p= argming <<z, Aip;.
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V. DISCUSSION

Table | shows the upper bourtdgw.p. of failure b.a.be) on the overhead and the average overhead of CC over
various traffics for different ranges of the size of the chaiblsed on the results in Section Il and those in'{3].
The traffics are: arbitrary deterministic traffics, or tredgfiwith deterministic regular transmissions and Bernoulli
losses. We refer to the latter traffics as fhrebabilistic trafficsfor simplifying the terminology. The probabilistic
traffics are categorized into two sub-categories: traffitth arbitrary success parameters and traffics with unequal
success parameters. In the case of arbitrary determiniaffecs, the capacity i, and in the case of probabilistic
traffics with success parametefs;}1<i<r, the capacity isp, wherep = mini<;<z p;. We say that a code is
“capacity-achieving” (c.-a.) if the ratio of the overheadit/p goes to0, ask goes to infinity. Similarly, a code is
“capacity-achieving on average” (c.-a.a.) if the ratiolué taverage overhead kg'p goes to0, ask goes to infinity.

In Table I, the upper (or lower) row in front of each case ofcass parameters corresponds to a c.-a. (or a c.-a.a.)
scenario.

In the table, one can see that, for each traffic, the size ofcthuks () has to be sufficiently large so that
CC are c.-a. or c.-a.a.. For arbitrary deterministic traffihe lower bound omv is super-logarithmic ink, i.e.,
w(log k), and super-log-cubic i, i.e.,w (L3 log L). For the probabilistic traffics with arbitrary or unequatsess
parameters, the lower bound enhas a similar growth rate witk, but a smaller (super-log-linear) growth rate
with L, i.e.,w(Llog L). The coding cost of CC (i.e., the ratio of the number of theimgdpacket) operations to
k), is, on the other hand, linear ia Thus, CC can perform as fast over both the arbitrary detastig traffics and
the probabilistic traffics, but with a lower coding cost (dierachunks) in the latter case compared to the former.

Moreover, as it can be seen in Table I, for both arbitrary meit@istic and probabilistic traffics (in each case
of arbitrary or unequal success parameters), the overheadsgsub-log-linearly withk, i.e., O(k:log% k), and
decays sub-linearly with, i.e., O(l/a%). However, for arbitrary deterministic traffics, the oveaidegrows with
O(L 1og% L), and for the probabilistic traffics, it only grows wikﬁ(L% 1og% L). This implies a faster speed of
convergence to the capacity in the latter case comparedetdotmer. Similar comparison result can also be
observed in terms of the average overhead, except that icabe of unequal success parameters, the average
overhead decays linearly with, i.e., O(1/«), but grows poly-log-linearly withk, i.e., O(k log® k), for the choice
of f(k) = O(v.logk), and log-linearly withZ, i.e., O(Llog L).

Table Il also shows the results for CC with precoding (CCP}he scenarios similar to those considered in
Table I, where the precode is an (capacity-achieving) eeasode of dimensior: and ratel — ~,. In particular,
one can see that CCP are “capacity-approaching” or “capapiproaching on average” with an arbitrary small
“non-zero constant” gap, (i.e., the ratio of the overhead or the average overhedd/togoes tov,, ask goes

to infinity) if « is sufficiently large. For simplifying the terminology, weag the term “with a non-zero constant

Llwith a slight abuse of language, we refer to the “upper bowndthe overhead or the average overhead as the “overheal daverage
overhead.”

12The results of Section I1I-B and those of Section IlI-C wetated in terms ofg and «, respectively. In this section, for the ease of
comparison, the former results are also restated in ternas lnf replacingg with k/«.
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gap.” The upper row (or the lower row) in front of each case wicess parameters corresponds to a capacity-
approaching (or a capacity-approaching on average) doerrar arbitrary deterministic traffics, the lower bound
on « is constant ink, and log-cubic inZ, i.e., O(L?log L). For the probabilistic traffics with arbitrary or unequal
success parameters, the lower boundaois also constant irk, but has a smaller (log-linear) growth rate with
L,i.e.,O(LlogL). Thus, in the case of CCP, one can make a conclusion simildretmne made in the case of

stand-alone CC, with respect to the arbitrary determmistid the probabilistic traffics.
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