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Abstract

In this paper, we analyze the coding delay and the average coding delay of Chunked network Codes (CC) over line

networks with Bernoulli losses and deterministic regular or Poisson transmissions. Chunked codes are an attractive

alternative to random linear network codes due to their lower complexity. Our results, which include upper bounds on

the delay and the average delay, are the first of their kind forCC over networks with such probabilistic traffics. These

results demonstrate that a stand-alone CC or a precoded CC provides a better tradeoff between the computational

complexity and the convergence speed to the network capacity over the probabilistic traffics compared to arbitrary

deterministic traffics. The performance of CC over the latter traffics has already been studied in the literature.

I. I NTRODUCTION

Chunked codes (CC), originally proposed in [1], generalizerandom linear network codes (dense codes), and

operate by dividing the message of the source into non-overlapping or overlapping sub-messages of equal size,

called chunks[1]–[3]. Each node at each transmission time randomly chooses a chunk, and transmits it by using

a dense code. In fact, a dense code is a CC with only one chunk ofthe size equal to the message size. Thus, CC

require less complex coding operations due to applying coding on chunks smaller than the original message. This

however comes at the cost of lower speed of convergence to thecapacity compared to dense codes.

The speed of convergence of CC to the capacity of line networks with arbitrary deterministic traffics was studied

in [1], [3]. In particular, it has been shown that (i) a CC achieves the capacity, so long as the size of the chunks

is lower bounded by a function super-logarithmic in the message size and super-log-cubic in the network length,

and (ii) a CC, preceded by a capacity-achieving erasure code, approaches the capacity with an arbitrarily small but

non-zero constant gap, so long as the size of the chunks is lower bounded by a function constant in the message

size and log-cubic in the network length. There is however noresult on the speed of convergence of CC to the

capacity over the networks with probabilistic traffics.

The speed of convergence of dense codes to the capacity of some probabilistic traffics was studied in [4], [5].

Very recently, in [6], we studied the coding delay and the average coding delay of a dense code over the traffics

†This paper is an extended version of an accompanying work submitted to NetCod 2012.
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with deterministic regular or Poisson transmissions and Bernoulli losses.1 The results were in some cases more

general, and in some other cases tighter, than the existing bounds in [4], [5].

In this paper, we generalize our analysis in [6], and for the first time, study the coding delay and the average

coding delay of CC for different ranges of the chunk sizes.2

The main contributions of this work are:

• We derive upper bounds on the coding delay and the average coding delay of a CC alone, or a CC with

precoding, over the traffics with deterministic regular transmissions or Poisson transmissions and Bernoulli

losses with arbitrary parameters or unequal parameters.

• We show that: (i) a CC achieves the capacity, so long as the size of the chunks is bounded from below

by a function super-logarithmic in the message size and super-log-linear in the network length, and (ii) the

combination of a CC and a capacity-achieving erasure code approaches the capacity with an arbitrarily small

non-zero constant gap, so long as the size of the chunks is bounded from below by a function constant in the

message size and log-linear in the network length. The lowerbounds in both cases are smaller than those over

the networks with arbitrary deterministic traffics. Thus both coding schemes are less computationally complex

(require smaller chunks), for the same speed of convergence, over such probabilistic traffics, compared to

arbitrary deterministic traffics.

• In a capacity-achieving scenario, for such probabilistic traffics, we show that: (i) the upper bound on the

overhead3 grows sub-log-linearly with the message size and the network length, and decays sub-linearly with

the size of the chunks, and (ii) the upper bound on the averageoverhead grows sub-log-linearly (or poly-

log-linearly) with the message size, and sub-log-linearly(or log-linearly) with the network length, and decays

sub-linearly (or linearly) with the size of the chunks, in the case with arbitrary (or unequal) parameters. For

arbitrary deterministic traffics, the upper bound on the overhead was shown in [3] to be similar to (i), but with

a larger (super-linear) growth rate with the network length.

II. N ETWORK MODEL AND PROBLEM SETUP

A. Transmission and Loss Model

We consider a unicast problem (one-source one-sink) over a line network withL links connectingL+ 1 nodes

{vi}0≤i≤L in tandem. The source nodev0 has a message ofk vectors (calledmessage vectors) from a vector space

F overF2, and the sink nodevL requires all the message vectors.4

1The coding delayof a code over a network with a given traffic (schedule of transmissions and losses) is the minimum time that the code

takes to transmit all the message vectors from the source to the sink. The coding delay is a random variable due to the randomness in both the

code and the traffic. Theaverage coding delayof a code with respect to a class of traffics is the coding delayof the code averaged out over

all the traffics (but not the codes), and hence is a random variable due to the randomness in the code.

2In this paper, we focus on CC with non-overlapping chunks. The analysis of CC with overlapping chunks is the focus of an ongoing research

project.

3The (average) overheadis the difference between the (average) coding delay and theratio of the message size to the capacity.

4The analysis in this paper is generalizable to finite fields oflarger size.
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Each (non-sink) node at each transmission time transmits a (coded) packet, which is a vector inF . The packet

transmissions are assumed to occur in discrete-time, and the transmission times over different links are assumed to

follow independent stochastic processes. The transmission times over theith link are specified by (i) a deterministic

process where there is a packet transmission at each time instant, or (ii) a Poisson process with parameterλi : 0 <

λi ≤ 1, whereλi is the average number of transmissions per time unit over theith link. The transmission schedules

resulting from (i) and (ii) are referred to asdeterministic regularandPoisson, respectively.

Each transmitted packet either succeeds or fails to be received (successfulvs. lost). The successful packets are

assumed to arrive with zero delay, and the lost packets will never arrive. The packets are assumed to be successful

independently over different links. The successful packets over theith link are specified by a Bernoulli process with

(success) parameterpi : 0 < pi ≤ 1, wherepi is the average number of successes per transmission over theith link.

The loss model defined as above is referred to asBernoulli. The special case of Bernoulli loss with allpi’s equal

to 1 is analogous to the lossless case.

B. Problem Setup

The goal in this paper is to derive upper bounds on the coding delay and the average coding delay of chunked

codes over line networks with deterministic regular or Poisson transmissions and Bernoulli losses.

In a chunked coding scheme, the set ofk message vectors at the source node is divided intoq disjoint subsets,

calledchunks, each of sizeα = k/q. The source node, at each transmission time, chooses a chunkindependently at

random, and transmits a packet by randomly linearly combining the message vectors belonging to the underlying

chunk. Each non-source non-sink node, at the time of each transmission, chooses a chunk independently at random,

and transmits a packet by randomly linearly combining its previously received packets pertaining to the underlying

chunk. The global encoding vector5 of each packet is assumed to be transmitted along with the packet. The sink

node can decode a chunk, so long as it receives an innovative6 collection of packets pertaining to the underlying

chunk of a size equal to the size of the chunk.

III. D ETERMINISTIC REGULAR TRANSMISSIONS ANDBERNOULLI LOSSES

We first review the analysis of dense codes, which are a special case of CC with one chunk, in two cases of

arbitrary or unequal (success) parameters, presented in [6].7 Next, we generalize the analysis to CC with more than

one chunk.

5The global encoding vectorof a packet is the vector of the coefficients representing themapping between the message vectors and the

packet.

6A collection of packets isinnovativeif the global encoding vectors of the packets belonging to the collection are linearly independent.

7The details of the proofs in the case of arbitrary parameterswere given in [6] and hence omitted. However, neither the details, nor the

sketches of the proofs in the case of unequal parameters weregiven in [6]. We present the sketches of the proofs in this paper for the purpose

of completeness.
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A. Dense Codes

The goal of the analysis is to lower bound (i) the size of a maximal dense collection of packets at the sink node

until a certain time,8 and then, (ii) the probability that a sufficient number of packets in the underlying collection

are innovative.

Let Qi+1 andQi be the decoding matrices9 at the(i+ 1)th and ith nodes, respectively, andTi be a matrix over

F2 such thatQi+1 = TiQi. The entries ofQi+1 andQi are inF2. Each row ofTi is the local encoding vectors of

a successful packet sent by theith node. LetQ′
i beQi restricted to its rows corresponding to the global encoding

vectors of the dense packets at theith node. LetT ′
i , the transfer matrixat theith node, be a matrix overF2 such

thatQi+1 = T ′
iQ

′
i. Each row ofT ′

i indicates the labels of the dense packets at theith node which contribute to a

successful packet sent by theith node.

For every matrixQ over F2, the densityof Q, denoted byD(Q), is the size of a maximal dense collection of

rows inQ, where a collection of rows isdenseif the rows have all independent and uniformly distributed Bernoulli

entries. Further,Q is called adense matrixif all its rows form a dense collection. For every matrixT overF2, the

rank of T , denoted by rank(T ), is the size of a maximal collection of linearly independentrows in T .

Lemma 1:Let Q be a dense matrix overF2, andT be a matrix overF2, where the number of rows inQ and

the number of columns inT are equal. If rank(T ) ≥ γ, thenD(TQ) ≥ γ.

SinceQi+1 = T ′
iQ

′
i, andQ′

i is dense,D(Qi+1) is lower bounded so long as rank(T ′
i ) is lower bounded. As

shown in [6], the matrixT ′
i includes a sub-matrix with the structure of a random block lower-triangular matrix,

and the rank of a matrix with such a structure is lower boundedas follows.

Let w, r and {rj}1≤j≤w be arbitrary non-negative integers, and letrmax = maxj rj and rmin = minj rj . Let

Ti,j be anr × rj dense matrix overF2, if 1 ≤ j ≤ i ≤ w; or an arbitraryr × rj matrix overF2, otherwise. Let

T = [Ti,j ]1≤i,j≤w. The matrixT is calledrandom block lower-triangular(RBLT).

Lemma 2:Let T be an RBLT matrix with parametersw, r and{rj : 0 ≤ rj ≤ r}1≤j≤w . Let u = ⌈(n− γ)/rmin⌉,

andn =
∑

1≤j≤w rj . For every integer0 ≤ γ ≤ n−1, Pr{r(T ) < n−γ} ≤ u (1− 2−rmax) 2−γ+n−wr+(r−rmin)(u−1).

Lemma 3:Let T be an RBLT matrix with parametersw, r and{rj : 0 ≤ r ≤ rj}1≤j≤w. Let u = ⌈(n− γ)/r⌉,

andn = wr. For every integer0 ≤ γ ≤ n− 1, Pr{r(T ) < n− γ} ≤ u (1− 2−r) 2−γ+n−wrmin+(rmin−r)(u−1).

The application of the lemmas is subject to useful and tight choices ofw, r, andrj ’s. Such parameters depend

on the traffic over theith and (i + 1)th links, and hence not straightforward to optimize. However,by using a

probabilistic technique, tight bounds on such parameters can be derived.

Let (0, NT ] be the period of time over which the transmissions occur. Let(0, NT ] be divided intow disjoint

partitions of lengthNT /w. For every1 ≤ j ≤ w, and1 ≤ i ≤ L, let Iij be thej th partition pertaining to theith

link. For everyi, j: i ≤ j ≤ w −L+ i, Iij is calledactive. Let wT
.
= L(w −L+ 1) be the total number of active

8A collection of packets isdenseif the local encoding vectors of the packets are linearly independent, where the local encoding vector of a

packet is the vector of the coefficients of the linear combination pertaining to the packet.

9The global encoding vectors of the packets at a node form the rows of thedecoding matrixat the node.
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partitions.

Let ϕij be the number of successful packets inIij . By the assumption,ϕij is a binomial random variable with

the expected valueϕi = piNT /w. Let p
.
= min1≤i≤L pi, andϕ

.
= pNT/w. For any real numberx, let ẋ denote

x/2. By applying the Chernoff bound, one can show thatϕij is not larger than or equal tor
.
= (1 − γ∗)ϕ with

probability (w.p.) bounded above by (b.a.b.)ǫ̇/wT , so long as0 < γ∗ < 1, whereγ∗ ∼
√

(1/ϕ̇) ln(wT /ǫ̇). For all

i, j, suppose thatϕij is larger than or equal tor.

Let D(Qj
i ) be the number of dense packets in the firstj active partitions over theith link.

The packets over the first link are all dense. Thus, for allj, D(Qj
1) ≥ rj. For any other values ofi, j, by applying

Lemma 2, it can be shown that the inequalityD(Qj
i ) ≥ rj − j(1 + o(1)) log(wT /ǫ) fails w.p. b.a.b.ijǫ̇/wT , so

long as

w log
wT

ǫ
= o(pNT ). (1)

This result shows that the number of dense packets at the sinknode,D(QL), fails to be larger than

pNT −O(pNTL/w)−

O(
√

pNTw log(wL/ǫ))−O(w log(wL/ǫ)), (2)

w.p. b.a.b.ǫ. By condition (1), it follows that eachO(.) term in (2) iso(pNT ) which ensures that the code achieves

the capacity. We specifyw by 3

√

pNTL2/log(pNTL/ǫ) in order to maximize (2) subject to condition (1).

Let nT be equal to (2). Thus,QL fails to include annT × k dense sub-matrix w.p. b.a.b.ǫ.

Lemma 4:Let Q be ann× k (k ≤ n) dense matrix overF2. Then,Pr{rank(Q) < k} ≤ 2−(n−k).

By Lemma 4,Pr{rank(QL) < k} is b.a.b.ǫ, so long ask ≤ nT − log(1/ǫ). By replacingǫ with ǫ̇, it follows

that the sink node can recover all the message vectors w.p. b.a.b. ǫ, so long ask ≤ nT − log(1/ǫ)− 1. Let kmax

be the largest integerk satisfying this inequality. Thus,kmax ∼ pNT , and by replacingNT with k/p, the following

result is immediate.

Theorem 1:The coding delay of a dense code over a line network ofL links with deterministic regular traffics

and Bernoulli losses with parameters{pi} is larger than

1

p

(

k + (1 + o(1))

(

kL

w
+

√

k

(

w log
wL

ǫ

)

+ w log
wL

ǫ

))

w.p. b.a.b.ǫ, wherew ∼
(

kL2/log(kL/ǫ)
)

1

3 , p
.
= min1≤i≤L pi.

In the case of the average coding delay, the analysis proceeds by replacingr with ϕ in the preceding results,

and re-specifyingw by
√

pNTL/log(pNTL/ǫ) in order to maximize

pNT −O(pNTL/w)−O(w log(wL/ǫ)), (3)

instead of (2), subject to condition (1).

Theorem 2:The average coding delay of a dense code over a network similar to Theorem 1 is larger than

1

p

(

k + (1 + o(1))

(

kL

w
+ w log

wL

ǫ

))

November 15, 2018 DRAFT
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w.p. b.a.b.ǫ, wherew ∼ (kL/log(kL/ǫ))
1

2 .

In order to derive tighter bounds the actual values of the success parameters{pi} need to be taken into

consideration. In particular, the coding delay and the average coding delay of dense codes for a special case,

where no two links have equal success parameters, are upper bounded as follows.

Let us assumep1 > p2 > · · · > pL, without loss of generality. Letp
.
= min1≤i≤L pi, γe

.
= min1<i≤L γei , and

γei
.
= |pi − pi−1|. Let ri

.
= (1− γ∗

i )ϕi, whereϕi = piNT /w andγ∗
i ∼

√

(1/ϕ̇i) log(wT /ǫ̇). Let ϕij be defined as

before. For alli, j, suppose thatϕij is larger than or equal tori.

Similarly as before, for allj, D(Qj
1) ≥ r1j. For any other values ofi, j, by applying Lemma 3, it can be shown

that the inequalityD(Qj
i ) ≥ rij fails w.p. b.a.b.ijǫ̇/wT , so long as

w log
wT

ǫ
= o(γepNT ). (4)

Let p, ϕ, γ∗ andr denotepL, ϕL, γ∗
L andrL, respectively. Thus, the inequalityD(QL) ≥ (1− γ∗)ϕwT /L fails

w.p. b.a.b.ǫ. By replacingϕ with pNT/w, the right-hand side of the last inequality can be written as:

pNT −O(pNTL/w)−O(
√

pNTw log(wL/ǫ)). (5)

The rest of the analysis is similar to that of Theorem 1, except that (5) excludes the last term in (2), and the choice

of w needs to satisfy condition (4), instead of condition (1).

Theorem 3:Consider a sequence of unequal parameters{pi}1≤i≤L. The coding delay of a dense code over a

line network ofL links with deterministic regular traffics and Bernoulli losses with parameters{pi} is larger than

1

p

(

k + (1 + o(1))

(

kL

w
+

√

k

(

w log
wL

ǫ

)

))

w.p. b.a.b.ǫ, wherew ∼ γe
(

kL2/log(kL/ǫ)
)

1

3 , p
.
= min1≤i≤L pi, γe

.
= min1<i≤L γei , andγei

.
= |pi − pi−1|.

In the case of the average coding delay, the analysis followsthe same line as that of Theorem 2, except that the

choice ofw needs to maximize

pNT −O(pNTL/w) (6)

subject to condition (4), instead of (3) subject to condition (1).

Theorem 4:The average coding delay of a dense code over a network similar to Theorem 3 is larger than

1

p

(

k + (1 + o(1))

(

kL

w

))

w.p. b.a.b.ǫ, wherew ∼ γek/(f(k) log(kL/ǫ)), andf(k) goes to infinity, ask goes to infinity, such thatf(k) =

o(γek/log(kL/ǫ)).

B. CC: Capacity-Achieving

In a CC, at each transmission time, a chunk is chosen w.p.1/q, and a packet transmission over theith link is

successful w.p.pi. Thus the probability that a given packet transmission overthe ith link is successful and pertains

to a given chunk ispi/q. Thus by replacingpi with pi/q in the analysis of dense codes in Section III-A, the coding

delay and the average coding delay of CC in a capacity-achieving scenario will be upper bounded as follows.
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The results of dense codes are indeed a special case of those of CC with one chunk of sizek. It is, however,

worth noting that, due to the change in the parameters, the number of partitionsw needs to satisfy a new condition:

wq log wT q
ǫ

= o(pNT ) or wq log wT q
ǫ

= o(γepNT ), instead of condition (1) or (4), in the proofs of Theorems 5

and 6, or those of Theorems 7 and 8, respectively. Further by replacingw with its optimal choice in the new version

of (2), (3), (5) and (6), eachO(.) term needs to beo(pNT /q) in order to ensure that CC are capacity-achieving

in the underlying case. Such a condition lower bounds the size of the chunksα by a function super-logarithmic in

the message sizek.

Theorem 5:The coding delay of a CC withq chunks over a line network ofL links with deterministic regular

traffics and Bernoulli losses with parameters{pi} is larger than

1

p

(

k + (1 + o(1))

(

kL

w
+

√

k

(

wq log
wqL

ǫ

)

+ wq log
wqL

ǫ

))

w.p. b.a.b.ǫ, so long asq = o(k/(L log(kL/ǫ))), wherew ∼
(

kL2/(q log(kL/ǫ))
)

1

3 , andp
.
= min1≤i≤L pi.

Proof: The proof follows the same line as in that of Theorem 1 by implementing the following modifications.

Let us replacep and ǫ with p/q and ǫ/q, respectively. Then,ϕ = pNT /wq, and r = (1 − γ∗)ϕ, whereγ∗ ∼
√

(1/ϕ̇) ln(wT q/ǫ̇). Fix a chunkω. For all 1 ≤ i ≤ L, and 1 ≤ j ≤ w − L + 1, let D(Qj
i ), Dp(Q

j
i ), and rij

be defined as before, but only restricted to the packets pertaining to the chunkω. Similarly as before, for alli, j,

D(Qj
i ) can be lower bounded as follows: for all1 ≤ j ≤ w − L+ 1, D(Qj

1) ≥ rj, and for all other values ofi, j,

D(Qj
i ) fails to be larger thanrj − j(1 + o(1)) log(wT q/ǫ), w.p. b.a.b.ijǫ̇/wT q, so long as

wq log
wT q

ǫ
= o(pNT ). (7)

Thus the number of dense packets pertaining to the chunkω at the sink node fails to be larger than

pNT

q
−O

(

pNTL

wq

)

−

O

(
√

pNTw

q
log

wqL

ǫ

)

−O

(

w log
wqL

ǫ

)

, (8)

w.p. b.a.b.ǫ/q. In order to maximize (8) subject to condition (7), we specify w by

3

√

pNTL2

q log(pNTL/ǫ)
.

Now let us assume thatNT is (1 + o(1))k/p. By replacingǫ with ǫ̇, in the preceding results, and by replacingk

and ǫ with k/q and ǫ̇/q, respectively, in Lemma 4, it follows that the sink node fails to decode the chunkω w.p.

b.a.b.ǫ/q, so long asNT is larger than

(9)
1

p

(

k + (1 + o(1))

(

kL

w
+

√

k

(

wq log
wqL

ǫ

)

+ wq log
wqL

ǫ

))

.

Taking a union bound over all the chunks, it follows that the sink node fails to decode all the chunks w.p. b.a.b.

ǫ, so long asNT is larger than (9). To ensure that the lower bound onNT is (1 + o(1))k/p, all the terms in (9),

November 15, 2018 DRAFT
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excluding the first one, need to beo(k/p). This condition is met so long asq is

o

(

k

L log(kL/ǫ)

)

.

Theorem 6:The average coding delay of a CC withq chunks over a network similar to Theorem 5 is larger than

1

p

(

k + (1 + o(1))

(

kL

w
+ wq log

wqL

ǫ

))

w.p. b.a.b.ǫ, so long asq = o(k/(L log(kL/ǫ))), wherew ∼ (kL/(q log(kL/ǫ)))
1

2 .

Proof: The proof is similar to that of Theorem 5, except thatr needs to be replaced withϕ. This implies that

the third term in (8) disappears. Thus by specifyingw with
√

pNTL

q log(pNTL/ǫ)

in order to maximize (8), excluding the third term, subject to condition (7), it follows that the sink node fails to

decode all the chunks w.p. b.a.b.ǫ, so long asNT is larger than

(10)
1

p

(

k + (1 + o(1))

(

kL

w
+ wq log

wqL

ǫ

))

.

The rest of the proof follows that of Theorem 5.

In the case of unequal success parameters, the coding delay and the average coding delay are upper bounded as

follows.

Theorem 7:The coding delay of a CC withq chunks over a line network ofL links with deterministic regular

traffics and Bernoulli losses with unequal parameters{pi} is larger than

1

p

(

k + (1 + o(1))

(

kL

w
+

√

k

(

wq log
wqL

ǫ

)

))

w.p. b.a.b.ǫ, so long asq = o
(

γ3
ek/(L log(kL/ǫ))

)

, wherew ∼ γe
(

kL2/(q log(kL/ǫ))
)

1

3 , p
.
= min1≤i≤L pi,

γe
.
= min1<i≤L γei , andγei

.
= |pi − pi−1|.

Proof: Fix a chunkω. By replacingp and ǫ with p/q and ǫ/q, respectively, in the proof of Theorem 3, it

follows that the number of dense packets pertaining to the chunk ω at the sink node fails to be larger than

pNT

q
−O

(

pNTL

wq

)

−

O

(
√

pNTw

q
log

wqL

ǫ

)

, (11)

w.p. b.a.b.ǫ/q, so long as

wq log
wT q

ǫ
= o(γepNT ). (12)

The rest of the proof is similar to that of Theorem 5, except that (11) excludes the last term in (8), and the choice

of w needs to satisfy condition (12), instead of condition (7). By specifyingw with

3

√

γ3
epNTL2

q log(pNTL/ǫ)

November 15, 2018 DRAFT
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in order to maximize (11) subject to condition (12), it follows that the sink node fails to decode all the chunks w.p.

b.a.b.ǫ, so long asNT is larger than

(13)
1

p

(

k + (1 + o(1))

(

kL

w
+

√

k

(

wq log
wqL

ǫ

)

))

.

In (13), each term, except the largest one, needs to beo(k/p), and this condition is met so long asq is

o

(

γ3
ek

L log(kL/ǫ)

)

.

Theorem 8:The average coding delay of a CC withq chunks over a network similar to Theorem 7 is larger than

1

p

(

k + (1 + o(1))

(

kL

w

))

w.p. b.a.b.ǫ, so long asq = o (γek/(f(k)L log(kL/ǫ))), wherew ∼ γek/(qf(k) log(kL/ǫ)), and f(k) goes to

infinity, as k goes to infinity, such thatf(k) = o(γek/(log(kL/ǫ))).

Proof: The proof follows the same line as that of Theorem 5, except that the choice ofw needs to maximize

pNT

q
−O

(

pNTL

wq

)

(14)

subject to condition (12). To do so, we specifyw by

γepNT

qf(pNT ) log(pNTL/ǫ)
,

wheref(n) goes to infinity, asn goes to infinity, such thatf(n) = o(γen/(log(nL/ǫ))). The sink node fails to

decode all the chunks w.p. b.a.b.ǫ, so long asNT is larger than

(15)
1

p

(

k + (1 + o(1))

(

kL

w

))

.

The second term in (15) needs to beo(k/p), and this condition is met so long asq is

o

(

γek

f(k)L log(kL/ǫ)

)

.

C. CC with Precoding: Capacity-Approaching with A Gap

By the results of Section III-B, one can conclude that CC are not capacity-achieving if the size of the chunks

does not comply with conditionα = ω(L log(kL/ǫ)).10 The analysis of Section III-A further does not apply to CC

with chunks of small sizes violating the above condition. From a computational complexity perspective, CC with

chunks of smaller sizes are, however, of more practical interest (e.g., linear-time CC with constant-size chunks). In

the following, we study CC with chunks of a size constant in the message size.

Let {pi}1≤i≤L be an arbitrary sequence of success parameters, and letp
.
= min1≤i≤L pi. Let the size of the chunks

α (= k/q) be a constant in the message sizek, i.e., α = O(1). Fix a chunk, and focus on the packets pertaining

10For non-negative functionsf(n) andg(n), we write f(n) = ω(g(n)), if and only if limn→∞ f(n)/g(n) = ∞.
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to that chunk. Let the time interval(0, NT ] and itsw disjoint partitions be defined as before in Section III-A. Let

ϕij be the number of packets (pertaining to the given chunk) in the partitionIij , andϕi be the expected value of

ϕij . Let ϕ
.
= min1≤i≤L ϕi. Then,ϕi = piNT /wq, andϕ = pNT /wq. Let NT = (1 + γc)k/p, where0 < γc < 1

is an arbitrarily small constant. By replacingNT with (1 + γc)k/p, ϕ = (1 + γc)α/w, andϕ = O(1), asw is a

constant (otherwise,ϕ goes to0, asNT goes to infinity).

By applying the Chernoff bound, it can be shown thatPr{ϕij < (1 − γ∗)ϕ} ≤ e−γ∗2ϕ̇, for every0 < γ∗ < 1.

Taking e−γ∗2ϕ̇ ≤ γ̇b/wT , it follows thatϕij is not larger than or equal tor
.
= (1− γ∗)ϕ w.p. b.a.b.γ̇b/wT , where

γ∗ is the smallest real number satisfyingγ∗ ≥
√

(1/ϕ̇) ln(wT /γ̇b), such thatr is an integer (γ∗ = O(1)). Taking a

union bound over all the active partitions of all links, it follows thatϕij is not larger than or equal tor w.p. b.a.b.

γ̇b.

Let D(Qj
i ) be the number of dense packets pertaining to the given chunk in the firstj active partitions over the

ith link.

By applying Lemma 3, it can be shown that: (i) for all1 ≤ j ≤ w − L+ 1, D(Qj
1) ≥ rj, (ii) for all 1 < i ≤ L,

the inequalityD(Q1
i ) ≥ r − log(wT /γ̇b) fails w.p. b.a.b.iγ̇b/wT , and (iii) for all the otheri, j, the inequality

D(Qj
i ) ≥ r − j log(wT /γ̇b)− log((j + 1)wT /γ̇b) fails w.p. b.a.b.ijγ̇b/wT , so long as

α = Ω

(

w2 log
wT

γb

)

. (16)

By using the above results, it follows that the number of dense packets pertaining to the given chunk at the sink

node fails to be lower bounded by

(17)
wTϕ

L
−O

(

wT

L

√

ϕ log
wT

γb

)

−O

(

wT

L
log

wT

γb

)

w.p. b.a.b.γb. The lower bound is non-negative so long asα = Ω(w log(wT /γb)), and this condition holds so long

as condition (16) holds. We specifyw by 3

√

αL2/log(αL/γb) to maximize (17). By replacingw in (16), it can be

rewritten as

α = Ω

(

L4 log
L

γb

)

. (18)

By replacingγb with γ̇b, and by applying Lemma 4, it follows that the sink node fails to decode the given chunk

w.p. b.a.b.γb, so long as (17) is larger thanα + log(1/γ̇b). By replacing our choice ofw in (17), it can be seen

that, excluding the first term, the second term dominates therest. By replacingϕ with (1 + γc)α/w, and by using

the properties of the notationΩ(.), the decoding condition becomes

α = Ω

(

L

γ3
c

log
L

γbγc

)

. (19)

Thus, the given chunk is undecodable w.p. b.a.b.γb, so long as both conditions (18) and (19) are met. In other

words, the expected fraction of undecodable chunks is bounded from above byγb. By using a martingale argument

similar to the one in [3], the concentration of the fraction of undecodable chunks around the expectation can be

shown as follows.
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Lemma 5:By applying a CC with chunks of sizeα, satisfying both conditions (18) and (19), the fraction of

undecodable chunks at the sink node until timeNT = (1 + γc)k/p is larger than(1 + γa)γb, w.p. b.a.b.ǫ, so long

as

α2/γ2
aγ

2
b = o(k/log(1/ǫ)), (20)

where0 < γa, γb, γc < 1 are arbitrary constants.

By the result of Lemma 5, the fraction of chunks which are not decodable until timeNT becomes larger than

(1+γa)γb, w.p. b.a.b.ǫ. Sinceγa, γb are non-zero constants, a CC, alone, does not decode all the chunks. However,

the completion of decoding of all the chunks is guaranteed bydevising a proper precoding scheme [3]. The precoding

works as follows: The set ofk message vectors at the source node constitute the input of a capacity-achieving (c.-a.)

erasure code, calledprecode. The rate of the precode is1− (1+γa)γb (i.e., the precode decoder can correct up to a

fraction(1+γa)γb of erasures), and the number of the coded packets at the output of the precode, calledintermediate

packets, is
(

1 + (1 + γa)γb +O(γ2
b )
)

k. By applying a CC with chunks of sizeα, satisfying conditions (18), (19)

and (20), the fraction of the intermediate packets that are not recoverable at the output of the CC decoder until

time (1 + γc)
(

1 + (1 + γa)γb +O(γ2
b )
)

k
p

is larger than(1 + γa)γb, w.p. b.a.b.ǫ. Then, the precode decoder can

recover all thek message vectors from the set of recovered intermediate packets. Therefore, the coding delay of a

CC with precoding (CCP) is upper bounded as follows.

Theorem 9:The coding delay of a CCP with chunks of sizeα and a c.-a. erasure code of rate1 − γa, over a

line network ofL links with deterministic regular traffics and Bernoulli losses with parameters{pi} is larger than

(1 + γc)
(

1 + (1 + γa)γb +O(γ2
b )
)

k
p
, w.p. b.a.b.ǫ, so long as

α = Ω

({(

L

γ3
c

log
L

γbγc

)

,

(

L4 log
L

γb

)})

,

andα2/γ2
aγ

2
b = o(k/log(1/ǫ)), where0 < γa, γb, γc < 1 are arbitrary constants, andp

.
= min1≤i≤L pi.

In the case of the average coding delay of a CC with precoding,the following can be shown similar to Theorem 9

by replacingr with ϕ, and hence the proof is omitted.

Theorem 10:The average coding delay of a CCP with chunks of sizeα and a c.-a. erasure code of rate1− γa,

over a network similar to Theorem 9 is larger than(1 + γc)
(

1 + (1 + γa)γb +O(γ2
b )
)

k
p
, w.p. b.a.b.ǫ, so long as

α = Ω

(

L

γc
log

L

γbγc

)

,

andα2/γ2
aγ

2
b = o(k/log(1/ǫ)), where0 < γa, γb, γc < 1 are arbitrary constants.

In the special case of unequal success parameters, the coding delay and the average coding delay of CC with

precoding are upper bounded as follows. The proofs follow the same line as in the general case except that a new

set of conditions needs to be satisfied based on the assumption that no two success parameters are equal.

Theorem 11:The coding delay of a CCP with chunks of sizeα and a c.-a. erasure code of rate1 − γa, over

a line network ofL links with deterministic regular traffics and Bernoulli losses with unequal parameters{pi} is

larger than(1 + γc)
(

1 + (1 + γa)γb +O(γ2
b )
)

k
p
, w.p. b.a.b.ǫ, so long as

α = Ω

({(

L

γ3
c

log
L

γbγc

)

,

(

L

γ3
e

log
L

γeγb

)})

,
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TABLE I

COMPARISON OFCHUNKED CODES OVERL INE NETWORKS WITH VARIOUS TRAFFICS

Traffic
Success

Parameters

Overhead (η)

and
Size of Chunks

(α)
w Comments

Average Overhead (̄η)

Arbitrary

Deterministic
- η = η̄ = O

(

kL
(

1
α
log kL

ǫ

) 1

3

)

ω
(

L3 log kL
ǫ

)

-
m = kw

α
log

(

kLw
αǫ

)

f(k) = o

(

γek

log kL

ǫ

)

limk→∞ f(k) = ∞

γei = |pi − pi−1|

γe = min1<i≤L γei

p = min1≤i≤L pi

Deterministic

Regular

Transmissions

and

Bernoulli

Losses

Arbitrary
η = 1

p

(

(1 + o(1))
(

kL
w

+ k
1

2 m
1

2 +m
))

ω
(

L log kL
ǫ

)

(

αL2

log kL

ǫ

) 1

3

η̄ = 1
p

(

(1 + o(1))
(

kL
w

+m
))

(

αL

log kL

ǫ

) 1

2

Unequal
η = 1

p

(

(1 + o(1))
(

kL
w

+ k
1

2 m
1

2

))

ω
(

L
γ3
e

log kL
ǫ

)

(

γ3

e
αL2

log kL

ǫ

) 1

3

η̄ = 1
p

(

(1 + o(1))
(

kL
w

))

ω
(

f(k)
(

L
γe

log kL
ǫ

))

1
f(k)

(

γeα

log kL

ǫ

)

TABLE II

COMPARISON OFCHUNKED CODES WITH PRECODING(A CAPACITY-ACHIEVING ERASURECODE) OVER L INE NETWORKS WITH VARIOUS

TRAFFICS

Traffic
Success

Parameters

Overhead (η)

and
Size of Chunks

(α)
Comments

Average Overhead (̄η)

Arbitrary

Deterministic
- η = η̄ = γok Ω

(

L3

γ3
c

log L
γbγc

)

o

(√

γ2
a
γ2

b
k

log 1

ǫ

)

0 < γa, γb, γc < 1

{γa, γb, γc} = O(1)

γo = γc + (1 + γc)γ′
o

γ′
o = (1 + γa)γb + O(γ2

b
)

γei = |pi − pi−1|

γe = min1<i≤L γei

p = min1≤i≤L pi

Deterministic

Regular

Transmissions

and

Bernoulli

Losses

Arbitrary
η = γo

k
p

Ω
({(

L
γ3
c

log L
γbγc

)

,
(

L4 log L
γb

)}) 1

2

1

2

η̄ = γo
k
p

Ω
(

L
γc

log L
γbγc

) 1

2

1

2

Unequal
η = γo

k
p

Ω
({(

L
γ3
c

log L
γbγc

)

,
(

L
γ3
e

log L
γbγe

)}) 1

2

1

2

η̄ = γo
k
p

Ω
(

L
γ2
e
γc

log L
γbγc

) 1

2

1

2

and α2/γ2
aγ

2
b = o(k/log(1/ǫ)), where 0 < γa, γb, γc < 1 are arbitrary constants,p

.
= min1≤i≤L pi, γe

.
=

min1<i≤L γei , andγei
.
= |pi − pi−1|.

Proof: Let us assumep1 > p2 > · · · > pL, without loss of generality. Letp
.
= min1≤i≤L pi, γe

.
=

min1<i≤L γei , and γei
.
= |pi − pi−1|. Fix a chunk. Letri

.
= (1 − γ∗

i )ϕi, whereϕi = piNT /wq and γ∗
i ∼

√

(1/ϕ̇i) log(wT /γ̇b), and0 < γb < 1 is an arbitrary constant. Letϕij be the number of packets (pertaining to the

given chunk) in the partitionIij (the j th partition pertaining to theith link), where the time interval(0, NT ] is split

into w partitions of lengthNT /w, and letϕi be the expected value ofϕij . For all i, j, suppose thatϕij is larger

than or equal tori. Let NT = (1 + γc)k/p, where0 < γc < 1 is an arbitrarily small constant. By replacingNT

with (1 + γc)k/p, ϕi = (1 + γc)piα/pw, andϕ = O(1), similar to that in the proof of Theorem 9.

Similarly as before, for allj, D(Qj
1) ≥ r1j. For any other values ofi, j, by applying Lemma 3, it can be shown

that the inequalityD(Qj
i ) ≥ rij fails w.p. b.a.b.ijγ̇b/wT , so long as

α = Ω

(

w

γ2
e

log
wT

γb

)

. (21)
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Let ϕ, γ∗ andr denoteϕL, γ∗
L andrL, respectively. Thus, the number od dense packets pertaining to the given

chunk at the sink node fails to be larger than

(22)α(1 + γc)−O

(

αL

w

)

−O

(
√

αw log
wT

γb

)

.

We specifyw by
(

αL2

log(wT /γb)

)
1

3

to maximize (22) subject to condition (21). For this choice of w, condition (21) is met so long as

α = Ω

(

L

γ3
e

log
L

γeγb

)

. (23)

By replacingγb with γ̇b in the preceding results, and substitutingw in (22), the result of Lemma 4 shows that the

sink node fails to decode the given chunk w.p. b.a.b.γb, so long as (22) is larger thanα+ log(1/γ̇b). Based on the

properties of the notationΩ(.), the latter condition is met so long as

α = Ω

(

L

γ3
c

log
L

γbγc

)

. (24)

The rest of the proof is similar to the proof of Theorem 9, except that in this case conditions (23) and (24) need

to be met, instead of conditions (18) and (19).

Theorem 12:The average coding delay of a CCP with chunks of sizeα and a c.-a. erasure code of rate1− γa,

over a network similar to Theorem 11 is larger than(1+ γc)
(

1 + (1 + γa)γb +O(γ2
b )
)

k
p
, w.p. b.a.b.ǫ, so long as

α = Ω

(

L

γ2
eγc

log
L

γbγc

)

,

andα2/γ2
aγ

2
b = o(k/log(1/ǫ)), where0 < γa, γb, γc < 1 are arbitrary constants.

Proof: The proof follows the same line as that of Theorem 11, except that the choice ofw needs to maximize

α(1 + γc)−O

(

αL

w

)

(25)

subject to condition (21). To do so, the choice ofw needs to beΩ(L/γc), and hence, condition (21) becomes

α = Ω

(

L

γ2
eγc

log
L

γbγc

)

.

IV. POISSONTRANSMISSIONS ANDBERNOULLI LOSSES

In the case of Bernoulli losses and Poisson transmissions with parameters{pi}1≤i≤L and{λi}1≤i≤L, the points

in time at which the arrivals/departures occur over theith link follow a Poisson process with parameterλipi.

Thus the number of packets pertaining to a given chunk, in each partition pertaining to theith link, has a Poisson

distribution with the expected valueλipiNT /wq. Since the result of Chernoff bound also holds for Poisson random

variables, the main results in Section III apply to this caseby replacingp with λp, where{λ, p}
.
= {λµ, pµ}, and

µ
.
= argmin1≤i≤L λipi.

November 15, 2018 DRAFT



14

V. D ISCUSSION

Table I shows the upper bounds11 (w.p. of failure b.a.b.ǫ) on the overhead and the average overhead of CC over

various traffics for different ranges of the size of the chunks based on the results in Section III and those in [3].12

The traffics are: arbitrary deterministic traffics, or traffics with deterministic regular transmissions and Bernoulli

losses. We refer to the latter traffics as theprobabilistic trafficsfor simplifying the terminology. The probabilistic

traffics are categorized into two sub-categories: traffics with arbitrary success parameters and traffics with unequal

success parameters. In the case of arbitrary deterministictraffics, the capacity is1, and in the case of probabilistic

traffics with success parameters{pi}1≤i≤L, the capacity isp, wherep = min1≤i≤L pi. We say that a code is

“capacity-achieving” (c.-a.) if the ratio of the overhead to k/p goes to0, ask goes to infinity. Similarly, a code is

“capacity-achieving on average” (c.-a.a.) if the ratio of the average overhead tok/p goes to0, ask goes to infinity.

In Table I, the upper (or lower) row in front of each case of success parameters corresponds to a c.-a. (or a c.-a.a.)

scenario.

In the table, one can see that, for each traffic, the size of thechunks (α) has to be sufficiently large so that

CC are c.-a. or c.-a.a.. For arbitrary deterministic traffics, the lower bound onα is super-logarithmic ink, i.e.,

ω(log k), and super-log-cubic inL, i.e.,ω(L3 logL). For the probabilistic traffics with arbitrary or unequal success

parameters, the lower bound onα has a similar growth rate withk, but a smaller (super-log-linear) growth rate

with L, i.e.,ω(L logL). The coding cost of CC (i.e., the ratio of the number of the coding (packet) operations to

k), is, on the other hand, linear inα. Thus, CC can perform as fast over both the arbitrary deterministic traffics and

the probabilistic traffics, but with a lower coding cost (smaller chunks) in the latter case compared to the former.

Moreover, as it can be seen in Table I, for both arbitrary deterministic and probabilistic traffics (in each case

of arbitrary or unequal success parameters), the overhead grows sub-log-linearly withk, i.e., O(k log
1

3 k), and

decays sub-linearly withα, i.e., O(1/α
1

3 ). However, for arbitrary deterministic traffics, the overhead grows with

O(L log
1

3 L), and for the probabilistic traffics, it only grows withO(L
1

3 log
1

3 L). This implies a faster speed of

convergence to the capacity in the latter case compared to the former. Similar comparison result can also be

observed in terms of the average overhead, except that in thecase of unequal success parameters, the average

overhead decays linearly withα, i.e.,O(1/α), but grows poly-log-linearly withk, i.e.,O(k log2 k), for the choice

of f(k) = O(γe log k), and log-linearly withL, i.e.,O(L logL).

Table II also shows the results for CC with precoding (CCP) inthe scenarios similar to those considered in

Table I, where the precode is an (capacity-achieving) erasure code of dimensionk and rate1 − γa. In particular,

one can see that CCP are “capacity-approaching” or “capacity-approaching on average” with an arbitrary small

“non-zero constant” gapγo (i.e., the ratio of the overhead or the average overhead tok/p goes toγo, ask goes

to infinity) if α is sufficiently large. For simplifying the terminology, we drop the term “with a non-zero constant

11With a slight abuse of language, we refer to the “upper bound”on the overhead or the average overhead as the “overhead” or the “average

overhead.”

12The results of Section III-B and those of Section III-C were stated in terms ofq and α, respectively. In this section, for the ease of

comparison, the former results are also restated in terms ofα by replacingq with k/α.
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gap.” The upper row (or the lower row) in front of each case of success parameters corresponds to a capacity-

approaching (or a capacity-approaching on average) scenario. For arbitrary deterministic traffics, the lower bound

on α is constant ink, and log-cubic inL, i.e.,O(L3 logL). For the probabilistic traffics with arbitrary or unequal

success parameters, the lower bound onα is also constant ink, but has a smaller (log-linear) growth rate with

L, i.e., O(L logL). Thus, in the case of CCP, one can make a conclusion similar tothe one made in the case of

stand-alone CC, with respect to the arbitrary deterministic and the probabilistic traffics.
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