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Abstract

This paper shows determining the secrecy capacity of a unicast network with uniform wiretap sets is at least

as difficult as the k-unicast problem. In particular, we show that a general k-unicast problem can be reduced to the

problem of finding the secrecy capacity of a corresponding single unicast network with uniform link capacities and

one arbitrary wiretap link.

I. INTRODUCTION

The secure network coding problem, introduced by Cai and Yeung [1], concerns information theoretically secure

communication over a network where an unknown subset of network links may be wiretapped. A secure code ensures

that the wiretapper obtains no information about the secure message being communicated. The secrecy capacity of

a network, with respect to a given collection of possible wiretap sets, is the maximum rate of communication such

that for any one of the wiretap sets the secrecy constraints are satisfied. Types of secrecy constraints studied in the

literature include perfect secrecy, strong secrecy and weak secrecy.

This paper considers the problem of finding the secrecy capacity of a network when we allow network nodes

in addition to the source to generate independent randomness. We show that a general k-unicast problem can be

reduced to a corresponding single unicast secrecy capacity problem with uniform link capacities where any single

link can be wiretapped. This implies that determining the secrecy capacity, even in the simple case of a single

unicast, uniform link capacities and unrestricted wiretap sets where any single link can be wiretapped, is at least as

difficult as the long standing open problem of determining the capacity region of multiple-unicast network coding,

which is not presently known to be in P, NP or undecidable [2]. In contrast, under the assumption that only the

source can generate randomness, link capacities are uniform and up to z arbitrary links can be wiretapped, Cai
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and Yeung [1] showed that the secrecy capacity is given by the cut-set bound and linear codes suffice to achieve

capacity. The secure network coding problem with restricted wiretap sets and/or non-uniform link capacities has

been considered by Cui et al. [3], who studied achievable coding schemes, and by Chan and Grant [4], who showed

that determining multicast secrecy capacity with restricted (non-uniform) wiretap sets is at least as difficult as

determining capacity for multiple-unicast network coding. Our reduction follows the same core ideas appearing

in [4] with two differences. First, by introducing the idea of key cancellation and replacement at intermediate

nodes, our construction does not need to impose restrictions on which links can be wiretapped. Secondly, unlike the

reduction in [4] which involves multiple terminals, ours only needs a single destination. Therefore, our construction

shows that even a single secure unicast in the uniform setting (equal capacity links where any one of which can

be wiretapped) is as difficult as a k-unicast problem.

II. MODEL

A network is represented by a directed graph G = (V, E), where V is the set of vertices which represent nodes,

and E is the set of edges that represent links. We assume links have equal capacity and there may be multiple

links between a pair of nodes. There is a source node S ∈ V and a destination node D ∈ V . The source wants

to communicate a message M , uniformly drawn from a finite alphabet set Sn, to the destination using a code

with length or duration n. Then the rate of the code is n−1 log |Sn|. For the network coding problem, we say that

a communication rate R is feasible if there exists a sequence of length-n codes such that |Sn| = 2nR and the

probability of decoding error tends to 0 as n→∞.

For the secure network coding problem, we specify additionally a collection A of wiretap link sets, i.e., A is

a collection of subsets of E such that an eavesdropper can wiretap any one set in A. We consider three kinds of

secrecy constraints: the requirement, for all A ∈ A, that

I(M ;Xn(A)) = 0 (1)

corresponds to perfect secrecy, that

I(M ;Xn(A))→ 0 as n→∞ (2)

corresponds to strong secrecy, and that

I(M ;Xn(A))

n
→ 0 as n→∞ (3)

corresponds to weak secrecy, where X(A) = {X(a, b) : (a, b) ∈ A}, and X(a, b) is the signal transmitted on the

link (a, b). We say a secrecy rate R is feasible if the communication rate R is feasible and the prescribed secrecy

condition is satisfied. The secrecy capacity of the network is defined as the supremum of all feasible secrecy rates.

III. MAIN RESULT

Theorem 1. Given any K-unicast problem with source-destination pairs {(Si, Ti), i = 1, ...,K} of unit rate,

the corresponding secure communication problem in Figure 1 with unit capacity links, any one of which can be
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Fig. 1. The source S wants to communicate with the destination D secretly (with either weak secrecy, strong secrecy or perfect secrecy). N
is an embedded general network. Links are labeled by the signals transmitted on them.

wiretapped, has secrecy capacity K (under perfect, strong or weak secrecy requirements) if and only if the K-unicast

problem is feasible.

Proof: “⇒”. Suppose a secrecy rate of K is achieved by a code with length n. Let M be the source input

message, then H(M) = Kn. Because there is no shared randomness between different nodes, M is independent

with {dn
1 , fn

k , k = 1, ...,K}. Hence

H(M |dn
1 ,f

n
2 , ...,f

n
K) = Kn. (4)

By the chain rule,

H(M |cn1 ,dn
1 ,f

n
2 , ...,f

n
K) +H(cn1 |dn

1 ,f
n
2 , ...,f

n
K) = H(M, cn1 |dn

1 ,f
n
2 , ...,f

n
K) ≥ H(M |dn

1 ,f
n
2 , ...,f

n
K).

So

H(M |cn1 ,dn
1 ,f

n
2 , ...,f

n
K) ≥ H(M |dn

1 ,f
n
2 , ...,f

n
K)−H(cn1 |dn

1 ,f
n
2 , ...,f

n
K) ≥ (K − 1)n, (5)

where the last inequality holds because of (4) and H(cn1 |dn
1 ,f

n
2 , ...,f

n
K) ≤ H(cn1 ) ≤ n. Similarly,

H(M |cn1 ,dn
1 ,f

n
2 , ...,f

n
K) ≤ H(M |cn1 ,dn

1 ,f
n
2 , ...,f

n
K , e

n
2 , ..., e

n
K) +H(en2 , ..., e

n
K |cn1 ,dn

1 ,f
n
2 , ...,f

n
K)

≤ nεn +H(en2 , ..., e
n
K |cn1 ,dn

1 ,f
n
2 , ...,f

n
K) (6)

≤ nεn + (K − 1)n, (7)

where εn → 0 as n → ∞ and (6) is due to the cut set {cn1 ,dn
1 ,f

n
2 , ...,f

n
K} from S to D and Fano’s inequality.

Hence it follows

H(cn1 ) ≥ H(cn1 |dn
1 ,f

n
2 , ...,f

n
K)

≥ H(M |dn
1 ,f

n
2 , ...,f

n
K)−H(M |cn1 ,dn

1 ,f
n
2 , ...,f

n
K) (8)

≥ n− nεn, (9)
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where (8) holds because of (5), and (9) follows from (4) and (7). Also notice that

H(M |cn1 ,dn
1 ,f

n
2 , ...,f

n
K) ≥ H(M |cn1 ,fn

2 , ...,f
n
K)−H(dn

1 |cn1 ,fn
2 , ...,f

n
K), (10)

where

H(M |cn1 ,fn
2 , ...,f

n
K) = H(M |cn1 ) ≥ Kn− nδn, (11)

with δn → 0 as n → 0. Here the first equality holds because {M, cn1} is independent with {fn
i , i = 1, ...,K}

and the second inequality holds due to the weak secrecy constraint. Note that all arguments extend naturally to the

cases of strong and perfect secrecy because they are even stronger conditions. Therefore by (7), (10) and (11) we

have

H(dn
1 ) ≥ H(dn

1 |cn1 ,fn
2 , ...,f

n
K)

≥ H(M |cn1 ,fn
2 , ...,f

n
K)−H(M |cn1 ,dn

1 ,f
n
2 , ...,f

n
K)

≥ n− nεn − nδn. (12)

Furthermore, by the independency between the sets of {M, cn1 ,d
n
1} and {fn

i , i = 1, ...,K} we also have

H(M |cn1 ,dn
1 ,f

n
2 , ...,f

n
K) = H(M |cn1 ,dn

1 )

. According to (5) and (7), it is bounded by

(K − 1)n ≤ H(M |cn1 ,dn
1 ) ≤ nεn + (K − 1)n. (13)

Now consider the joint entropy of M, dn
1 , cn1 and expand it in two ways

H(M,dn
1 , c

n
1 ) = H(cn1 |M,dn

1 ) +H(M |dn
1 ) +H(dn

1 )

= H(M |cn1 ,dn
1 ) +H(dn

1 |cn1 ) +H(cn1 ) ≤ (K + 1)n+ nεn,

where the last inequality holds because of (13) and H(dn
1 |cn1 ) ≤ n, H(cn1 ) ≤ n. Therefore

H(cn1 |M,dn
1 ) ≤ (K + 1)n+ nεn −H(M |dn

1 )−H(dn
1 ) ≤ 2nεn + nδn, (14)

where (12) and H(M |dn
1 ) = Kn (because M and dn

1 are independent by construction) are used to establish the

inequality. And so by observing the Markov chain (M,dn
1 )→ (M, bn1 )→ cn1 , it follows

H(cn1 |M, bn1 ) = H(cn1 |M, bn1 ,d
n
1 ) ≤ H(cn1 |M,dn

1 ) ≤ 2nεn + nδn. (15)

Then consider the joint entropy of M, bn1 , cn1 and expand it in two ways

H(M, bn1 , c
n
1 ) = H(bn1 |M, cn1 ) +H(M |cn1 ) +H(cn1 )

= H(cn1 |M, bn1 ) +H(M |bn1 ) +H(bn1 ) ≤ (K + 1)n+ 2nεn + nδn,

August 23, 2021 DRAFT



5

where the last inequality holds due to (15) and H(M |bn1 ) = Kn, H(bn1 ) ≤ n. Therefore by (9) and the weak

secrecy constraint H(M |cn1 ) ≥ Kn− nδn, we have

H(bn1 |M, cn1 ) ≤ (K + 1)n+ 2nεn + nδn −H(M |cn1 )−H(cn1 ) ≤ 3nεn + 2nδn. (16)

So

H(bn1 |M,dn
1 ) ≤ H(bn1 , c

n
1 |M,dn

1 )

= H(bn1 |M, cn1 ,d
n
1 ) +H(cn1 |M,dn

1 )

≤ H(bn1 |M, cn1 ) +H(cn1 |M,dn
1 )

≤ 3nεn + 2nδn + 2nεn + nδn = 5nεn + 3nδn,

where the last inequality invokes (16) and (14). Notice that M is independent with {bn1 ,dn
1}, so

H(bn1 |dn
1 ) = H(bn1 |M,dn

1 ) ≤ 5nεn + 3nδn. (17)

Now we bound the entropy of bn1 . Again consider the joint entropy,

H(M, bn1 , c
n
1 ) = H(cn1 |M, bn1 ) +H(M |bn1 ) +H(bn1 )

= H(bn1 |M, cn1 ) +H(M |cn1 ) +H(cn1 ) ≥ (K + 1)n− nεn − nδn,

where the last inequality holds because of (9), the secrecy condition H(M |cn1 ) ≥ Kn−nδn, and H(bn1 |M, cn1 ) ≥ 0.

So by (15) and because H(M |bn1 ) = Kn, we have

H(bn1 ) ≥ (K + 1)n− nεn − nδn −H(cn1 |M, bn1 )−H(M |bn1 ) ≥ n− 3nεn − 2nδn. (18)

Finally, by (17) and (18),

I(bn1 ;dn
1 ) ≥ H(bn1 )−H(bn1 |dn

1 ) ≥ n− 8nεn − 5nδn,

The above argument extends to all other paths naturally (by renumbering the notations accordingly), so

I(bni ;dn
i ) ≥ n− 8nεn − 5nδn, ∀i = 1, ...,K.

Therefore ∀i = 1, ...,K, by the channel coding theorem, if we employ an outer code of length n by encoding bni

as a supersymbol, then there exists an inner code that achieves a rate of n− 8nεn − 8nδn from Bi to Ti, and so

the overall rate is

Ri ≥
n− 8nεn − 5nδn

n
→ 1 as n →∞.

Because Bi can be viewed as a virtual source of Si, so ∀i = 1, ...,K, the unicast from node Si to Ti of rate 1 is

feasible.

“⇐”. The secrecy capacity is upper bounded by K due to the min cut from S to D. And secrecy rate K is

achieved by the scheme described in Figure 2, i.e., let ε(i)n be the probability of error for the unicast from Si to

Ti, then the probability of error from S to D is upper bounded by Kε∗n → 0 as n → ∞, where ε∗n = maxi ε
(i)
n .
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Fig. 2. A scheme to achieve secrecy rate K. Vx is the local key injected by node x, with H(Vx) = 1, ∀x. Mi, i = 1, ...,K are source

input messages, with H(Mi) = 1, i = 1, ...,K.

Note that the scheme achieves perfect secrecy, which in turn implies strong and weak secrecy requirements are also

satisfied.

The above result can be easily extended to the case of zero error communication and perfect secrecy. In this

case, we say a rate R is feasible if there exists a code with finite length n such that |Sn| = 2nR and the probability

of decoding error is strictly zero. Then for the secrecy communication problem in Figure 1, its zero error perfect

secrecy capacity is K if and only if the K-unicast for source-destination pairs {(Si, Ti), i = 1, ...,K} of unit rate

is feasible with zero error. The proof of this claim follows the same outline as the proof of Theorem 1, with the

difference that all εn and δn become strictly 0. Then (17) implies that bn1 is a function of dn
1 , and hence that it can

be perfectly decoded from dn
1 .

Conversely, we note that for any given weakly secure communication problem where any one link can be

wiretapped, we can construct a corresponding communication problem without security constraints (which can

in turn be reduced to an equivalent multiple-unicast problem by [5]) that is feasible if and only if the secure

communication problem is feasible. The equivalent communication problem is defined on a specialized version of

the A-enhanced network in [6], stated here in simplified form for convenience as follows.

Definition 1. Consider a secure communication problem on a networkN represented by a directed graph G = (V, E)

with the collection of wiretap sets A = {{e} : e ∈ E} comprising individual links. Let ce denote the capacity of

link e ∈ E and let Eout(i) denote the set of links (i, j) originating at node i ∈ V . The A-enhanced network N (A)

on graph Ǧ = (V̌, Ě) is defined as follows:

1) For each link e = (i, j) ∈ E , create an eavesdropper node ve and a node ue, replace (i, j) by two links

(i, ue) and (ue, j) and create a link (ue, ve), all of capacity ce.

2) For each node i ∈ V create a message node vi and a random key node v̄i.

3) Create an overall key node vL.
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4) For each i ∈ V , create a set Hi of links from node vi to all of the nodes in
{
i
}
∪
{
ve : e ∈ E

}
, and a set

H̄i of links from node v̄i to nodes i and vL, all of which have capacity

či =
∑

e∈Eout(i)

ce.

5) For each link e ∈ E , create a link (vL, ve) of capacity∑
e′∈E

ce′ − ce.

6) V̌ = V ∪
{
vi : i ∈ V

}
∪
{
v̄i : i ∈ V

}
∪
{
ue, ve : e ∈ E

}
∪ {vL}.

7) Ě =
⋃

i∈V(Hi ∪ H̄i) ∪
{

(i, ue), (ue, j), (ue, ve) : e = (i, j) ∈ E
}
∪
{

(vL, ve) : e ∈ E
}

.

The communication requirements in the A-enhanced network are as follows. For each message that originates

at a node i in the original secure communication problem, in the A-enhanced network, the message originates

instead at the corresponding message node vi and is demanded by the same destination nodes as in the original

problem. In addition, the communication problem on the A-enhanced network also requires a random key message

Li ∈ Li = {1, . . . , 2nči} to be delivered from each random key node v̄i to all eavesdropper nodes {ve : e ∈ E}.

Intuitively, if the communication problem on the A-enhanced network is solved, then it implies that the information

observed by the eavesdropper is independent with the input message in the secure communication problem, and

hence the secrecy conditions are satisfied. Details are given in [6].
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