
Scheduling Advantages of Network Coded Storage
in Point-to-Multipoint Networks

Ulric J. Ferner†, Parastoo Sadeghi‡, Neda Aboutorab‡, and Muriel Médard†
†Research Laboratory for Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

‡Research School of Engineering, Australian National University, Canberra ACT 0200, Australia

Abstract—We consider scheduling strategies for point-to-
multipoint (PMP) storage area networks (SANs) that use network
coded storage (NCS). In particular, we present a simple SAN sys-
tem model, two server scheduling algorithms for PMP networks,
and analytical expressions for internal and external blocking
probability. We point to select scheduling advantages in NCS sys-
tems under normal operating conditions, where content requests
can be temporarily denied owing to finite system capacity from
drive I/O access or storage redundancy limitations. NCS can lead
to improvements in throughput and blocking probability due to
increased immediate scheduling options, and complements other
well documented NCS advantages such as regeneration, and can
be used as a guide for future storage system design.

I. INTRODUCTION

The prolific growth of online content and streaming video
makes serving content requests to multiple users simultane-
ously an important technique for modern storage area networks
(SANs). Two fundamental measures of service quality are
system external blocking probability, i.e., the probability that a
requesting user is denied immediate access to content, as well
as system throughput. Under normal operating conditions and
given perfect scheduling, network coded storage (NCS) has
been identified as a promising technique to reduce blocking
probability. For instance, [1] used queuing theory to show that
network coding can reduce system blocking probability. In this
paper we build upon this idea and develop simple and intuitive
server scheduling algorithms for such NCS systems. We then
explore their impact on both throughput as well as blocking
probability. The main contributions of this paper are:
• We introduce a simple storage model for point-to-

multipoint (PMP) storage networks that allows direct
evaluation of blocking probability and system throughput;

• Using this model, we propose two intuitive scheduling
algorithms—one for uncoded storage (UCS) and one for
NCS—that can achieve maximal throughput;

• We quantify the blocking probability and throughput sav-
ings of NCS over UCS scheduling, showing that a small
improvement in throughput translates to a comparatively
large improvement in blocking probability.

This paper builds upon and complements existing work
in this area. The use of NCS as regenerating codes is a
well studied repair technique to enhance SAN reliability [2]
in both centralized and distributed systems. This particularly
holds in less common operating conditions, such as permanent
drive failures. In modern systems traffic-induced temporary
unavailability significantly dominates disk failures [3], and so

like in [1], this paper focusses on normal operating conditions
and seeks to avoid highly transient and temporary bottlenecks
in data liveness. General scheduling for coded storage in point-
to-point networks, when users are served sequentially instead
of simultaneously, are considered in [4], [5].

Server scheduling is also well studied in matched networks
such as cross-bar switches. Throughput-optimal schedules
are considered for N ×M point-to-point cross-bar switches
using graph theory and techniques such as the Birkhoff-von
Neumann theorem [6]. Switches with multicast and broadcast
capabilities with a queueing analysis flavor are considered in
[7]. References [8], [9] attempt to map the multicast problem
in cross-bar switches to simpler problems such as block-
packing games and round-robin based multicast. By charac-
terizing flow conflict graphs and their corresponding stable
set polytopes in multicast cross-bar switches, [18] proposed
online and offline network coding schedules for enhancing
throughput. For general PMP storage networks, developing
appropriate storage models, corresponding conflict graphs, and
throughput optimal scheduling is an interesting and largely
unaddressed area of research. This paper takes a first step
towards this by considering a particular kind of PMP network,
namely broadcast, and by developing intuitive coded and
uncoded leader-based scheduling, which do not explicitly re-
quire conflict graph construction. Chunk scheduling problems
in uncoded peer-to-peer networks, as opposed to PMPs, are
considered in [10], and for star-based broadcast networks in
[11]. Note also that unlike classical asynchronous broadcast
problems [12], [13], our goal is not to reduce content delivery
delay or to optimize caching. Instead, by taking into account
intermittent drive availability, we aim to determine the impact
of scheduling drive reads and the impact of content storage
format on blocking probability and throughout. We expect
that by using appropriate caching, system performance can be
further improved. However, this is beyond the scope of this
work.

The remainder of this paper is organized as follows. Section
II details our system model. Section III presents service
schemes and Section IV describes numerical results. Section
V concludes the paper.

II. SYSTEM MODEL

Fig. 1 depicts our tree-structured connectivity model made
of single server S, connected to R drives, that receives user
requests for content.

ar
X

iv
:1

40
2.

30
74

v1
 [

cs
.I

T
]

 1
3

Fe
b

20
14

D1 : {fi}i2Mf
1

DR : {fi}i2Mf
R

S
...

Up to N users managed
concurrently

...

Unicast user requests

Unicast user requests

Broadcast
content

Fig. 1. System model.

A. Drives

The SAN in Fig. 1 stores a single chunked file F =
{f1, f2, · · · , fT }, where T is the number of chunks in F , and
F is stored across a set of drives D = {D1, · · · , DR}. If drive
Di receives a read request for chunk fj , and if Di stores fj
and Di is available, then it takes one timeslot to read out that
content and broadcast to all users. We model the overall effect
of drives having finite I/O access bandwidth with parameter
PD
b , where PD

b is the probability that any drive is blocked
in timeslot t. For simplicity, we assume drives are blocked
independently of one another and across timeslots.1

In UCS, let Md
i ⊆ D be the collection of drives that

hold uncoded file chunk fi and conversely, let Mf
i ⊂ F

be the collection of file chunks held by drive Di. The only
requirement of chunks to drives is that R drives collectively
hold at least one copy of the whole file, i.e., F = ∪Ri=1Mf

i .
In NCS, the rth coded file chunk is represented as [1]

cr =

T∑
j=1

αj,rfj (1)

where αj,r is the encoding coefficient of file chunk fj and the
corresponding encoding vector is

kr =

T∑
j=1

αj,rej (2)

In (2), ej = [ej,1, · · · , ej,T] is the unit encoding row vector
of length T with elements ej,r = δj,r. Function δj,r is the
Kronecker delta function with δj,r = 1 iff j = r. We assume
that a total of H linearly coded chunks c1 to cH are stored
onto drives via some MDS code, such that any T coded chunks
are linearly independent so that the original file chunks can be
recovered from them using Gaussian elimination. If encoding
coefficients αj,r are randomly selected from a finite field Fq

with sufficiently large size q, this requirement is satisfied with
high probability [14].

1This blocking model can be applicable where other servers have access
to the same drives and therefore, there is some probabilistic traffic-induced
blocking observed by S. More realistic models for traffic-induced drive
blocking as well as more general PMP traffic patterns are beyond the scope
of this paper and subject of our current research.

B. Server

We assume server S has a bounded buffer to manage
concurrent user requests. Let N be the maximum number
of users that can be managed and serviced concurrently and
suppose S operates in slotted time. In particular, in any
timeslot, S can serve at most N active requests for content.
A user request for a content is cleared from the buffer when
all its requested file chunks have been transmitted by S.

Any additional request beyond N for the same content will
be externally blocked.2 We will discuss the relation between
external and internal blocking in Section II-D. This is a similar
model to existing drive blocking models [1] and existing
practical server experimentation test [15]. When a user request
arrives and is not externally blocked, one slot of the server
buffer is allocated to manage and service this user request.
We make the following additional assumptions about how S
retrieves content from D:
• Let the vector b(t) of size R be the drive availability

vector, where bi(t) = 0 means drive Di is free for reads
and bi(t) = 1 means it is busy in timeslot t. We assume
that b(t) can be obtained by the server at the beginning
of timeslot t with negligible time overhead.

• In timeslot t, based on b(t), S can choose to send a read
request to access a single drive and read a single chunk.

• At the end of timeslot t, S broadcasts the received chunk
x(t) to users active in the buffer.

We assume perfect communication so when S broadcasts
content all active users receive that content without error.

C. Users

We model users with the following key parameters:
• User requests arrives at S following a Poisson process

with rate λ.
• All user requests are for the entire file F , so in the long-

term there is uniform traffic demand across file chunks.
• Users currently being managed and serviced by S are

referred to as active users, which we denote by UA, which
is a subset of all serviceable users U = {um}.

Each user um stores the received encoding vectors up to
timeslot t in a buffer (matrix) denoted by Km(t). This is
called the knowledge space of user um at timeslot t. The rank
of knowledge space of user um at timeslot t is denoted by
rm(t) = rank(Km(t)).

A user is said to receive a new degree of freedom (d.o.f.)
if the rank of its knowledge space increases by one after
reception of a chunk from S, that is, if rm(t+1) = rm(t)+1 .
A file chunk fj is said to decoded by user um if the user can
obtain the corresponding unit encoding vector ej (possibly
after Gaussian elimination) from its knowledge space Km(t).

An active user um at timeslot t is a user whose d.o.f.
satisfies rm(t) < T . User um is said to depart the queue
at time t when the rank of its knowledge space becomes T .

2N is an arbitrary, possibly time varying, quantity and hence this model
does not limit our analysis.

Throughout the rest of the paper, a user always refers to an
active user who has not yet departed from the server’s buffer.

References [1], [2] have assumed perfect scheduling by the
server, which is not assumed in our model. Somewhat related
to this issue is the assumption that the coefficients of a coded
chunk are cycled or refreshed to ensure innovative chunks
for every drive read. Finally, to be able to apply queuing
theoretical arguments in [1], requests for different file chunks
of the same content arrive randomly and independently of
other chunks at the server. In that paper, the notion of users
is abstracted away, which we do not do here.

D. Performance Metrics
Let Un(t) ⊂ UA be the subset of targeted users who

receive an innovative d.o.f. from the broadcast of chunk x(t)
at timeslot t. We define three throughput metrics in order of
strongest to weakest, which are equivalent to those used in
cross-bar switch scheduling [16].

Definition 1. (Throughput optimal) A scheduling service is
throughput optimal if every service can guarantee Un(t) = UA.
That is, rm(t+ 1) = rm(t) + 1,∀um ∈ UA,∀t.

Since system constraints may mean that throughput opti-
mality is not feasible, we consider maximum and maximal
throughput, which are in general the best any scheduling
scheme can do up to or at any timeslot based on constraints
such as drive availability.

Definition 2. (Maximum throughput) A service scheme
achieves maximum throughput if the total number of targeted
users up to time t, denoted by

∑t
i=1 |Un(t)| is maximized,

across all service schemes for a given data storage allocation.

Definition 3. (Maximal throughput) A scheduling service
achieves maximal throughput if at each timeslot t, the number
of targeted users |Un(t)| is maximized, across all service
schemes for a given data storage allocation.

Note that any service scheme that achieves maximal
throughput is necessarily a greedy algorithm. In a given times-
lot, active users that are not targeted by a scheduling scheme
are said to be internally blocked. These users are not externally
blocked as they are already in the server’s buffer, but are
held up for service. The better the throughput of a scheduling
scheme, the lower its internal blocking probability will be.
Intuitively, a lower internal blocking probability should lead to
lower external blocking probability as active users are flushed
out of the system faster.

III. DATA SCHEDULING SCHEMES

We introduce the concept of a service leader and con-
siders two system types. First, to develop intuition for our
problem and to verify expectations, we consider systems in
which drives never block, i.e., drives with infinite I/O access
bandwidth. Second, we consider systems with traffic-induced
drive blocking, i.e., drives with finite I/O access bandwidth. In
both systems, we propose service schemes for UCS and NCS.
Schemes presented in this section can be formulated as integer
linear programs over content demand graphs, similar to those
for cross-bar switches [16], [17] and are omitted here.

1 01u1

f1 f2

0 01

0 00

f3

1 11

0 11

0 10

1 11

1 10

u1

u2 u2

u2

u3 u3

u3 1 11u3

t = 1 t = 2

t = 3 t = 4

f1 f2 f3

Fig. 2. Consider a system with T = 3, and the following example sequence
of Algorithm 1 showing the evolution of users’ decoded chunk vector. Users
u1 and u2 are already in the system with different demands when user u3
arrives at t = 1. During each timeslot t, S transmits the earliest undecoded
chunk of the shaded leader.

A. Infinite I/O access bandwidth systems

To verify expectations, consider a system in which drives
have infinite I/O access bandwidth, so PD

b = 0.
1) Uncoded Scheme: Consider UCS and the scheme out-

lined in Algorithm 1. We introduce the following terminology
for our leader-based scheme, which will also be used in the
finite I/O access bandwidth case. Let am(t) be a binary valued
decoded chunk vector of length T for user um with elements
am,j(t). If am,j(t) = 0 then user um has decoded file chunk
fj and if am,j(t) = 1 then file chunk fj is yet to be decoded.
Upon arrival of user um’s file request, am,j(t) = 1 for all
1 ≤ j ≤ T and upon departure am,j(t

′) = 0 for all 1 ≤ j ≤ T .
• The leader user u` at timeslot t is the user with maximum

knowledge space rank. That is,

` = argmaxm:um∈UArm(t) . (3)

• The earliest undecoded chunk or simply min chunk of
user um is the chunk for which am,j(t) = 1 and all
am,k(t) = 0 for k < j.

• The earliest undecoded chunk of the leader or simply
min-max chunk fj∗ is the chunk for which a`,j∗(t) = 1
and a`,k(t) = 0 for k < j∗ for the leader user u`.

See Fig. 2 for an example of the leader-based scheme in
Algorithm 1.

Algorithm 1 Leader-based scheduling scheme for UCS with
infinite I/O access bandwidth.

1: for timeslot t do
2: Find the leading user u` among all active users in UA,

which has the highest knowledge space rank r`(t).
3: Find the leader’s earliest undecoded chunk denoted by

fj∗ .
4: Read fj∗ from a drive inMd

j∗ and broadcast x(t) = fj∗

to all active users.
5: All active users get to decode fj∗ and the server updates

the decoded chunk list of all active users. That is,
am,j∗(t) = 0 for all active users um ∈ UA.

6: end for

2) Uncoded Scheme Analysis: Intuitively a system with
infinite I/O access bandwidth and perfect communications
will allow for throughput optimal scheduling by S, since the
scheme is without errors. We now formalize that the leader-
based scheme in Algorithm 1 is throughput optimal according
to Definition 1.

Lemma 1. The scheduling scheme of Algorithm 1 is through-
put optimal.

Proof: We prove optimality by induction.
Base step: Consider an empty server queue. When the first

user arrives, it immediately become the leader and the system
services uncoded chunks sequentially starting from file chunk
f1. Therefore, in each timeslot this user will successfully
receive a d.o.f. so the scheme is throughput optimal during
this time.

Inductive step: Consider a throughput optimal scheme with
a server queue comprising m users in UA where all users have
received a d.o.f. in all previous timeslots. The (m+1)th user
arrives. Since the knowledge space rank of the new (m+1)th
user is zero, the leader remains unchanged. Choose uncoded
chunk x(t) = fj∗ corresponding to the leader as per Algorithm
1. Then the new user will also receive a d.o.f. as it has received
no chunks so far. So all users continue to receive a d.o.f. in
every timeslot and the scheme remains throughput optimal.

Lemma 2. If a scheduling scheme is throughput optimal, then
it also minimizes the blocking probability across all feasible
scheduling schemes.

Proof: A throughput optimal scheme means that all users
in UA receive an innovative d.o.f. in each timeslot. This means
all users are serviced in T timeslots after their arrival, which
is the minimum number possible because only one chunk can
be broadcast per timeslot. Hence, the service rate µ = |U|/T
is at the maximum for a throughput optimal scheme. Given
a fixed arrival rate λ and a fixed buffer size N , the Erlang
B blocking formula monotonically decreases with increasing
service rate µ. Hence the maximum service rate results in
minimum blocking probability.

Applying Lemma 2 to Algorithm 1 shows that it is also
blocking probability optimal.

Lemma 3. The blocking probability of a throughput optimal
scheme is given by

P s
b =

(λT)N/N !∑N
i=0(λT)

i/i!
. (4)

Proof: The arrival process for S is a Poisson process.
Under a throughput optimal scheme, all users immediately
begin being serviced upon arrival until a total of N users
are in the server buffer. We can view each active user as
being serviced by an individual service unit with deterministic
service time T timeslots. Hence, the average service rate is
1/T for each server and S is equivalent to an M/D/M/M
queue, where D is a deterministic service time. The blocking
probability for S is then given by (4).

In a system with infinite I/O access bandwidth all drives are
always available for read. Then there is no need to store more
than one copy of each file chunk. That is, |Md

i | = 1 for all
fi ∈ F suffices for throughput optimality.

Remark 1. Serving the earliest undecoded chunk of the leader
is not essential for the optimality of the algorithm. Selecting
any undecoded chunk by the leader will suffice. However, by
serving undecoded chunks of the leader in a contiguous way,
we promote better in-order delivery to the application.

This verifies the intuitive result that NCS does not provide
benefit over UCS in an infinite I/O access bandwidth system.
Note that Algorithm 1 can be adjusted to operate with coded
storage via simple modifications.

B. Finite I/O access bandwidth systems

In this subsection we consider systems with drives that can
become busy owing to serving other requests, i.e., drives with
finite I/O access bandwidth for which PD

b > 0. We still assume
ideal chunk transport medium with no erasures and broadcast
capabilities to all active users, such as TCP for multicast
variants, Ethernet, or emulated broadcasting systems.

1) Uncoded Scheme: In the finite I/O case, the concept
of leaders needs modification depending on what chunks are
available for access. We then distinguish between a true leader
and a temporary leader in our modified scheduling algorithm.
This is to handle temporary unavailability of drives that store
undecoded chunks demanded by the true leader. We modify
Algorithm 1 to find undecoded chunks of the true leader that
are available for read. If no such undecoded chunk for the true
leader is available, then we will limit our search to the next
leading user and the undecoded chunks of that user, which by
the approach of the service scheme must have been all decoded
by the excluded leader. We continue until we can find one user
who is leading among the remaining users and for whom one
of its undecoded chunks is available for read. The modified
scheme operates as per Algorithm 2.

2) Coded Scheme: The proposed scheme for NCS finite
I/O bandwidth systems is similar to Algorithm 2 in terms of
finding temporary leaders depending on drive availability. The
main difference with Algorithm 2 is the choice of the chunk
for service: The scheduler needs to keep track of coded chunks
so far received by the users.

For each timeslot t, we define a binary coded chunk
reception vector of size H for user um, denoted by qm(t),
as follows: qm,r(t) = 0 if coded chunk cr has been so far
received by user um and qm,r(t) = 1 otherwise. Algorithm 3
describes the scheme.

3) Schemes Analysis and Comparison: In a finite I/O
storage system neither UCS nor NCS can guarantee throughput
optimality, since we can always find a drive unavailability
pattern with non-zero probability of occurring that would
block at least one user (for instance, consider the simple
case when all drives are blocked in the same timeslot). We
now show simple proofs showing that while both uncoded
schedule of Algorithm 2 and coded schedule of Algorithm

Algorithm 2 Leader-based scheduling scheme for UCS with
finite I/O access bandwidth.

1: for timeslot t do
2: Obtain the drive availability vector b(t).
3: Create a temporary list of active users, denoted by Ut,

and initialize it to all active users in the system: Ut =
UA.

4: Find the leader from the temporary list of active users
from (3).

5: Find the leader’s set of all undecoded chunks denoted
by Fu

` ⊂ F . That is, fj ∈ Fu
` ↔ a`,j(t) = 1.

6: If there exists at least one available drive for at least
one chunk in Fu

` , then select one such chunk, denoted
by fj∗ , and go to step 7. Otherwise, remove the leader
from temporary active users (Ut ← Ut \ u`) and go to
step 4.

7: Read the chunk fj∗ from one of the available drives in
Md

j∗ and broadcast x(t) = fj∗ to all active users.
8: All users decode the chunk fj∗ and the server updates

their decoded chunk list. That is, am,j∗(t) = 0 for all
active users in Ut. (Note that the excluded leading users
have already decoded fj∗ and hence at the end of this
step am,j∗(t) = 0 for all users um ∈ UA).

9: end for

Algorithm 3 Leader-based scheme for NCS with finite I/O
access bandwidth.

1: for timeslot t do
2: Obtain the drive availability vector b(t).
3: Create a temporary list of active users, Ut = UA.
4: Find the leader from the temporary list of active users.

5: Find the leader’s set of all unreceived coded chunks
denoted by Cu` . That is, cr ∈ Cu` ↔ q`,r(t) = 1.

6: If there exists at least one available coded chunk in Cu`
for read, then select one such chunk, denoted by cr∗ ,
and go to step 7. Otherwise, remove the leader from
temporary active users (Ut ← Ut \u`) and go to step 4.

7: Read the chunk cr∗ from its corresponding drive and
broadcast x(t) = cr∗ to all active users.

8: Update qm,r∗(t) = 0 for all active users um ∈ UA.
9: end for

3 achieve maximal throughput across their respective data
storage formats, that the number of targeted users using NCS
with maximal throughput scheduling is at least as high as that
in the UCS system.

Lemma 4. Algorithms 2 and 3 achieve maximal throughput
across their respective data storage formats.

Proof: The scheme of Algorithm 2 (Algorithm 3) iden-
tifies a leading user with maximum rank with available file
chunk(s) for read. All other users with smaller or equal ranks
will also receive a d.o.f. since no chunks exist that non-

D\Md
j : fi

Md
j : fj , . . . Md

j : fj , . . .

D\Md
j : cr = ↵j,rfj + · · · + ↵i,rfi

um

t t + 1

fi um

t t + 1

fi cr

(a) UCS example (b) NCS example

Fig. 3. Given an instance of UCS, an example construction NCS can improve
throughput compared to a UCS.

leader users have decoded (received) but the leader has not.
Consequently, at any given time, the number of serviced
users with a d.o.f. is maximized subject to instantaneous
drive availability given the storage format. Therefore, both
algorithms achieve maximal throughput.

Lemma 5. The number of targeted users |Un(t)| in a finite I/O
storage system using NCS with maximal throughput scheduling
can be at least as high as that in a UCS system with maximal
throughput scheduling.

Proof: Given any instance of UCS, we need to show
(1) that no drive blocking patterns exist where the number
of targeted users |Un(t)| is higher than that in all instances of
NCS, and (2) that there exist drive blocking patterns for which
|Un(t)| in NCS is higher than that in the UCS instance.

For (1), consider an instance of NCS which is constructed
as follows. Each coded chunk cr stored on Di is a linear
combination of the uncoded chunks stored on Di in the UCS
instance. Under this scenario, given linear independence from
earlier chunks, if any read from Di in the UCS instance can
target |Un(t)| users, it is clear that a read from Di in the NCS
counterpart can also provide a new d.o.f. to at least the same
number of users. For (2), we proceed by counterexample. We
can always consider a single active user um with rm(t) =
T − 1 under the UCS instance. See Fig. 3 for a toy-example,
when r1(2) = 1 and the only missing chunk of user u1 is fj .
Assume that all drives inMd

j are blocked during timeslot t+1.
For the UCS system, um cannot be targeted so |Un(t+1)| = 0.
However, in the NCS instance of the system, although Md

j is
blocked, any unseen coded chunks with αj,r 6= 0 stored on
drives in D\Md

j can still provide a new d.o.f. to user um, so
|Un(t+ 1)| = 1.

To further illustrate NCS improved blocking performance,
we now focus on the internal true leader’s blocking probability.
First, consider the following restricted UCS file layout with
replication and striping. There are a total of R = WT drives
in the system. The uncoded system stores a single file chunk
per drive, where drive D(w−1)T+i stores the wth copy of the
ith file chunk for w = 1, · · · ,W and i = 1, · · · , T . The
coded system stores H = R =WT coded file chunks such as
cr, one on each drive Dr. Assuming that each drive becomes
unavailable with probability PD

b independently of other drives
and previous timeslots, the following lemma gives the leader
internal blocking probability in each system.

Lemma 6. At timeslot t, the internal blocking probability of
the true leader who has a knowledge space rank of r`(t) is
given by

P c
b = (PD

b)WT−r`(t) (5)

in an NCS system and by

Pu
b = (PD

b)WT−Wr`(t) (6)

in a UCS system.

Proof: If the leader has received r`(t) coded chunks up
to time t, there remain only WT − r`(t) useful drives for
service and (5) follows. In the uncoded system, if the leader
has decoded r`(t) file chunks up to time t, there remain only
WT −Wr`(t) useful drives for service and (6) follows.

For large r`(t) or W , the improvement in leader blocking
probability enabled by coded storage can become significant.
Next we consider regular s-striped storage systems [1] with
a total of R = Ws drives and T/s file chunks in each stripe
set which is an integer. The following lemma gives the leader
blocking probability in uncoded and coded systems.

Lemma 7. Assume that at timeslot t, the leader in the uncoded
system has completely decoded r out of s stripe sets, where
r = 0, · · · , s− 1, such that its knowledge space rank satisfies
rT/s ≤ r`(t) < (r + 1)T/s. Then, its internal blocking
probability is given by

Pu
b = (PD

b)Ws−Wr (7)

Now assume that in the coded system, the leader’s knowledge
space rank is also r`(t). A simple upper bound for the internal
blocking probability P c

b,ub is given by

(PD
b)Ws−r ≤ P c

b,ub = (PD
b)Ws−b r`(t)

T/s
c < (PD

b)Ws−(r+1)

(8)
And a simple lower bound P c

b,lb is given by

P c
b,lb = (PD

b)Ws−max(0,r`(t)−WT−Ws) (9)

which will deviate from the best possible blocking probability
of (PD

b)Ws only when W = 1 and T − s < r`(t) < T .

Proof: In the uncoded system, if the leader has completely
decoded r stripe sets up to time t, there only remains Ws−Wr
useful drives for service and (7) follows.

The worst case for the coded system occurs when during
r`(t) previous services of the leader, b r`(t)T/s c out of Ws avail-
able drives were completely read off and hence are unavailable
for further service, in which case (8) follows. The bounds are
derived by using the inequalities rT/s ≤ r`(t) < (r+1)T/s.

The best case for the coded system occurs where all
previous r`(t) services of the leader were uniformly read
across Ws available drives. Therefore, one can verify that
until the leader’s rank reaches r`(t) = Ws(T/s − 1) + 1 =
WT −Ws+1, none of the drives are completely read off and
are all available for service. Hence, we get, P c

b,ub = (PD
b)Ws

for r`(t) < WT −Ws+1. After this point, the drives become
sequentially unavailable and (PD

b)Ws−max(0,r`(t)−WT−Ws)

follows. One can easily verify the last statement of the lemma
using r`(t) < T , the assumption that T/s is an integer and
s ≤ T/2.

Remark 2. Lemma 7 demonstrates the importance of drive
selection in Algorithms 2 and 3, when more than one drive
containing undecoded file chunks of the leader is available
for read. One can think about this as memory in the system:
Drive service units cease being helpful if all their content has
been read. When comparing different variations of Algorithms
2 and 3, we expect that those which temporally spread reads
across drives to have better average throughput.

IV. NUMERICAL RESULTS

Using typical values found in various modern systems,
we present Monte Carlo simulation results comparing the
performance of the proposed leader-based scheduling scheme
for UCS and NCS systems. By using (4), the analytical results
for the blocking probability of the proposed leader-based
scheduling scheme for uncoded/coded storage with infinite I/O
access bandwidth are presented. For all simulations, we use a
regular striped mapping of file chunks onto drives.

Fig. 4 illustrates the external blocking probability of the
proposed scheduling scheme for both uncoded and coded
storage under drives’ infinite and finite I/O access bandwidth
conditions versus server buffer size, N . We see that when
drives have finite I/O access bandwidth, NCS reduces system
blocking probability over UCS and that the gap tends to grow
with increasing buffer size.

Fig. 5 shows the average throughput and external blocking
probability of the proposed schemes for various drive internal
blocking probabilities, PD

b . As shown, throughput and external
blocking probability are improved in NCS compared with UCS
as drives become more overwhelmed. In addition, we see that a
small 3% improvement in throughput renders a comparatively
large improvement of 150% in external blocking probability.

The internal blocking probability of the true leader versus
its knowledge space rank in the uncoded and coded storage for
various drive internal blocking probabilities, PD

b , is presented
in Fig. 6. Here, the internal blocking probability of the
true leader is much lower in the coded system compared
with the uncoded system as the leader’s knowledge space
rank increases. This lower blocking probability is one factor
explaining lower external blocking probability of the coded
system compared to the uncoded system.

V. CONCLUSIONS

In this paper, we introduced a novel and simple storage
model for point-to-multipoint SANs and investigated the im-
pact of scheduling and content storage format on system
blocking probability and throughput in PMP networks. We
proposed two intuitive drive access scheduling techniques for
both UCS and NCS systems, under infinite and finite I/O
access bandwidth conditions. In finite I/O access networks,
we showed that NCS scheduling flexibility improves blocking

100 110 120 130
10−5

10−4

10−3

10−2

10−1

Buffer Size, N

B
lo

ck
in

g
P

ro
b

ab
il

it
y,

P
s b

Infinite I/O, Uncoded/Coded, Analytical

Infinite I/O, Uncoded/Coded, Simulation

Finite I/O, Coded, Simulation

Finite I/O, Uncoded, Simulation

Fig. 4. Blocking probability versus server buffer size N for λ = 0.9, T =
100,W = 2, R = 8, s = 4, PD

b = 0.5.

0 0.1 0.2 0.3 0.4 0.5 0.6
0.95

0.96

0.97

0.98

0.99

1

1.01

Drive Blocking Probability, PD
b

A
ve

ra
ge

T
h
ro

u
gh

p
u
t

Infinite I/O, Uncoded/Coded

Finite I/O, Coded

Finite I/O, Uncoded

Blocking Probability

Average Throughput

0 0.1 0.2 0.3 0.4 0.5 0.6
10−2

10−1

100

B
lo

ck
in

g
P

ro
b
ab

il
it

y,
P

s b

Fig. 5. Average throughput and blocking probability versus PD
b for λ =

0.9, T = 8,W = 2, R = 8, s = 4.

probability and throughput over UCS. Our numerical evalua-
tions and simulation results verify these advantages and can
be used to guide future storage system design.

REFERENCES

[1] U. J. Ferner, M. Medard, and E. Soljanin, “Toward sustainable network-
ing: Storage area networks with network coding,” in Proc. Allerton Conf.
on Commun., Control and Computing, Champaign, IL, Oct. 2012.

[2] A. G. Dimakis, K. Ramchandran, Y. Wu, and C. Suh, “A survey on
network codes for distributed storage,” Proc. IEEE, vol. 99, no. 3, pp.
476–489, Mar. 2011.

[3] D. Ford, F. Labelle, F. I. Popovici, M. Stokely, V.-A. Truong,
L. Barroso, C. Grimes, and S. Quinlan, “Availability in globally
distributed storage systems,” in Proceedings of the 9th USENIX
conference on Operating systems design and implementation, ser.
OSDI’10. Berkeley, CA: USENIX Association, 2010, pp. 1–7.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1924943.1924948

[4] N. B. Shah, K. Lee, and K. Ramchandran, “The MDS Queue:
Analysing latency performance of codes and redundant requests,” CoRR,
http://arxiv.org/abs/1211.5405, 2012.

[5] L. Huang, S. Pawar, Z. Hao, and K. Ramchandran, “Codes can reduce
queueing delay in data centers,” in Proc. IEEE Int. Symp. on Inf. Theory,
Jul. 2012, pp. 2766–2770.

0 1 2 3
10−6

10−5

10−4

10−3

10−2

10−1

100

Knowledge Space Rank

In
te
rn
al

B
lo
ck
in
g
P
ro
b
ab

il
it
y

Finite I/O, Coded, Lower bound

Finite I/O, Coded, Upper bound

Finite I/O, Uncoded

PD
b = 0.6

PD
b = 0.4

PD
b = 0.2

Fig. 6. Blocking probability of the true leader versus drive blocking
probability PD

b for T = 8,W = 2, s = 4.

[6] T. E. Anderson, S. S. Owicki, J. B. Saxe, and C. P. Thacker,
“High-speed switch scheduling for local-area networks,” ACM Trans.
Comput. Syst., vol. 11, no. 4, pp. 319–352, Nov. 1993. [Online].
Available: http://doi.acm.org/10.1145/161541.161736

[7] M. A. Marsan, A. Bianco, P. Giaccone, E. Leonardi, and F. Neri,
“Multicast traffic in input-queued switches: optimal scheduling and
maximum throughput,” IEEE/ACM Trans. Netw., vol. 11, no. 3, pp.
465–477, Jun. 2003. [Online]. Available: http://dx.doi.org/10.1109/
TNET.2003.813048

[8] B. Prabhakar, N. McKeown, and R. Ahuja, “Multicast scheduling for
input-queued switches,” vol. 15, no. 5, pp. 855–866, Jun. 1997.

[9] H. Yu, S. Ruepp, and M. S. Berger, “Multi-level round-robin mulitcast
scheduling with look-ahead mechanism,” in Proc. IEEE Int. Conf. on
Commun., Kyoto, Japan, Jun. 2011, pp. 1–5.

[10] C. Feng and B. Li, Network coding: Fundamentals and applicaions,
1st ed. Academic Press, 2012, ch. Network coding for conten
distribution and multimedia streaming in peer-to-peer networks.

[11] G. N. Rouskas and V. Sivaraman, “Packet scheduling in broadcast WDM
networks with arbitrary transceiver tuning latencies,” IEEE/ACM Trans.
Netw., vol. 5, no. 3, pp. 359–370, Jun. 1997.

[12] D. Aksoy, M. J. Franklin, and S. Zdonik, “Data staging for on-demand
broadcast,” in Proc. 27th VLDB Conf., Roma, Italy 2001.

[13] A. Hu, “Video-on-demand broadcasting protocols: A comprehensive
study,” in Proc. IEEE Conf. on Computer Commun., Anchorage, AK,
Apr. 2001, pp. 508–517.

[14] T. Ho, R. Koetter, M. Médard, M. Effros, J. Shi, and D. Karger, “A
random linear network coding approach to multicast,” IEEE Trans. Inf.
Theory, vol. 52, no. 10, pp. 4413–4430, Oct. 2006.

[15] U. J. Ferner, Q. Long, M. Pedroso, L. Voloch, and M. Médard, “Building
a network coded storage testbed for data center energy reduction,” in
Proc. IEEE SustainIT, Polermo, Italy, Oct. 2013.

[16] C.-S. Chang, W.-J. Chen, and H.-Y. Huang, “On service guarantees for
input-buffered crossbar switches: a capacity decomposition approach by
Birkhoff and von Neumann,” in Proc. IWQoS, 1999, pp. 79–86.

[17] J. Sundararajan, S. Deb, and M. Médard, “Extending the Birkhoff-von
Neumann switching strategy for multicast - on the use of optical splitting
in switches,” IEEE J. Sel. Areas Commun., vol. 25, pp. 36–50, 2007.

[18] M. Kim, J. K. Sundararajan, M. Médard, A. Eryilmaz, and R. Kotter,
“Network coding in a multicast switch,” IEEE Trans. Inf. Theory, vol. 57,
no. 1, pp. 436–460, 2011.

http://dl.acm.org/citation.cfm?id=1924943.1924948
http://arxiv.org/abs/1211.5405
http://doi.acm.org/10.1145/161541.161736
http://dx.doi.org/10.1109/TNET.2003.813048
http://dx.doi.org/10.1109/TNET.2003.813048

	I Introduction
	II System Model
	II-A Drives
	II-B Server
	II-C Users
	II-D Performance Metrics

	III Data Scheduling Schemes
	III-A Infinite I/O access bandwidth systems
	III-A1 Uncoded Scheme
	III-A2 Uncoded Scheme Analysis

	III-B Finite I/O access bandwidth systems
	III-B1 Uncoded Scheme
	III-B2 Coded Scheme
	III-B3 Schemes Analysis and Comparison

	IV Numerical Results
	V Conclusions
	References

