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Abstract

Link state routing mechanisms have shown good
convergence behaviour in networks with mobile hosts.
Compared to traditional link state mechanisms, which
suffer from broadcast storm problems in Mobile
Ad Hoc Networks (MANETs), pruned link state ap-
proaches such as those used in Optimized Link State
Routing (OLSR) have shown significant reduction in
the control overhead. In this paper, we show that the
pruning function is a fundamental component of link
state routing protocols for MANETs, and develop a
class of pruning methods for many commonly used
routing objectives. We show that the ability of our local
pruning methods to preserve optimal paths is a special
case of the semiring distribution property.

1. Introduction

Routing in MANETs has been a subject of signif-
icant research over the past decade. It is common to
classify MANET routing protocols as distance vector
and link state routing protocols. Though architecturally
different, both mechanisms compute a route profile (a
route might be a path or a set of paths to reach a
destination set) by optimizing the same cost function.
However, the classification arises from the type of
information available for the minimization and the
role of minimizing/routing agents. In this paper, we
relate these properties to the functional description
of the Selector of Topology Information to Dissem-
inate Component (STIDC), which was introduced in
the component-based architecture for MANET routing
protocols ([10]). We develop instances of the STIDC
that guarantee desired global properties for the routing.
We show that the ability of our algorithms to preserve
certain properties globally by localized pruning is a
manifestation of a general theory of semiring distribu-
tion.

This paper is organized as follows. In section 1,
we introduce the mathematical notations. In sections 3
and 4, we present the architectural difference between
distance vector and link state mechanisms. In section 5,
we summarize the component architecture of link state
routing protocols. In section 6, we detail the function-
ing of the STIDC and present different realizations for
the STIDC. Finally in section 7, we generalize these
realizations using an ordered semiring algebra.

2. Mathematical Notation

Let G(V,E[t]), t ≥ 0, denote a dynamic graph,
where the vertex set V represents the mobile stations,
and the dynamic edge set E[t] represents the adjacency
between a pair of stations at time t. Stations i, j ∈ V
are adjacent at time t iff (i, j) ∈ E[t]. In this paper,
we consider only undirected links/edges. Such links are
typically established using neighbor discovery mecha-
nisms, similar to those described in [3]. The one-hop
neighborhood boundary of station i, ∂N b

1 (i)[t], is the
set of nodes that have a direct adjacency to i. The nodes
that share an adjacency with the nodes in ∂N b

1 (i)[t] but
not with i form the two-hop neighborhood boundary,
which is denoted by ∂N b

2 (i)[t]. Similarly, the r-hop
neighborhood boundary, ∂N b

r (i)[t], is the set of nodes
that share an adjacency with ∂N b

r−1(i)[t] but not with
∂N b

j (i)[t], j < r − 1 and i. The neighbor discovery
mechanism at station i ∈ V typically makes visible, the
k-hop neighborhood, Nk(i)[t] = {i} ∪j≤k ∂N b

j (i)[t],
and the link metric weights for each edge in the
subgraph of G[t] induced by the vertex subset Nk(i)[t].
We denote the network diameter at time t by DNW [t].

3. Link State Routing Protocols

Link state routing protocols have a significant im-
portance in the history of routing in data networks. A
notable one was in the stabilization of the ARPANET
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routing protocol. The original routing protocol pro-
posed for the wired ARPANET was an adaptive short-
est path routing scheme [5]. At every router i ∈ V ,
the length of the link to router j ∈ V was chosen to
be the delay seen at the interface to j. The shortest
path delay computations were based on the Bellman-
Ford equation [5]. Every station computed the shortest
path to reach a destination set by message passing
in their local neighborhood, N1(i). However, this
routing mechanism was not able to cope up with the
delay dynamics at the interface queues, and hence,
the routing paths exhibited oscillations. After a decade
of modifications and improvements, a new routing
paradigm for the ARPANET was introduced in [7]. The
modified new routing protocol is similar to modern link
state protocols such as OSPF. The protocol involved
local delay averaging (filtering) for every 10 seconds
and network-wide broadcasting of the delay states
every 60 seconds [5]. In this case, since the link state
(delay) information is available at every router i ∈ V ,
the routers can locally compute the Bellman-Ford
equations. This modification showed better stability
properties for delay-aware routing in ARPANET [8].
This property of link state routing protocols made them
attractive for dynamic networks, which also encompass
mobile networks. For instance, preliminary studies by
Johnson [4] show that link state routing protocols
exhibit better convergence properties for networks with
mobile hosts. This improved stability is due to the
ability of link state algorithms to process/filter local
information, which is elaborated in the forthcoming
section.

4. Network Neighborhood Computation

In the context of routing, every station can be
considered as a routing agent attempting to minimize
a global cost function. In the case of distance vector
mechanisms, the agents perform a local minimization,
and exchange this processed information. On the con-
trary, in pure link state mechanisms the nodes broad-
cast raw (unprocessed) information. This raw infor-
mation creates a complete global view of the network
information for each routing agent to autonomously
minimize the global cost. We observe that there are
two fundamental network operations involved in these
mechanisms :

1) Neighborhood processing - Processing the local
raw information to prune the search space for the
global minimization.

2) Network broadcasting - Broadcasting the pro-
cessed information to all the routing agents to
perform the global optimization.

This is illustrated in Fig. 1. While pure link state mech-
anisms have no neighborhood-based processing, the
distance vector methods perform only neighborhood-
based processing and no broadcasting. This suggests
that it is meaningful to classify routing protocols based
on the neighborhood over which the network process-
ing is carried out. This classification is illustrated in
Fig. 2. It shows that pure link state algorithms, which
perform no neighborhood-based computation (network
processing), broadcast a lot of information. The pure
distance vector approach performs DNW (network
diameter) wide network processing, and hence, does
not broadcast any raw information. The same figure
also shows algorithms such as OLSR ([14], [11]),
which have access to a local view of N2(i), i ∈ V ,
perform local network processing to reduce the broad-
cast information. In a similar manner, mechanisms
that have access to Nk(i), i ∈ V , can significantly
reduce the broadcast information at the cost of local
network processing. In the coming sections, we visit
the component architecture proposed in [10], and relate
the neighborhood-based computation to the functional
description of the STIDC.
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Figure 1: Fundamental components for information
dissemination in routing protocols.

5. Component Architecture for Link State
Routing Algorithms

The fundamental idea of our previous work was
to identify and partition the primary functionalities
of routing protocols into components. To illustrate
this idea, let us consider the different functionalities
of the OLSR protocol. The OLSR neighbor discov-
ery mechanism enables every station to be aware of
N2(i), i ∈ V . This is captured by the Neighbor Discov-
ery Component (NDC). OLSR’s MPR selection, which
is based on a local vertex covering problem [2], serves
two purposes: (i) choosing the subset of topology
information that must be broadcast; (ii) nominating the
stations to relay this information. These two function-
alities can be logically partitioned into the Selector
of Topology Information to Disseminate Component
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Figure 2: Relative contribution of the fundamental
components.

(STIDC) and the Topology Dissemination Component
(TDC) respectively. These components feed into the
Route Selection Component (RSC), which builds the
routing tables. These components are shown in Fig. 3.
In this paper, we define the functional requirements of
the STIDC, and provide a design mechanism to meet
these requirements.
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Figure 3: Components of link state Routing Protocols

6. Selector of Topology Information to Dis-
seminate Component

As the name signifies, the STIDC is responsible
for selecting the information that creates a global
view for every routing agent. This information could
represent coarse details such as a link’s ON-OFF state

or more precise details such as the interface delay.
For instance, in ARPANET the STIDC chooses the
average link delays in the network. In OSPF, the cost
(also called metric) of an interface is an indication of
the overhead required to send packets across a certain
interface (i.e. the cost of an interface is inversely
proportional to the bandwidth of that interface [1]).
The NDC mechanism for both ARPANET and OSPF
expose only N1(i), i ∈ V and this limits the STIDC
to a naive functionality of selecting all information
exposed by the NDC. In other words, the STIDC
does not have sufficient information to perform local
pruning, and hence, there is significant flooding of raw
information (Fig. 2). On the contrary, the NDC for
OLSR (and many other MANET protocols) exposes
N2(i), and this enables their STIDC to prune the
topology information. This pruning guarantees that the
shortest path in terms of hop count is preserved in the
global view for OLSR. However, for mobile networks
it is very natural to associate a cost to the wireless link,
based on its stability, capacity or metrics of reliability.
In these cases, an OLSR-like STIDC, which is based
on the covering condition, is handicapped with respect
to meeting the functional requirements.

The STIDC is a significant component for MANET
routing protocols because the STIDC serves as the
interface between the local and global views of the
dynamic graph. While the NDC quickly exposes a
local dynamic Nk(i)[t], i ∈ V , to the STIDC, the
later has the responsibility of choosing information
to create a global view. Ideally, one would expect
to flood all the local information. But this results
in significant overhead, which consumes the already
limited bandwidth of a wireless medium. Instead, if
the STIDC can summarize the sufficient information
for routing, it can help improve the throughput.

In [9], Wu et al. introduce the concept of local
view at every station. This captures the time-varying
adjacency at the local neighborhood of every station
i ∈ V . We extend this notion to also capture the various
metric weights.

Definition The LocalV iewi[t], t ≥ 0, at station i ∈ V
is the subgraph of the dynamic graph G[t] along with
the metric weights c(i, j)[t], (i, j) in the subgraph that
is exposed at i by its NDC.

For instance, Fig. 4 shows the local view at station
i for a NDC mechanism that exposes N2(i), i ∈ V .
We assume that in the neighbor discovery phase, along
with the station identifiers, the interface cost c(i, j)[t]
is also exchanged. In other words, the LocalV iewi[t]
is composed of Nk(i)[t] along with the metric weights
for each link in it. Given this LocalV iewi[t], the
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Figure 4: Local view at station i

functional requirement of the STIDC is to summarize
LocalV iewi[t], t ≥ 0, such that the union of this
processed information at every i ∈ V along with
the information exposed by the NDC is sufficient for
every routing agent to perform a global minimization
to compute the optimal route profile.

Definition The GlobalV iewi[t], t ≥ 0, at station
i ∈ V is the subgraph of the dynamic graph G[t]
along with the metric weights c(i, j)[t], (i, j) in this
subgraph that is made available at station i by the
LocalV iewi[t], and the broadcast STIDC information.

6.1. STIDC algorithms

We now introduce STIDC instances that satisfy the
functional description for a set of commonly used
routing objective functions. In all the algorithms that
follow, every station i ∈ V runs the STIDC prun-
ing algorithm to summarize its LocalV iewi[t]. For
each station, the algorithm returns a subset of the
links incident to that station along with their link
costs (Li). This information is fed into the TDC to
be broadcast across the network. The broadcast sub-
graph corresponds to Gbroadcast[t] = ∪i∈V Li[t]. Then,
the corresponding global view at every station i is
GlobalV iewi[t] = LocalV iewi[t] ∪Gbroadcast[t]. We
show that for a very general class of routing objectives,
this GlobalV iewi[t] contains sufficient information for
the routing agents to compute the optimal paths.

6.2. Preserving Shortest Path

One of the most common routing metrics is the
shortest path metric. The length of any path p at time

t is given by

l(p)[t] =
∑

(i,j)∈p

c(i, j)[t]

Then, the shortest path between a source-destination
pair (S, T ) is

pSP (S, T )[t] = arg min
p∈PS,T [t]

l(p)[t]

where PS,T [t] is the set of all paths from S to T . The
functionality of the STIDC is to preserve the shortest
paths in GlobalV iewi[t], i ∈ V . Running Algorithm
1 at every station i creates a GlobalV iewi[t], i ∈ V ,
in the manner described in subsection 6.1.

Algorithm 1 Pruning algorithm for shortest path at
station i

INPUT: LocalV iewi[t]
Li[t]← ∅
TreeSP (i) ← Shortest Path Tree Rooted
at i for LocalV iewi[t]
for all j ∈ ∂N 1(i)[t] do

if (i, j) ∈ TreeSP (i) then
Li[t] = Li[t] ∪ {(i, j, c(i, j)[t])}

end if
end for
return Li[t]
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(b) Broken Path

Figure 5: Path (S → T )

Theorem 6.1: At every station i ∈ V , the
GlobalV iewi[t] generated by Algorithm 1 preserves
all pair source-destination shortest paths in G[t].

Proof: Let us consider any source-destination
pair (S, T ). Let the shortest path from S to T be
pSP (S, T )[t] = S → j1 → j2 → · · · → jn−1 → T .
This is shown in Fig. 5a. Let us suppose that this
shortest path is not preserved in GlobalV iewS [t].
Let us consider the intersection of pSP (S, T )[t] and
GlobalV iewS [t] shown in Fig. 5b. Since the shortest
path is not preserved, this corresponds to a broken path.
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Let us choose one missing link (jm, jm+1).
⇒ Edge (jm, jm+1) is not a part of the shortest path
from jm to jm+1. (By Algorithm 1)
⇒ ∃ a shortest path (jm → jl → · · · → jm+1), where
jl 6= jm+1 in the LocalV iewjm

[t].
Let us denote by pR(S, T ) the path obtained by
replacing the edge (jm, jm+1) in pSP (S, T )[t] with
this lesser cost sub-path. Then cost l(pSP (S, T )[t]) >
l(pR(S, T )[t]). This is a contradiction. So edge
(jm, jm+1) is indeed preserved. We can extend the
proof to every missing edge to prove that pSP (S, T )[t]
is preserved in GlobalV iewi[t].

6.3. Preserving Max-min Paths

Another routing metric is the bottleneck metric,
which is typically used to route traffic through the
maximum capacity path. For any path p the bottleneck
metric is given by

b(p)[t] = min
(i,j)∈p

c(i, j)[t]

Then the max-min path between the source-target pair
(S, T ) is given by

pMM (S, T )[t] = arg max
p∈PS,T [t]

b(p)[t]

Algorithm 2 runs at every station i and creates a
GlobalV iewi[t] at i.

Algorithm 2 Pruning algorithm for max-min path at
station i

INPUT: LocalV iewi[t]
Li[t]← ∅
TreeMM (i) ← Max-Min Tree rooted at i
for LocalV iewi[t]
for all j ∈ ∂N 1(i)[t] do

if (i, j) ∈ TreeMM (i) then
Li[t] = Li[t] ∪ {(i, j)[t]}

end if
end for
return Li[t]

Theorem 6.2: At every station i ∈ V , the
GlobalV iewi[t] generated by Algorithm 2 preserves
all pair source-destination max-min paths in G[t].

Proof: Let us consider any source-destination
pair (S, T ). Let the max-min path from S to T be
pMM (S, T )[t] = S → j1 → j2 → · · · → jn−1 → T .
This is shown in Fig. 5a. Let us suppose that this
max-min path is not preserved in GlobalV iewS [t].
Let us consider the intersection of pMM (S, T )[t] and
GlobalV iewS [t] shown in Fig. 5b. Let us choose one

missing link (jm, jm+1).
⇒ Edge (jm, jm+1) is not a part of the max-min path
from jm to jm+1. (By Algorithm 2)
⇒ ∃ a max-min path (jm → jl → · · · → jm+1),
where jl 6= jm+1 in the LocalV iewjm

[t].
Let us denote by pR(S, T )[t] the path obtained by
replacing the edge (jm, jm+1) in pMM (S, T )[t] with
a better max-min sub-path. Then the bottleneck metric
b(pMM (S, T )[t]) < b(pR(S, T )[t]). This a contradic-
tion. So edge (jm, jm+1) is indeed preserved. We can
extend the proof to every missing edge to prove that
pMM (S, T )[t] is preserved in GlobalV iewi[t].

6.4. Preserving K-Shortest Paths

Another routing objective is the K-shortest paths,
which is used for reliability, security and load-
balancing. For any source-destination pair (S, T ), the
K-shortest paths are the first K paths of the set PS,T [t]
ranked in increasing path lengths. Again the function-
ality of the STIDC is to preserve these paths for every
source-destination pair. The STIDC runs Algorithm 3
to prune for this set of paths.

Algorithm 3 Pruning algorithm for K-shortest paths
at station i

INPUT: LocalV iewi[t]
Li[t]← ∅
TreeKSP (i) ← K-Shortest Path Tree
Rooted at i for LocalV iewi[t]
for all j ∈ ∂N 1(i)[t] do

if (i, j) ∈ TreeKSP (i) then
Li[t] = L ∪ {(i, j)c(i, j)[t]}

end if
end for
return Li[t]

Theorem 6.3: At every station i ∈ V , the
GlobalV iewi[t] generated by Algorithm 3 preserves
all K-shortest path sets in G[t].

Proof: Let us consider any source-target pair
(S, T ). Let the K-shortest path set be PKSP

S,T [t]. Let
us suppose this set of paths is not preserved in
GlobalV iewS [t]. Let us consider the intersection of
PKSP

S,T [t] with the GlobalV iewi[t]. This creates a
broken set of paths shown in fig. 6. Let us consider
a missing link (jm, jm+1).
⇒ Edge (jm, jm+1) is not a part of the K-Shortest
path set from jm to jm+1. (By Algorithm 3)
⇒ ∃ a path set PKSP

jm,jm+1
[t] in the LocalV iewi[t]

such that none of the paths in the set use the edge
(jm, jm+1).
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Again, we have a better replacement path set between
the (S, T ) pair using the path set PKSP

S,T [t]. We can
extend the proof to every missing edge to prove that
PKSP

S,T [t] is indeed preserved in GlobalV iewi[t].
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Figure 6: Broken Path Set between (S, T )

7. Generalized Semiring Pruning Methods

The pruning methods introduced in the previous
sections suggest that there is an underlying algebra to
these pruning methods. The algorithms suggest that by
preserving a property in the local neighborhood, we
are able to preserve the property globally. We show
that this algebra is a semiring algebra. For a detailed
exposition on semirings, we refer the reader to [6],
[12], and [13].

A semiring is an algebraic structure (S,⊕,⊗) that
satisfies the following axioms:
(A1) (S,⊕) is a commutative semigroup with a neutral
element ©0

a⊕ b = b⊕ a

a⊕ (b⊕ c) = (a⊕ b)⊕ c

a⊕©0 = a

(A2) (S,⊗) is a semigroup with a neutral element ©1
and ©0 as an absorbing element

a⊗ (b⊗ c) = (a⊗ b)⊗ c

a⊗©1 = a

a⊗©0 = ©0

(A3) ⊗ distributes over ⊕

a⊗ (b⊕ c) = (a⊗ b)⊕ (a⊗ c)
(a⊕ b)⊗ c = (a⊗ c)⊕ (b⊗ c)

It should be noted that the functions that have this
semiring structure lend themselves to distributed com-
putation/evaluation by the virtue of the distributivity
property (A3). This property of semiring structures has
been used in many path problems in graphs [6]. One
particularly useful class of semirings for optimization
is the ordered semiring class. Here the ⊕ is the supre-
mum or infimum operator and (S,⊗,�) is an ordered
semigroup. An ordered semigroup is a semigroup with
an order relation which is monotone with respect to ⊗.
i.e. a, b, a′, b′ ∈ S we have

a � b and a′ � b′ ⇒ a⊗ a′ � b⊗ b′

In this paper, we consider only ordered semirings.
Without loss of generality, we assume that the ⊕ oper-
ator is the infimum operator. In the context of mobile
networks with metrics on the links, we associate with
every edge (i, j) of the dynamic graph a semiring
element c(i, j)[t] ∈ S.

Definition A general semiring path problem on a
dynamic graph corresponds to computing

p∗(S, T )[t] = arg ⊕p∈PS,T [t] ⊗(i,j)∈pc(i, j)[t] (1)

The equivalence of this definition with shortest
path, max-min path and k-shortest path problems
is well illustrated in [6]. Let us consider an ab-
stract pruning algorithm at every i ∈ V in Algo-
rithm 4. The procedure Semiring Pruned Tree
Rooted at i computes the optimal paths from i
to j ∈ LocalV iewi[t] based on Equation (1). The
algorithm creates a GlobalV iewi[t], i ∈ V , by the
procedure illustrated in subsection 6.1.

Algorithm 4 Semiring pruning algorithm i

INPUT: LocalV iewi[t]
Li[t]← ∅
TreeSemiring(i) ← Semiring Pruned Tree
Rooted at i for LocalV iewi[t]
for all j ∈ ∂N 1(i)[t] do

if (i, j) ∈ TreeSemiring(i) then
Li[t] = Li[t] ∪ {(i, j, c(i, j)[t])}

end if
end for
return Li[t]

Theorem 7.1: At every station i ∈ V , the
GlobalV iewi[t] generated by Algorithm 4 preserves
all pair optimal paths (optimality with respect to Equa-
tion (1)) in G[t].

Proof: Let us consider any source-destination
pair (S, T ). Let the optimal path from S to T be
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p∗(S, T )[t] = S → j1 → j2 → · · · → jn−1 → T .
Let us suppose that this optimal path is not preserved
in GlobalV iewS [t]. Let us consider the intersection
of p∗(S, T ) and GlobalV iewS [t]. Let us choose one
missing link (jm, jm+1).
⇒ Edge (jm, jm+1) is not a part of the optimal path
from jm to jm+1. (By Algorithm 4)
⇒ ∃ a optimal path (jm → jl → . . . jl′ → jm+1),
where jl 6= jm+1 in the LocalV iewi[t].
⇒ c(jm, jm+1) � c(jm, jl)⊗ · · · ⊗ c(jl′ , jm+1)

Cost(p∗(S, T )[t]) = ⊗(i,j)∈p∗(S,T )[t]c(i, j)[t]
= c(S, j1)[t]⊗ c(j1, j2)⊗ . . .

⊗c(jm, jm+1)⊗ . . . c(jn−1, T )
� c(S, j1)[t]⊗ c(j1, j2)⊗ · · · ⊗

c(jm, jl)⊗ · · · ⊗ c(jl′ , jm+1)⊗
· · · ⊗ c(jn−1, T ) (By A3).

This means there is a better path from S to T . This is
a contradiction. Edge (jm, jm+1) is indeed preserved.
We can extend the proof to every missing edge to prove
that p∗(S, T ) is preserved in GlobalV iewi[t].

This generalization using semiring distribution is not
necessarily limited to routing objectives. The same
architectural abstractions can be extended to other
applications such as sensor fusion, estimation and
tracking (many of these algorithms are message pass-
ing algorithms which can be abstracted as semirings).

8. Conclusion

In this paper, we defined the functional requirements
of STIDC. We detailed the importance of the STIDC
pruning for routing in MANETs. We then presented
instances of the STIDC, which aid the routing agents to
correctly configure their routing tables. We showed that
these instances can preserve important properties such
as shortest paths, min-max paths and K-shortest paths
by local pruning. We also generalized this property
and showed that it is a special case of the semiring
distribution property.
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